The Boolean Calculus: Boolean Functions, Boolean Algebras, Boolean Expressions

Becker/Molitor, Chapter 2 Harris/Harris, Chapters 2.2 and 2.3

Jan Reineke Universität des Saarlandes

Boolean functions as a mathematical model for circuits

Due to binary representation of numbers and characters, assume **B={0,1}**.

Central questions

- Can every Boolean function be implemented by some circuit?
- 2. Given a Boolean function, can we systematically construct a circuit that implements this function?
- 3. Given a Boolean function, can we systematically construct an **efficient** circuit that implements this function?

Overview

Boolean functions

- A mapping *f* : Bⁿ → B^m is called (total) Boolean function in n variables.
- $B_{n,m} := B^n \rightarrow B^m$
- A mapping $f: D \to B^m$ with $D \subseteq B^n$ is called (partial) Boolean function in n variables. $B_{n,m}(D) := D \to B^m$ for $D \subseteq B^n$

Truth tables

Boolean functions can be represented via **truth tables**:

\mathbf{x}_1	X ₂	X3	\mathbf{s}_1	s_0
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
\subseteq			\subseteq	
2 ⁿ input result vector				
combinations				

Question: How many Boolean functions B_{n,m} are there?

$$|\mathbf{B}_{n,m}| = 2^{m^* 2^n}$$

On-Set and Off-Set

Let m = 1, then

- ON(*f*) := {α ∈ Bⁿ | *f*(α) = 1} is the On-Set of *f*,
- OFF(f):={ $\alpha \in B^n | f(\alpha) = 0$ } is the Off-Set of f.

For $f: D \rightarrow B^m$ with $D \subseteq B^n$ we call

- the set def(f) := D domain (of definition) of f,
- the set $DC(f) := B^n \setminus D$ don't care set of f.

Logic gates implement simple Boolean functions

Electronic switches that implement Boolean functions are constructed from simple electronic components (transistors) (*later*: more about their construction)

[Source: https://en.wikipedia.org/wiki/Logic_gate]

[Source: https://en.wikipedia.org/wiki/Logic_gate]

The output of a two input exclusive-OR is true only when the two input values are *different*, and false if they are equal, regardless of the value. If there are more than two inputs, the output of the distinctive-shape symbol is undefined. The output of the rectangular-shaped symbol is true if the number of true inputs is exactly one or exactly the number following the "=" in the qualifying symbol.

				IN	PUT	OUTPUT
				A	В	Q
				0	0	1
XNOR		$A = 1 \ge Q$	$\overline{A\oplus B}$ or $A\odot B$		1	0
	-				-	0
				1	0	0
				1	1	1

[Source: https://en.wikipedia.org/wiki/Logic_gate]

Two-element Boolean algebra

- Dates back to Boole's logical calculus (1847)
- Two elements: **B** = {0, 1}
- Two binary operators:
 - Conjunction, logical and:
 ^ (also ·, AND)
 - Disjunction, logical or
 v (also +, OR)
- One unary operator:
 - Negation, (also ~, NOT, `)

George Boole (1815-1864)

Two-element Boolean algebra

We consider **B** = $\{0,1\}$ with the two binary operators

- ^ (Conjunction),
- V (Disjunction), and
- the unary operator (Negation).

Which laws hold for **B** under these operators?

Boolean algebras

Boolean algebra =

Algebraic structure with particular properties

- Let M be a set equipped with binary operators
 • and + and a unary operator
 ~ are defined.
- The tuple (M, ·, +, ~) is called Boolean algebra, if M is a non-empty set and for all x, y, z ∈ M the following axioms hold:

Commutativityx+y=y+x $x\cdot y=y\cdot x$ Associativityx+(y+z)=(x+y)+z $x\cdot(y\cdot z)=(x\cdot y)\cdot z$ Absorption $x+(x\cdot y)=x$ $x\cdot(x+y)=x$ Distributivity $x+(y\cdot z)=(x+y)\cdot(x+z)$ $x\cdot(y+z)=(x\cdot y)+(x\cdot z)$ Complements $x+(y\cdot(\sim y))=x$ $x\cdot(y+(\sim y))=x$

Theorem: (B, \land, \lor, \neg) is a Boolean algebra.

Further laws in Boolean algebras

• There are further laws that *follow* from these axioms.

Before considering such laws and their proofs:
 Examples of other Boolean Algebras

Boolean algebra of Boolean functions in *n* variables

Theorem: (B_n , \cdot , +, ~) is a Boolean Algebra.

Proof: Showing that all axioms hold.

Boolean algebra of subsets of S

- S : arbitrary non-empty set
- 2^S : the power set of S
- $M_1 \cup M_2$: the union of the sets M_1 and M_2 from 2^S
- $M_1 \cap M_2$: the intersection of the sets M_1 and M_2 from 2^S
- $\sim M$: the complement S\M of M relative to S

Theorem: $(2^{S}, \cap, \cup, \sim)$ is a Boolean algebra.

Proof: Showing that all axioms hold.

Further laws in Boolean algebras, derivable from the axioms

- Existence of neutral (identity) elements:
 - $\exists 0 : \forall x : x + 0 = x, x \cdot 0 = 0$ $\exists 1 : \forall x : x \cdot 1 = x, x + 1 = 1$
- Double negation: $\forall x : \sim (\sim x) = x$
- Uniqueness of complements:

 $\forall x, y : (x \cdot y = 0 \text{ and } x + y = 1) \Rightarrow y = \neg x$

• Idempotence:

 $\forall \mathbf{X} : \mathbf{X} + \mathbf{X} = \mathbf{X} \qquad \qquad \forall \mathbf{X} : \mathbf{X} \cdot \mathbf{X} = \mathbf{X}$

• de Morgan's laws:

 $\forall x,y : \sim (x + y) = (\sim x) \cdot (\sim y) \qquad \forall x,y : \sim (x \cdot y) = (\sim x) + (\sim y)$

• Consensus law:

 $\forall x, y, z : (x \cdot y) + ((\sim x) \cdot z) = (x \cdot y) + ((\sim x) \cdot z) + (y \cdot z)$ $\forall x, y, z : (x + y) \cdot ((\sim x) + z) = (x + y) \cdot ((\sim x) + z) \cdot (y + z)$

Proof (Idempotence):

Absorption

$$\mathbf{X} = \mathbf{X} + (\mathbf{X} \cdot (\mathbf{y} + \mathbf{y})) = \mathbf{X} + \mathbf{X}$$

Proof (Neutr. elements): Let $0 = x \cdot \sim x$ Then we have: $x + 0 = x + (x \cdot \sim x) = x$

Duality principle of Boolean algebra

Duality principle

Let p be an arbitrary law of Boolean algebra, then the dual of p is also a law of Boolean algebra. The dual of p, is obtained from p by exchanging + and \cdot , as well as 0 and 1.

Example

$$(x \cdot y) + ((\sim x) \cdot z) + (y \cdot z) = (x \cdot y) + ((\sim x) \cdot z)$$

 $(x + y) \cdot ((\sim x) + z) \cdot (y + z) = (x + y) \cdot ((\sim x) + z)$

Boolean expressions: Goals

- Wanted: A way to describe Boolean functions
- *So far*: Truth tables. However: for *n* variables 2ⁿ entries!
- Goals:
 - Enable compact representation
 - Synthesis of circuits

Boolean expressions

- Let $X_n = \{x_1, x_2, ..., x_n\}$ be the set of variables.
- Boolean expressions are defined on the alphabet
 A = X_n ∪ {0, 1, +, ·, ~, (,)},
 i.e. Boolean expressions are a subset of A*.

Boolean expressions

Definition:

The set $BE(X_n)$ of fully parenthesized Boolean expressions over X_n is the smallest subset of A^* , inductively defined as follows:

- The elements 0 and 1 are Boolean expressions
- The variables $x_1, ..., x_n$ are Boolean expressions
- Let g and h be Boolean expressions. Then so is their Disjunction (g + h), their Conjunction (g · h), and their Negation (~g).

BE(X_n): Operator precedence

- Negation ~ precedes conjunction \cdot
- Conjunction precedes disjunction +
- → Parentheses can be omitted without introducing ambiguities

```
Instead of \cdot we often write \wedge,
instead of + also \vee,
instead of \sim \mathbf{x}_i also \mathbf{x}_i or Example:
\sim \mathbf{x}_1 \cdot \mathbf{x}_2 + \mathbf{x}_3 \equiv ((\sim \mathbf{x}_1) \cdot \mathbf{x}_2) + \mathbf{x}_3
```

Interpretation of Boolean expressions

- Every Boolean expression can be associated with a Boolean function via an interpretation function $\psi : BE(X_n) \rightarrow B_n$.
- ψ is defined inductively as follows:
 - $\psi(0) = 0 = \lambda x_1, ..., x_n. 0$
 - $\psi(1) = 1 = \lambda x_1, ..., x_n. 1$
 - $\psi(x_i)(\alpha_1,...,\alpha_n) = \alpha_i \quad \forall \alpha \in B^n$
 - $\psi((g+h)) = \psi(g) + \psi(h)$
 - $\psi((g \cdot h)) = \psi(g) \cdot \psi(h)$
 - $\psi((\sim g)) = \sim(\psi(g))$

("projection") ("disjunction") ("conjunction")

("negation")

Elements of the alphabet

Operators of the Boolean alg. of Boolean functions

Interpretation of Boolean expressions

• For a valuation $\alpha \in \mathbf{B}^n$, $\psi(\mathbf{e})(\alpha)$ is obtained by replacing \mathbf{x}_i by α_i for all *i* in **e** and evaluation in the Boolean algebra **B**.

• Two BEs \mathbf{e}_1 and \mathbf{e}_2 are called **equivalent** ($\mathbf{e}_1 \equiv \mathbf{e}_2$) if and only if $\psi(\mathbf{e}_1) = \psi(\mathbf{e}_2)$.

> For instance, we have $x_1 \equiv x_1 + x_1$ *Proof*: $\psi(x_1) = \psi(x_1) + \psi(x_1) = \psi(x_1 + x_1)$

> > Idempotence

Definition ψ

Boolean functions versus Boolean expressions

- Let ψ(e)=f for a Boolean expression e and a Boolean function f. Then we say
 - that *e* is a **Boolean expression** for *f*, and
 - that *e* describes the Boolean function *f*.

Every Boolean expression describes some Boolean function.

But can every Boolean function be described by some Boolean expression?

Systematic construction of Boolean expressions

Brainstorming:

How to "build" a Boolean expression for an arbitrary Boolean function defined by a truth table?

\mathbf{X}_1	X ₂	X ₃	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Special Boolean expressions: Literals and monomials

- The Boolean expressions x_i and x_i ' are called literals, where
 - \mathbf{x}_{i} is a positive literal and
 - x_i' is a negative literal .
- A monomial (also product) is
 - a conjunction of literals with additional properties:
 - every literal appears at most once,
 - it does not contain both the positive and the negative literal of any variable.
 - or it is the Boolean expression 1.
- A monomial is called minterm, if each variable occurs either as positive or as negative literal.

Question: What kind of functions are described by minterms (and more generally monomials)?

Contruction of Boolean expressions from truth tables

- 1. Consider all rows for which the function is 1.
- 1. Construct the minterm for the valuation of x_1 , x_2 und x_3 in the row as follows:

$$- \text{ if } x_i \text{ is } 1 \Longrightarrow x_i$$

- if x_i is $0 \Rightarrow x_i'$
- 2. Combine all minterms by a disjunction

X ₁	X ₂	X ₃	S
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

T

Special Boolean expressions: Polynomials

• For a valuation $\alpha \in \mathbf{B}^n$ we call

 $m(\alpha) = \bigwedge_{i=1}^{n} x_i^{\alpha_i}$ (Notation: $x_i^1 := x_i, x_i^0 := x'_i$) the minterm associated with α .

 A disjunction of pairwise different monomials is called polynomial. If all monomials in a polynomial are minterms, then the polynomial is complete.

Normal forms

- A **disjunctive normal form (DNF)** of a Boolean function *f* is a polynomial that describes *f*.
- A canonical disjunctive normal form (CDNF) of a Boolean function *f* is a complete polynomial that describes *f*.

Question: What do we mean by "canonical"?

Boolean functions/ Boolean expressions

Lemma:

For every Boolean function $f \in B_{n,1}$ there is a Boolean expression that describes f.

Proof:
We have that
$$f = \psi \left(\sum_{\alpha \in ON(f)} m(\alpha) \right)$$

Remark:

There is *no unique* Boolean expression for a given Boolean function. For every Boolean expression **h** we have $\psi(h) = \psi(h+h) = \psi(h+h+h) \dots$

Canonical disjunctive normal form

$$f = \sum_{\alpha \in ON(f)} m(\alpha)$$

is called canonical disjunctive normal form (CDNF) of *f*.

- The CDNF of f is **unique** up to the order of the literals in the minterms and the order of the minterms in the polynomial.
- There are other "two-level" canonical normal forms, e.g., the canonical conjunctive normal form.

Central questions

- Can every Boolean function be implemented by some circuit?
- 2. Given a Boolean function, can we systematically construct a circuit that implements this function?
- 3. Given a Boolean function, can we systematically construct an efficient circuit that implements this function?

Open questions

If there are many polynomials (Boolean expressions) for a given function *f*, how do we find a "cheap" one?

How can Boolean expressions (polynomials) be implemented in practice?

For the special case of polynomials: programmable logic arrays (PLAs)