News
14.03.2023

RegistrationRegistration is now open for the course.

High Dimensional Analysis: Random Matrices and Machine Learning
4h Topics Course (9 CP)
Analysis in highdimensional spaces is at the basis of an understanding and rigorous treatment of dealing with large data sets. In a very rough sense one has to understand functions of many variables, in particular also their generic and statistical behaviour.
Highdimensional spaces are actually quite strange and exotic, when considered from our experience in small dimensions (remember that we live in three dimensions). On one side, highdimensional spaces are VERY large, so it is easy to get lost there (a phenomenon often known under the name “curse of dimensionality”), but on the other hand, functions of many variables often concentrate to constant values and thus allow very precise answers to apparently intractable questions (a phenomenon going under the name of “concentration phenomenon” and also considered as the “blessing of dimensionality”).
Also statistics in high dimensions with many variables and many observations is different from what one is used to in a classical setting. In classical statistics the number of variables is small compared to the number of observations and essentially one can understand the distribution of the variables via the law of large numbers by doing many measurements. In modern statistics the number of variables is of the same order as the number of observations, so the relation between the real and the measured properties of the variables is more tricky and new mathematical tools are needed to unravel this. In particular, random matrices (which were originally introduced by the statistician Wishart) are such a tool.
The neural networks of modern deep learning are in some sense a special class of functions of many variables, built out of (random) matrices and also some entrywise nonlinear functions. Thus random matrices should help to say something about neural nets, but the latter also present new and interesting extensions of random matrices.
In this course we will take a trip through high dimensions. We hope not to get lost, but to get a feeling for its strange and beautiful behaviour. Much of the terrain is still unexplored, but there are some first interesting islands which have been discovered, waiting for us to explore them.
This course is intended for everybody with an interest in a mathematical rigorous discussion of highdimensional phenomena. A basic mathematical background on the level of the MfI 13 courses should be sufficient (but also necessary). Be aware, however, our intention is not to develop better and faster algorithms for deep learning, but to touch upon some mathematical theories which might (or might not, who knows) be important for a sound mathematical theory of deep learning.
Bibliography
Here are some references on which the lectures will partly rely or which might provide some further reading. In any case they should give an idea what the course will be about. We will not follow one source exclusively, but pick the best from each of them, according to the taste and interest of the lecturer.
 R. Couillet and Z. Liao: Random Matrix Methods for Machine Learning, Cambridge University Press, 2022
 D.A. Roberts and S. Yaida: The Principles of Deep Learning Theory, Cambridge University Press, 2022
 R. Vershynin: HighDimensional Probability, Cambridge University Press, 2018
 A. Zagidullina: HighDimensional Covariance Matrix Estimation, Springer, 2021
 the Tensor programs framework of Greg Yang
This list is not yet final and will increase in due time.
Time and Place
Lectures: Mondays and Wednesdays, 1012 in HS IV, building E 2.4
Tutorials: tbd