(Two-level) Logic Synthesis Implicants and Prime Implicants

Becker/Molitor, Chapter 7.2

Jan Reineke Universität des Saarlandes

Prime implicants

System Architecture, Jan Reineke

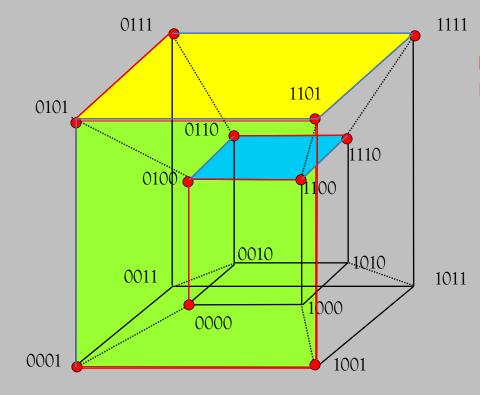
A Boolean function $f \in B_n$ is less than or equal to another Boolean function $g \in B_n$ ($f \leq g$), if $\forall \alpha \in B^n$: $f(\alpha) \leq g(\alpha)$. (i.e. if f is 1, then so is g).

Def. (Implicant): Let f be a Boolean function with one output. An implicant of f is a monomial q with $\psi(q) \leq f$.

Def. (Prime implicant): A prime implicant of f is a maximal implicant q of f, i.e., there is no implicant s (s \neq q) of f with $\psi(q) \leq \psi(s)$.

Illustration via n-dimensional hypercubes

- An **implicant of f** is a subcube that contains only marked nodes.
- A prime implicant of f is a maximal such subcube.

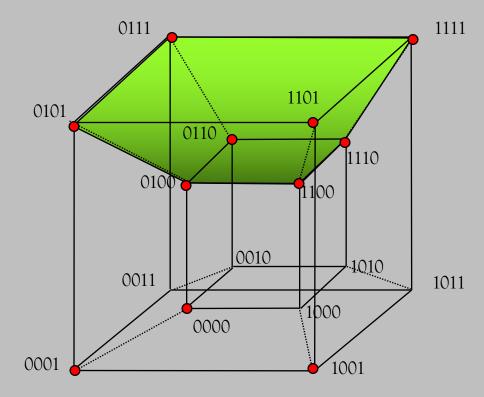


Implicants:

- all marked nodes,
- all edges whose nodes all are marked,
- all surfaces whose nodes all are marked,
- all 3-dimensional subcubes whose nodes all are marked.

In general:

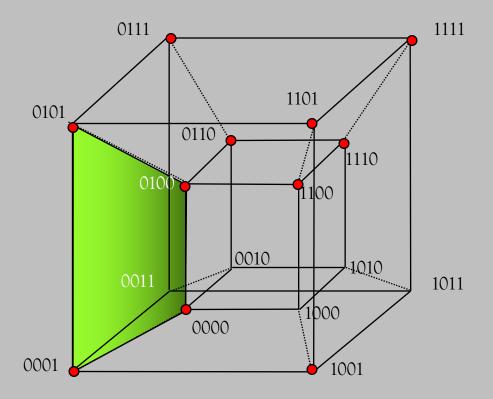
Implicants are those subcubes whose nodes all are marked.



The function defining our hypercube has **3 prime implicants**:

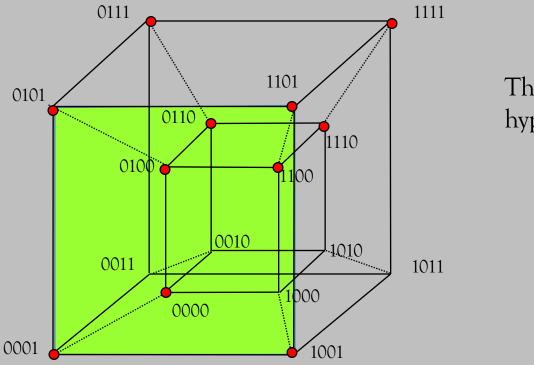
• x₂

System Architecture, Jan Reineke



The function defining our hypercube has **3 prime implicants**:

x₂
x₁'x₃'



The function defining our hypercube has **3 prime implicants**:

x₂
x₁'x₃'
x₃'x₄

Polynomials and implicants of a function f

Lemma:

All monomials of a polynomial **p** of **f** are implicants of **f**.

Proof (by contradiction)

Let **p** be a polynomial of **f** and let **m** be a monomial of **p**.

Assume for a contradiction that **m** is not an implicant of **f**, i.e., $\psi(\mathbf{m}) \leq \mathbf{f}$ does not hold.

Thus, there must be a valuation $(\alpha_1,...,\alpha_n)$ of the variables $(x_1,...,x_n)$ with

- $f(\alpha_1,...,\alpha_n) = 0$, but
- $\psi(m)(\alpha_1,...,\alpha_n) = 1$, and so also $\psi(p)(\alpha_1,...,\alpha_n) = 1$.

However, by assumption p is a polynomial of f, and so $\psi(p)(\alpha_1,...,\alpha_n) = f(\alpha_1,...,\alpha_n)$. Contradiction.

Cheapest covering of all marked nodes

We are searching for a polynomial **f** of minimal cost, i.e., we are searching for a so-called **minimal polynomial**:

Definition: A minimal polynomial p of a Boolean function f is a polynomial of f of minimal cost, i.e., a polynomial of f, *s.t.*, cost(p) ≤ cost(p') for all (other) polynomials p' of f.

Prime Implicant Theorem of Quine

Theorem (Quine):

Every minimal polynomial **p** of a Boolean function **f** consists only of prime implicants of **f**.

Willard Quine (1928-2000)

Proof (by contradiction)

Assume that **p** contains an implicant of **f** that is not prime.

Thus, **m** is covered by a prime implicant **m**' of **f**. In other words, it is contained in **m**'.

By definition of cost, we have cost(m') < cost(m).

Replacing the implicant **m** by the prime implicant **m**', we obtain another polynomial **p**', that is still a polynomial of f, s.t. $cost(p') \leq cost(p)$.

This contradicts the assumption that p is a minimal polynomial!

→ To construct a minimal polynomial of a Boolean function f, we should first find its prime implicants!

Computation of implicants (1/2)

Lemma 1:

If m is an implicant of f, then so are $m \cdot x$ and $m \cdot x'$ for every variable x that occurs neither as positive or negative literal in m.

Proof

 $\begin{array}{ll} \text{More formally: By assumption, m is an implicant of f, i.e.: } \psi(\mathbf{m}) \leq f. \\ \psi(\mathbf{m}) = \psi(\mathbf{m}) \cdot (\psi(\mathbf{x}) + \neg \psi(\mathbf{x})) & (\text{Complements}) \\ &= \psi(\mathbf{m}) \cdot (\psi(\mathbf{x}) + \psi(\mathbf{x}')) & (\text{Definition of } \psi) \\ &= \psi(\mathbf{m}) \cdot \psi(\mathbf{x}) + \psi(\mathbf{m}) \cdot \psi(\mathbf{x}') & (\text{Distributivity}) \\ &= \psi(\mathbf{m} \cdot \mathbf{x}) + \psi(\mathbf{m} \cdot \mathbf{x}') \geq \psi(\mathbf{m} \cdot \mathbf{x}), \ \psi(\mathbf{m} \cdot \mathbf{x}') & (\text{Definition of } \psi) \\ \text{So we have: } \psi(\mathbf{m} \cdot \mathbf{x}), \ \psi(\mathbf{m} \cdot \mathbf{x}') \leq f, \text{ i.e. } \mathbf{m} \cdot \mathbf{x} \text{ and } \mathbf{m} \cdot \mathbf{x}' \text{ are also} \\ &\text{implicants of } f. \end{array}$

Computation of implicants (2/2)

Lemma 2: If $\mathbf{m} \cdot \mathbf{x}$ and $\mathbf{m} \cdot \mathbf{x}'$ are implicants of f, then so is m.

Proof

As $\mathbf{m} \cdot \mathbf{x}$ and $\mathbf{m} \cdot \mathbf{x}'$ are implicants of \mathbf{f} , by definition of implicants, we have $\mathbf{f} \ge \psi(\mathbf{m} \cdot \mathbf{x})$ and $\mathbf{f} \ge \psi(\mathbf{m} \cdot \mathbf{x}')$.

```
Thus, we also have f \ge \psi(\mathbf{m} \cdot \mathbf{x}) + \psi(\mathbf{m} \cdot \mathbf{x}')
```

```
 \begin{aligned} \mathbf{f} \geq \psi(\mathbf{m} \cdot \mathbf{x}) + \psi(\mathbf{m} \cdot \mathbf{x}') \\ &= \psi(\mathbf{m}) \cdot \psi(\mathbf{x}) + \psi(\mathbf{m}) \cdot \psi(\mathbf{x}') & \text{(Definition of } \psi) \\ &= \psi(\mathbf{m}) \cdot (\psi(\mathbf{x}) + \psi(\mathbf{x}')) & \text{(Distributivity)} \\ &= \psi(\mathbf{m}) \cdot (\psi(\mathbf{x}) + \neg \psi(\mathbf{x})) & \text{(Definition of } \psi) \\ &= \psi(\mathbf{m}) & \text{(Complements)} \end{aligned}
```

Characterization of implicants

Theorem (Implicants):

A monomial **m** is an implicant of **f** if and only if, either

- m is a minterm of f, or
- m·x and m·x' are implicants of f for a variable x that does not occur in m.

Thus:

```
 \begin{array}{l} m \in \mathrm{Implicant}(f) \Leftrightarrow \\ [m \in \mathrm{Minterm}(f)] \lor [m \cdot x, \ m \cdot x' \in \mathrm{Implicant}(f)] \end{array}
```

Proof Follows directly from Lemma 1 and Lemma 2.