The Boolean Calculus:
 Boolean Functions, Boolean Algebras, Boolean Expressions

Becker/Molitor, Chapter 2
Harris/Harris, Chapters 2.2 and 2.3

Jan Reineke
Universität des Saarlandes

Boolean functions as a mathematical model for circuits

Due to binary representation of numbers and characters, assume $\mathrm{B}=\{0,1\}$.

Circuit implements/computes

$$
\text { a function } \mathrm{f}: \mathrm{B}^{\mathrm{n}} \rightarrow \mathrm{~B}^{\mathrm{m}}
$$

Central questions

1. Can every Boolean function be implemented by some circuit?
2. Given a Boolean function, can we systematically construct a circuit that implements this function?
3. Given a Boolean function, can we systematically construct an efficient circuit that implements this function?

Overview

Boolean expressions

Boolean functions

Boolean algebra

can be converted into each other

Rules for the manipulation of Boolean functions

Circuits

Boolean functions

- A mapping $f: \mathrm{B}^{\mathrm{n}} \rightarrow \mathrm{B}^{\mathrm{m}}$ is called (total) Boolean function in n variables.
- $\mathrm{B}_{\mathrm{n}, \mathrm{m}}:=\mathrm{B}^{\mathrm{n}} \rightarrow \mathrm{B}^{\mathrm{m}}$
- A mapping $f: \mathrm{D} \rightarrow \mathrm{B}^{\mathrm{m}}$ with $\mathrm{D} \subseteq \mathrm{B}^{\mathrm{n}}$ is called (partial) Boolean function in n variables.
$\mathrm{B}_{\mathrm{n}, \mathrm{m}}(\mathrm{D}):=\mathrm{D} \rightarrow \mathrm{B}^{\mathrm{m}}$ for $\mathrm{D} \subseteq \mathrm{B}^{\mathrm{n}}$

Truth tables

Boolean functions can be represented via truth tables:

x_{1}	X_{2}	X_{3}	S_{1}	S_{0}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Question: How many
Boolean functions
$\mathrm{B}_{\mathrm{n}, \mathrm{m}}$ are there?

$$
\left|B_{n, m}\right|=2^{m^{2} \lambda^{\prime} n}
$$

On-Set and Off-Set

Let $m=1$, then

- $\mathrm{ON}(f):=\left\{\alpha \in \mathrm{B}^{\mathrm{n}} \mid f(\alpha)=1\right\}$ is the On-Set of f,
- $\operatorname{OFF}(f):=\left\{\alpha \in \mathrm{B}^{n} \mid f(\alpha)=0\right\}$ is the Off-Set of f.

For $f: \mathrm{D} \rightarrow \mathrm{B}^{\mathrm{m}}$ with $\mathrm{D} \subseteq \mathrm{B}^{\mathrm{n}}$ we call

- the set $\operatorname{def}(f):=\mathrm{D}$ domain (of definition) of f,
- the set $\mathrm{DC}(f):=\mathrm{B}^{\mathrm{n}} \backslash \mathrm{D}$ don't care set of f.

Logic gates implement simple Boolean functions

Electronic switches that implement Boolean functions
are constructed from simple electronic components (transistors)
(later: more about their construction)
[Source: https://en.wikipedia.org/wiki/Logic_gate]
Conjunction and Disjunction

| INPUT | OUTPUT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| OR | |

INPUT		OUTPUT
A	B	Q
0	0	1
0	1	1
1	0	1
1	1	0

INPUT		OUTPUT
A	B	Q
0	0	1
0	1	0
1	0	0
1	1	0

[Source: https://en.wikipedia.org/wiki/Logic_gate]

Exclusive or and Biconditional

$A \oplus B$ or $A \underline{\vee} B$

INPUT		OUTPUT
A	B	Q
0	0	0
0	1	1
1	0	1
1	1	0

The output of a two input exclusive-OR is true only when the two input values are different, and false if they are equal, regardless of the value. If there are more than two inputs, the output of the distinctive-shape symbol is undefined. The output of the rectangular-shaped symbol is true if the number of true inputs is exactly one or exactly the number following the " $=$ " in the qualifying symbol.

[Source: https://en.wikipedia.org/wiki/Logic_gate]

Two-element Boolean algebra

- Dates back to Boole's logical calculus (1847)
- Two elements: $\mathbf{B}=\{0,1\}$
- Two binary operators:
- Conjunction, logical and: \wedge (also •, AND)
- Disjunction, logical or \checkmark (also + , OR)
- One unary operator:
- Negation, \neg (also ~, NOT, `)

Two-element Boolean algebra

We consider $\mathbf{B}=\{0,1\}$ with the two binary operators

- \wedge (Conjunction),
- \vee (Disjunction), and
- the unary operator \neg (Negation).

Which laws hold for B under these operators?

Boolean algebras

- Boolean algebra =

Algebraic structure with particular properties

- Let M be a set equipped with binary operators \cdot and + and a unary operator \sim are defined.
- The tuple ($\mathrm{M}, \cdot,+, \sim$) is called Boolean algebra, if M is a non-empty set and for all $x, y, z \in M$ the following axioms hold:

Commutativity	$x+y=y+x$	$x \cdot y=y \cdot x$
Associativity	$x+(y+z)=(x+y)+z$	$x \cdot(y \cdot z)=(x \cdot y) \cdot z$
Absorption	$x+(x \cdot y)=x$	$x \cdot(x+y)=x$
Distributivity	$x+(y \cdot z)=(x+y) \cdot(x+z)$	$x \cdot(y+z)=(x \cdot y)+(x \cdot z)$
Complements	$x+(y \cdot(\sim y))=x$	$x \cdot(y+(\sim y))=x$

Theorem: (B, \wedge, \vee, \neg) is a Boolean algebra.

Further laws in Boolean algebras

- There are further laws that follow from these axioms.
- Before considering such laws and their proofs: Examples of other Boolean Algebras

Boolean algebra of Boolean functions in n variables

$B_{n}:=B_{n, 1}$ Set of Boolean functions in n variables, $m=1$
$f: g \in B_{n} \quad$ defined as
$(f \cdot g)(\alpha)=f(\alpha) \cdot g(\alpha) \quad \forall \alpha \in B^{n}$
$f+g \in B_{n} \quad$ defined as
$(f+g)(\alpha)=f(\alpha)+g(\alpha) \quad \forall \alpha \in B^{n}$
B_{n} defined as
$(\sim f)(\alpha)=\sim(f(\alpha)) \quad \forall \alpha \in B^{n}$

Operators in the Boolean algebra of Boolean functions

Operators in the
Two-element Boolean algebra

Theorem: $\left(\mathrm{B}_{\mathrm{n}}, \cdot,+, \sim\right)$ is a Boolean Algebra.
Proof: Showing that all axioms hold.

Boolean algebra of subsets of S

- S : arbitrary non-empty set
- 2^{S}
: the power set of S
- $M_{1} \cup M_{2} \quad:$ the union of the sets M_{1} and M_{2} from 2^{s}
- $M_{1} \cap M_{2}$: the intersection of the sets M_{1} and M_{2} from 2^{S}
- $\sim \mathrm{M} \quad:$ the complement $\mathrm{S} \backslash \mathrm{M}$ of M relative to S

Theorem: $\left(2^{S}, \cap, \cup, \sim\right)$ is a Boolean algebra.
Proof: Showing that all axioms hold.

Further laws in Boolean algebras, derivable from the axioms

- Existence of neutral (identity) elements:

$$
\begin{aligned}
& \exists 0: \forall \mathrm{x}: \mathrm{x}+0=\mathrm{x}, \mathrm{x} \cdot 0=0 \\
& \exists 1: \forall \mathrm{x}: \mathrm{x} \cdot 1=\mathrm{x}, \mathrm{x}+1=1
\end{aligned}
$$

- Double negation:

$$
\forall \mathrm{x}: \sim(\sim \mathrm{x})=\mathrm{x}
$$

- Uniqueness of complements:

$$
\forall x, y:(x \cdot y=0 \text { and } x+y=1) \Rightarrow y=\sim x
$$

- Idempotence:

$$
\forall \mathrm{x}: \mathrm{x}+\mathrm{x}=\mathrm{x}
$$

$$
\forall \mathrm{x}: \mathrm{x} \cdot \mathrm{x}=\mathrm{x}
$$

Proof (Idempotence):

Absorption
Complements

$$
x=x+(x \cdot(y+\sim y))=x+x
$$

Proof (Neutr. elements):
Let $0=x \cdot \sim x$
Then we have:

$$
\mathrm{x}+0=\mathrm{x}+(\mathrm{x} \cdot \sim \mathrm{x})=\mathrm{x}
$$

- de Morgan's laws:

$$
\forall x, y: \sim(x+y)=(\sim x) \cdot(\sim y) \quad \forall x, y: \sim(x \cdot y)=(\sim x)+(\sim y)
$$

- Consensus law:

$$
\begin{aligned}
& \forall \mathrm{x}, \mathrm{y}, \mathrm{z}:(\mathrm{x} \cdot \mathrm{y})+((\sim \mathrm{x}) \cdot \mathrm{z})=(\mathrm{x} \cdot \mathrm{y})+((\sim \mathrm{x}) \cdot \mathrm{z})+(\mathrm{y} \cdot \mathrm{z}) \\
& \forall \mathrm{x}, \mathrm{y}, \mathrm{z}:(\mathrm{x}+\mathrm{y}) \cdot((\sim \mathrm{x})+\mathrm{z})=(\mathrm{x}+\mathrm{y}) \cdot((\sim \mathrm{x})+\mathrm{z}) \cdot(\mathrm{y}+\mathrm{z})
\end{aligned}
$$

Duality principle of Boolean algebra

Duality principle

Let p be an arbitrary law of Boolean algebra, then the dual of p is also a law of Boolean algebra.
The dual of p , is obtained from p by exchanging + and \cdot, as well as 0 and 1 .

Example

$$
\begin{aligned}
& (x \cdot y)+((\sim x) \cdot z)+(y \cdot z)=(x \cdot y)+((\sim x) \cdot z) \\
& (x+y) \cdot((\sim x)+z) \cdot(y+z)=(x+y) \cdot((\sim x)+z)
\end{aligned}
$$

Boolean expressions: Goals

- Wanted: A way to describe Boolean functions
- So far: Truth tables. However: for n variables 2^{n} entries!
- Goals:
- Enable compact representation
- Synthesis of circuits

Boolean expressions

- Let $X_{n}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be the set of variables.
- Boolean expressions are defined on the alphabet $A=X_{n} \cup\{0,1,+, \cdot, \sim,()\},$,
i.e. Boolean expressions are a subset of A^{*}.

Boolean expressions

Definition:

The set $\mathrm{BE}\left(\mathrm{X}_{\mathrm{n}}\right)$ of fully parenthesized Boolean expressions over X_{n} is the smallest subset of A^{*}, inductively defined as follows:

- The elements 0 and 1 are Boolean expressions
- The variables $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathrm{n}}$ are Boolean expressions
- Let \mathbf{g} and \mathbf{h} be Boolean expressions. Then so is their Disjunction $(g+h)$, their Conjunction $(\mathrm{g} \cdot \mathrm{h})$, and their Negation ($\sim \mathrm{g}$).

$\mathrm{BE}\left(\mathrm{X}_{\mathrm{n}}\right)$: Operator precedence

- Negation \sim precedes conjunction .
- Conjunction \cdot precedes disjunction +
\rightarrow Parentheses can be omitted without introducing ambiguities

Instead of \cdot we often write $\boldsymbol{\wedge}$, instead of + also \vee, instead of $\sim \mathrm{x}_{\mathrm{i}}$ also $\mathrm{x}_{\mathrm{i}}{ }^{\prime}$ or Example:

$$
\sim \mathrm{x}_{1} \cdot \mathrm{x}_{2}+\mathrm{x}_{3} \equiv\left(\left(\sim \mathrm{x}_{1}\right) \cdot \mathrm{x}_{2}\right)+\mathrm{x}_{3}
$$

Interpretation of Boolean expressions

- Every Boolean expression can be associated with a Boolean function via an interpretation function $\psi: B E\left(X_{n}\right) \rightarrow B_{n}$.
- ψ is defined inductively as follows:
- $\psi(0)=0=\lambda x_{1}, \ldots, x_{n} .0$
- $\psi(1)=1=\lambda x_{1}, \ldots, x_{n} .1$
- $\psi\left(\mathrm{x}_{\mathrm{i}}\right)\left(\alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right)=\alpha_{\mathrm{i}} \forall \alpha \in \mathrm{B}^{\mathrm{n}} \quad$ ("projection")
- $\psi((\mathrm{g}+\mathrm{h}))=\psi(\mathrm{g})+\psi(\mathrm{h}) \quad$ ("disjunction")
- $\psi((\mathrm{g} \cdot \mathrm{h}))=\psi(\mathrm{g}) \cdot \psi(\mathrm{h}) \quad$ ("conjunction")
- $\psi((\sim \mathrm{g}))=\sim(\psi(\mathrm{g}))$
("negation")

Interpretation of Boolean expressions

- For a valuation $\alpha \in \mathrm{B}^{\mathrm{n}}, \psi(\mathrm{e})(\alpha)$ is obtained by replacing x_{i} by α_{i} for all i in e and evaluation in the Boolean algebra \mathbf{B}.
- Two BEs e_{1} and e_{2} are called equivalent ($\mathrm{e}_{1} \equiv \mathrm{e}_{2}$) if and only if $\psi\left(\mathrm{e}_{1}\right)=\psi\left(\mathrm{e}_{2}\right)$.

For instance, we have $\mathrm{x}_{1} \equiv \mathrm{x}_{1}+\mathrm{x}_{1}$ Proof: $\psi\left(x_{1}\right)=\psi\left(x_{1}\right)+\psi\left(x_{1}\right)=\psi\left(x_{1}+x_{1}\right)$

Boolean functions versus Boolean expressions

- Let $\psi(e)=\mathrm{f}$ for a Boolean expression e and a Boolean function f. Then we say
- that e is a Boolean expression for f, and
- that e describes the Boolean function f.

Every Boolean expression describes some Boolean function.

But can every Boolean function be described by some Boolean expression?

Systematic construction of Boolean expressions

Brainstorming:
How to "build" a Boolean expression for an arbitrary Boolean function defined by a truth table?

x_{1}	x_{2}	x_{3}	s
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Special Boolean expressions: Literals and monomials

- The Boolean expressions x_{i} and $\mathrm{x}_{\mathrm{i}}^{\prime}$ are called literals, where
- x_{i} is a positive literal and
- $\mathrm{x}_{\mathrm{i}}{ }^{\prime}$ is a negative literal.
- A monomial (also product) is
- a conjunction of literals with additional properties:
- every literal appears at most once,
- it does not contain both the positive and the negative literal of any variable.
- or it is the Boolean expression 1.
- A monomial is called minterm, if each variable occurs either as positive or as negative literal.

Question: What kind of functions are described by minterms (and more generally monomials)?

Contruction of Boolean expressions from truth tables

1. Consider all rows for which the function is 1 .
2. Construct the minterm for the valuation of x_{1}, x_{2} und x_{3} in the row as follows:

- if x_{i} is $1 \Rightarrow \mathrm{x}_{\mathrm{i}}$
- if x_{i} is $0 \Rightarrow \mathrm{x}_{\mathrm{i}}{ }^{\prime}$

2. Combine all minterms by a disjunction

x_{1}	x_{2}	x_{3}	s
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Special Boolean expressions: Polynomials

- For a valuation $\alpha \in \mathrm{B}^{n}$ we call

$$
m(\alpha)=\bigwedge_{i=1}^{n} x_{i}^{\alpha_{i}} \quad\left(\text { Notation: } x_{i}^{1}:=x_{i}, x_{i}^{0}:=x_{i}^{\prime}\right)
$$

the minterm associated with α.

- A disjunction of pairwise different monomials is called polynomial.
If all monomials in a polynomial are minterms, then the polynomial is complete.

Normal forms

- A disjunctive normal form (DNF) of a Boolean function f is a polynomial that describes f.
- A canonical disjunctive normal form (CDNF) of a Boolean function f is a complete polynomial that describes f.

Question: What do we mean by "canonical"?

Boolean functions/ Boolean expressions

Lemma:

For every Boolean function $f \in \mathrm{~B}_{\mathrm{n}, 1}$ there is a Boolean expression that describes f.

Proof:
We have that $f=\psi\left(\sum_{\alpha \in O N(f)} m(\alpha)\right)$
Remark:
There is no unique Boolean expression for a given Boolean function. For every Boolean expression h we have $\psi(\mathbf{h})=\psi(\mathbf{h}+\mathbf{h})=\psi(\mathbf{h}+\mathbf{h}+\mathbf{h}) \ldots$

Canonical disjunctive normal form

$$
f=\sum_{\alpha \in O N(f)} m(\alpha)
$$

is called canonical disjunctive normal form (CDNF) of f.

- The CDNF of f is unique up to the order of the literals in the minterms and the order of the minterms in the polynomial.
- There are other "two-level" canonical normal forms, e.g., the canonical conjunctive normal form.

Central questions

1. Can every Boolean function be implemented by some circuit?
2. Given a Boolean function, can we systematically construct a circuit that implements this function?
3. Given a Boolean function, can we systematically construct an efficient circuit that implements this function?

Open questions

If there are many polynomials (Boolean expressions) for a given function f, how do we find a "cheap" one?

How can Boolean expressions (polynomials) be implemented in practice?

For the special case of polynomials: programmable logic arrays (PLAs)

