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A Boolean function f Î Bn is less than or equal to
another Boolean function g Î Bn (f ≤ g), if "a Î Bn: f(a) ≤ g(a).
(i.e. if f is 1, then so is g).

Illustration via n-dimensional hypercubes
• An implicant of f is a subcube that contains only marked nodes.
• A prime implicant of f is a maximal such subcube.

Implicants and prime implicants

Def. (Implicant): Let f be a Boolean function with one output.
An implicant of f is a monomial q with y(q) ≤ f.
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Def. (Prime implicant): 
A prime implicant of f is a maximal implicant q of f, 
i.e., there is no implicant s (s ≠ q) of f with y(q) ≤ y(s).



Implicants and prime implicants
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Implicants:
• all marked nodes,
• all edges whose nodes all are marked,
• all surfaces whose nodes all are marked,
• all 3-dimensional subcubes

whose nodes all are marked.

In general:
Implicants are those subcubes

whose nodes all are marked.
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Implicants and prime implicants
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The function defining our
hypercube has 3 prime implicants:

• x2
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• x2

• x1'x3'
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The function defining our
hypercube has 3 prime implicants:



Implicants and prime implicants
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• x2

• x1'x3'
• x3'x4
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The function defining our
hypercube has 3 prime implicants:



Proof (by contradiction)
Let p be a polynomial of f and let m be a monomial of p. 

Assume for a contradiction that m is not an implicant of f, i.e., y(m) ≤ f does not hold. 

Thus, there must be a valuation (a1,...,an) of the variables (x1,...,xn) with

• f(a1,...,an) = 0, but

• y(m)(a1,...,an) = 1, and so also y(p)(a1,...,an) = 1.

However, by assumption p is a polynomial of f, and so y(p)(a1,...,an) = f(a1,...,an).  Contradiction!

Polynomials and implicants
of a function f

Lemma:
All monomials of a polynomial p of f are implicants of f.
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We are searching for a polynomial f of minimal cost, i.e., 
we are searching for a so-called minimal polynomial:

Cheapest covering of all marked nodes

Definition:
A minimal polynomial p of a Boolean function f
is a polynomial of f of minimal cost, i.e., a polynomial of f, 
s.t., cost(p) ≤ cost(p') for all (other) polynomials p' of f.
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Theorem (Quine):
Every minimal polynomial p of a 
Boolean function f consists only of
prime implicants of f.

Prime Implicant Theorem of Quine

Proof (by contradiction)
Assume that p contains an implicant of f that is not prime.
Thus, m is covered by a prime implicant m' of f. In other words, it is contained in m'.

By definition of cost, we have cost(m') < cost(m).

Replacing the implicant m by the prime implicant m', we obtain another polynomial p', 
that is still a polynomial of f, s.t. cost(p') < cost(p).

This contradicts the assumption that p is a minimal polynomial!

à To construct a minimal polynomial of a 
Boolean function f, we should first find its prime implicants!

Willard Quine (1928-2000)



Lemma 1:
If m is an implicant of f, then so are m×x and m×x' for
every variable x that occurs neither as positive or
negative literal in m.

Computation of implicants (1/2)

(Complements)
(Definition of y)
(Distributivity)
(Definition of y)

Proof

More formally: By assumption, m is an implicant of f, i.e.: y(m) ≤ f.
y(m) = y(m)×(y(x)+¬y(x)) 

= y(m)×(y(x)+y(x')) 
= y(m)×y(x)+y(m)×y(x') 
= y(m×x)+y(m×x‘) ≥ y(m×x), y(m×x') 

So we have: y(m×x), y(m×x') ≤ f, i.e. m×x and m×x' are also 
implicants of f.
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Lemma 2:
If m×x and m×x' are implicants of f, then so is m.

Computation of implicants (2/2)

Proof
As m×x and m×x' are implicants of f, by definition of implicants, we
have f ≥ y(m×x) and f ≥ y(m×x').

Thus, we also have f ≥ y(m×x)+y(m×x')

f ≥ y(m×x)+y(m×x') 
= y(m)×y(x)+y(m)×y(x') 
= y(m)×(y(x)+y(x')) 
= y(m)×(y(x)+¬y(x))
= y(m)

(Definition of y)
(Distributivity)
(Definition of y)
(Complements)



Characterization of implicants

Theorem (Implicants):
A monomial m is an implicant of f if and only if, either
• m is a minterm of f, or
• m×x and m×x' are implicants of f

for a variable x that does not occur in m.
Thus:

m Î Implicant(f)  Û
[m Î Minterm(f)]  Ú [m×x, m×x' Î Implicant(f)]

Proof
Follows directly from Lemma 1 and Lemma 2.
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