(Two-level) Logic Synthesis

PLAs and Two-level Logic Synthesis




Programmable logic arrays (PLA)

Special two-level circuits to implement

Boolean Polynomials f; = m;;+m;,+ ... +my with m,, from {m,,...,m}

AND plane
If monomial m; consists of k
HEEEEEEEEEE =EEEEEEs literals, then k transistors are

required in the respective row

of the AND plane.

If function f, consists of p
monomials, then p transistors
are required in the respective
column of the OR plane.
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Short excursion: Transistors

p-type transistor n-type transistor

sink sink
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source source




PLAs: Implementation of monomials

PLAs use n-type-transistors as switches:

[f gate is 1,

the 1 at the source is pulled down to O.

Computes the conjunction of the complements of the inputs.
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Employ double negation and de Morgan:

a + bdible—l—l(a + bd)e = —|((—|a) . (_Ib))
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Programmable logic arrays:

Example (2/2)
f1 =%, "%, 5,5 +% X, Three monomials:
fz = XZ'X3 xl'x2'7 XZ‘X3 a’nd X1X2

Assume valuation x,;=1, x,=1, x;=1. Then we have:




Cost of monomials

Let q=q;'qy" ... *q, be a monomial.

Then, the cost |q]| of g

is defined to be the number of transistors
required to implement q in the PLA, so |q| := 1.



Cost of polynomials

Let py,...,p,, be polynomials, and let M(py,....,p,,) denote
the set of monomials occurring in these polynomials.

e The primary cost cost{(py,...,p,,) of a set of polynomials {py,...,p,.} is
the number of required rows in a PLA to implement py,...,p,,, and so

cost{(Prye- D) = | M(Piyeresi) | -
e The secondary cost cost,(py,...,p,,) of a set of polynomials {p4,...,p,.} is

the number of transistors required, and so

oooooooooo



Comparing costs




Two-level logic minimization

Given:

A Boolean function f = (f;,...,f ) in n variables and m outputs
represented via

— a truth table of size m2" or

— aset of m polynomials {py,...,p,,} with y(p;)=f,.

Wanted:

A set of polynomials {gy, ..., g..}, such that
o y(g)=f, for all i,

* cost(gy, ..., g.,) is minimal.

In the following, for simplicity, we will only consider
total Boolean functions with a single output.




[llustration of

monomials and polynomials
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[llustration via hypercubes (1/2)

Every Boolean function f in n variables and a single
output, can be specified by marking its on-set ON({).

Example:
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[llustration via hypercubes (2/2)

* Monomials of length k correspond to (n-k)-dimensional subcubes!

* A polynomial corresponds to the union of subcubes.
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Formulation as a covering problem

Given:

A Boolean function f = (f,...,f,,)) in n variables and a single output represented via a

marked n-dimensional hypercube

Wanted:

A minimal covering of the marked nodes
via maximal subcubes

in the n-dimensional hypercube.

Minimal = with a minimal number of subcubes

... corresponds to the minimal polynomial:

X1XHMX 1 X9 X3 M X9 X3 X4

not maximal!



