(Two-level) Logic Synthesis PLAs and Two-level Logic Synthesis

Becker/Molitor, Chapter 7.1

Jan Reineke Universität des Saarlandes

Two-level logic synthesis

System Architecture, Jan Reineke

Programmable logic arrays (PLA)

Special two-level circuits to implement

Boolean Polynomials $f_i = m_{i1} + m_{i2} + \dots + m_{ik}$ with m_{iq} from $\{m_1, \dots, m_s\}$

If monomial m_j consists of k literals, then k transistors are required in the respective row of the AND plane.

If function f_t consists of pmonomials, then p transistors are required in the respective column of the OR plane.

Short excursion: Transistors

- A transistor can be seen as a voltage-controlled switch:
 - Gate g controls the conductivity between source and sink
- n-type transistor:
 - transmits, if gate is 1
 - disconnects, if gate is 0
- p-type transistor:
 - transmits, if gate is 0
 - disconnects, if gate is 1

PLAs: Implementation of monomials

PLAs use n-type-transistors as switches:

If gate is 1,

the 1 at the source is pulled down to 0.

Computes the conjunction of the complements of the inputs.

How to implement disjunctions?

Employ double negation and de Morgan:

$$a + b = (a + b) = ((-a) \cdot (-b))$$

Programmable logic arrays: Example (1/2)

Programmable logic arrays: Example (2/2)

Assume valuation $x_1 = 1$, $x_2 = 1$, $x_3 = 1$. Then we have:

Cost of monomials

Let $q = q_1 \cdot q_2 \cdot \dots \cdot q_r$ be a monomial.

Then, the cost |q| of q is defined to be the number of transistors required to implement q in the PLA, so |q| := r.

Cost of polynomials

Let $p_1,...,p_m$ be polynomials, and let $M(p_1,...,p_m)$ denote the set of monomials occurring in these polynomials.

- The **primary cost** $cost_1(p_1,...,p_m)$ of a set of polynomials $\{p_1,...,p_m\}$ is the number of required rows in a PLA to implement $p_1,...,p_m$, and so $cost_1(p_1,...,p_m) = |M(p_1,...,p_m)|$.
- The secondary cost cost₂(p₁,...,p_m) of a set of polynomials {p₁,...,p_m} is the number of transistors required, and so

$$cost_2(p_1,...,p_m) = \sum_{q \in M(p_1,...,p_m)} |q| + \sum_{i=1,...,m} |M(p_i)|$$

Comparing costs

Let $cost = (cost_1, cost_2)$ be a cost function.

We define the following total order on costs as follows: We have $cost(p_1, ..., p_m) \leq cost(q_1, ..., q_m)$, if

- $cost_1(p_1, ..., p_m) \le cost_1(q_1, ..., q_m)$ or
- $cost_1(p_1, ..., p_m) = cost_1(q_1, ..., q_m)$ and $cost_2(p_1, ..., p_m) \le cost_2(q_1, ..., q_m).$

I.e. costs are lexicographically ordered.

Two-level logic minimization

Given:

A Boolean function $f = (f_1, ..., f_m)$ in *n* variables and *m* outputs represented via

- a truth table of size $m2^n$ or
- a set of *m* polynomials $\{p_1, \dots, p_m\}$ with $\psi(p_i) = f_i$.

Wanted:

A set of polynomials $\{g_1, ..., g_m\}$, such that

- $\psi(g_i)=f_i$ for all i,
- $cost(g_1, ..., g_m)$ is minimal.

In the following, for simplicity, we will only consider **total Boolean functions** with **a single output**.

Illustration of monomials and polynomials

Illustration via hypercubes (1/2)

Every Boolean function **f** in *n* variables and a single output, can be specified by marking its on-set ON(**f**).

Example: $f(x_1, x_2, x_3, x_4)$ = $x_1 x_2$ + $x_1' x_2' x_3'$ + $x_1 x_2' x_3' x_4$

Illustration via hypercubes (2/2)

- Monomials of length k correspond to (n-k)-dimensional subcubes!
- A polynomial corresponds to the union of subcubes.

Two-level logic synthesis

Formulation as a covering problem

Given:

A Boolean function $f = (f_1, ..., f_m)$ in *n* variables and a single output represented via a marked n-dimensional hypercube

