# (Two-level) Logic Synthesis PLAs and Two-level Logic Synthesis 

Becker/Molitor, Chapter 7.1

Jan Reineke
Universität des Saarlandes

## Programmable logic arrays (PLA)

## Special two-level circuits to implement

Boolean Polynomials $f_{i}=m_{i 1}+m_{i 2}+\ldots+m_{i k}$ with $m_{i q}$ from $\left\{m_{1}, \ldots, m_{s}\right\}$


## Short excursion: Transistors



- A transistor can be seen as a voltage-controlled switch:
- Gate g controls the conductivity between source and sink
- n-type transistor:
- transmits, if gate is 1
- disconnects, if gate is 0
- p-type transistor:
- transmits, if gate is 0
- disconnects, if gate is 1


## PLAs: Implementation of monomials

PLAs use n-type-transistors as switches:
If gate is 1 ,
the 1 at the source is pulled down to 0 .
Computes the conjunction of the complements of the inputs.


## How to implement disjunctions?

Employ double negation and de Morgan:

$$
\mathrm{a}+\underset{\substack{\text { double } \\ \text { negation }}}{=\neg(\mathrm{a}+\mathrm{b})=\neg((\neg \mathrm{de} \mathrm{Morgan}}=\neg) \cdot(\neg \mathrm{b}))
$$



## Programmable logic arrays: Example (1/2)

$$
\begin{aligned}
& f_{1}=x_{1}{ }^{\prime} x_{2}^{\prime}+x_{2}^{\prime} x_{3}+x_{1} x_{2} \\
& f_{2}=x_{2}^{\prime} x_{3}
\end{aligned}
$$

Three monomials:
$x_{1}{ }^{\prime} x_{2}{ }^{\prime}, x_{2}{ }^{\prime} x_{3}$ and $x_{1} x_{2}$


## Programmable logic arrays: Example (2/2)

$$
\begin{aligned}
& f_{1}=x_{1}{ }^{\prime} x_{2}^{\prime}+x_{2}^{\prime} x_{3}+x_{1} x_{2} \\
& f_{2}=x_{2}^{\prime} x_{3}
\end{aligned}
$$

Three monomials:
$x_{1}{ }^{\prime} x_{2}^{\prime}, x_{2}^{\prime} x_{3}$ and $x_{1} x_{2}$
Assume valuation $x_{1}=1, x_{2}=1, x_{3}=1$. Then we have:


## Cost of monomials

## Let $\mathrm{q}=\mathrm{q}_{1} \cdot \mathrm{q}_{2} \cdot \ldots \cdot \mathrm{q}_{\mathrm{r}}$ be a monomial.

Then, the cost $|q|$ of $q$ is defined to be the number of transistors required to implement q in the PLA, so $|\mathrm{q}|:=\mathrm{r}$.

## Cost of polynomials

Let $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}$ be polynomials, and let $\mathrm{M}\left(\mathrm{p}_{1}, \ldots ., \mathrm{p}_{\mathrm{m}}\right)$ denote the set of monomials occurring in these polynomials.

- The primary cost $\operatorname{cost}_{1}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right)$ of a set of polynomials $\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right\}$ is the number of required rows in a PLA to implement $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}$, and so

$$
\operatorname{cost}_{1}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right)=\left|\mathrm{M}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right)\right|
$$

- The secondary cost $\operatorname{cost}_{2}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right)$ of a set of polynomials $\left\{\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right\}$ is the number of transistors required, and so

$$
\operatorname{cost}_{2}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right)=\sum_{\mathrm{q} \in \mathrm{M}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right)}|\mathrm{q}|+\sum_{\mathrm{i}=1, \ldots, \mathrm{~m}}\left|\mathrm{M}\left(\mathrm{p}_{\mathrm{i}}\right)\right|
$$

## Comparing costs

Let cost $=\left(\operatorname{cost}_{1}, \operatorname{cost}_{2}\right)$ be a cost function.

We define the following total order on costs as follows:
We have $\operatorname{cost}\left(p_{1}, \ldots, p_{m}\right) \leq \operatorname{cost}\left(q_{1}, \ldots, q_{m}\right)$, if

- $\operatorname{cost}_{1}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right)<\operatorname{cost}_{1}\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{m}}\right)$ or
- $\operatorname{cost}_{1}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right)=\operatorname{cost}_{1}\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{m}}\right)$ and $\operatorname{cost}_{2}\left(\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right) \leq \operatorname{cost}_{2}\left(\mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{m}}\right)$.
I.e. costs are lexicographically ordered.


## Two-level logic minimization

## Given:

A Boolean function $\mathrm{f}=\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}}\right)$ in $n$ variables and $m$ outputs represented via

- a truth table of size $\mathrm{m} 2^{\mathrm{n}}$ or
- a set of $m$ polynomials $\left\{p_{1}, \ldots, p_{m}\right\}$ with $\psi\left(p_{i}\right)=f_{i}$.


## Wanted:

A set of polynomials $\left\{\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right\}$, such that

- $\psi\left(\mathrm{g}_{\mathrm{i}}\right)=\mathrm{f}_{\mathrm{i}}$ for all i ,
- $\operatorname{cost}\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right)$ is minimal.

In the following, for simplicity, we will only consider total Boolean functions with a single output.

## Illustration of

## monomials and polynomials



## Illustration via hypercubes (1/2)

Every Boolean function f in $n$ variables and a single output, can be specified by marking its on-set $\mathrm{ON}(\mathrm{f})$.

Example:

$$
\begin{aligned}
& f\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right) \\
& =\mathrm{x}_{1} \mathrm{x}_{2} \\
& +\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{2} \mathrm{x}_{3}{ }^{\prime} \\
& +\mathrm{x}_{1} \mathrm{x}_{2}{ }^{\prime} \mathrm{x}_{3} \mathrm{x}_{4}
\end{aligned}
$$



## Illustration via hypercubes (2/2)

- Monomials of length $k$ correspond to $(n-k)$-dimensional subcubes!
- A polynomial corresponds to the union of subcubes.


## Example:

$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)$
$=\mathrm{x}_{1} \mathrm{X}_{2}$
$+\mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{2}{ }^{\prime} \mathrm{x}_{3}{ }^{\prime}$
$+\mathrm{x}_{1} \mathrm{x}_{2}{ }^{\prime} \mathrm{x}_{3}{ }^{\prime} \mathrm{x}_{4}$


## Formulation as a covering problem

## Given:

A Boolean function $\mathrm{f}=\left(\mathrm{f}_{1}, \ldots, \mathrm{f}_{\mathrm{m}}\right)$ in $n$ variables and a single output represented via a marked n-dimensional hypercube

## Wanted:

A minimal covering of the marked nodes via maximal subcubes in the $n$-dimensional hypercube.

Minimal = with a minimal number of subcubes
... corresponds to the minimal polynomial:


