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Due to binary representation of numbers and characters,
assume B={0,1}.

Boolean functions as 
a mathematical model for circuits
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Circuit implements/computes
a function f : Bn ® Bm
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3. Given a Boolean function, can we systematically 
construct an efficient circuit that implements this 
function?

Central questions

1. Can every Boolean function be implemented
by some circuit?

2. Given a Boolean function, can we systematically
construct a circuit that implements this function?
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• A mapping  f : Bn® Bm is called
(total) Boolean function
in n variables.

• Bn,m := Bn® Bm

• A mapping  f : D ® Bm with D Í Bn is called
(partial) Boolean function in n variables. 
Bn,m(D) := D® Bm for D Í Bn

Boolean functions
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Boolean functions can be represented 
via truth tables:

Truth tables

11111
01011
01101
10001
01110
10010
10100
00000
s0s1x3x2x1

2n input
combinations

result vector

Question: How many
Boolean functions
Bn,m are there?

|Bn,m| = 2m*2^n
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Let m = 1, then
• ON(f) := {a Î Bn | f(a) = 1}

is the On-Set of f,
• OFF(f):={a Î Bn | f(a) = 0} 

is the Off-Set of f.

For f : D ® Bm with D Í Bn we call
• the set def(f) := D domain (of definition) of f,
• the set DC(f) := Bn \ D don‘t care set of f.

On-Set and Off-Set
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Electronic switches that implement Boolean functions
are constructed from simple electronic components (transistors) 

(later: more about their construction)

Logic gates implement
simple Boolean functions

[Source: https://en.wikipedia.org/wiki/Logic_gate]



...

[Source: https://en.wikipedia.org/wiki/Logic_gate]



...

[Source: https://en.wikipedia.org/wiki/Logic_gate]



• Dates back to Boole’s logical calculus (1847)

• Two elements: B = {0, 1}
• Two binary operators:
– Conjunction, logical and:
Ù (also ×, AND)

– Disjunction, logical or
Ú (also +, OR)

• One unary operator:
– Negation, ¬ (also ~, NOT, `)

Two-element Boolean algebra

George Boole (1815-1864) Boolean Calculus System Architecture, Jan Reineke



We consider B = {0,1} with the two binary operators

• Ù (Conjunction),

• Ú (Disjunction), and

• the unary operator ¬ (Negation).

Which laws hold for B under these operators?

Two-element Boolean algebra
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• Boolean algebra = 
Algebraic structure with particular properties

• Let M be a set equipped with binary operators × and + and a 
unary operator ~ are defined. 

• The tuple (M, ×, +, ~) is called Boolean algebra,
if M is a non-empty set and for all x, y, z Î M 
the following axioms hold:

Boolean algebras

Commutativity x+y=y+x x×y=y×x
Associativity x+(y+z)=(x+y)+z x×(y×z)=(x×y)×z
Absorption x+(x×y)=x x×(x+y)=x
Distributivity x+(y×z)=(x+y)×(x+z) x×(y+z) =(x×y)+(x×z)
Complements x+(y×(~y))=x       x×(y+ (~y))= x

Theorem: (B, Ù, Ú, ¬) is a Boolean algebra.
13



• There are further laws 
that follow from these axioms.

• Before considering such laws and their proofs:
Examples of other Boolean Algebras

Further laws in Boolean algebras
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Bn := Bn,1 Set of Boolean functions in n variables, m=1
f × g Î Bn defined as (f × g)(a) = f(a) × g(a) "aÎBn

f + g Î Bn defined as (f + g)(a) = f(a) + g(a) "aÎBn

~f  Î Bn defined as (~f)(a) = ~(f(a)) "aÎBn

Boolean algebra of 
Boolean functions in n variables

Operators in the Boolean algebra
of Boolean functions

Operators in the
Two-element Boolean algebra

Boolean Calculus 15System Architecture, Jan Reineke

Theorem: (Bn, × , + , ~) is a Boolean Algebra.

Proof: Showing that all axioms hold.



• S : arbitrary non-empty set
• 2S : the power set of S
• M1 È M2 : the union of the sets M1 and M2 from 2S

• M1 Ç M2 : the intersection of the sets M1 and M2 from 2S

• ~M : the complement S\M of M relative to S

Boolean algebra of subsets of S

Theorem: (2S, Ç , È , ~) is a Boolean algebra.

Proof: Showing that all axioms hold.
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• Existence of neutral (identity) elements:
$0 : "x : x + 0 = x, x × 0 = 0
$1 : "x : x × 1 = x, x + 1 = 1

• Double negation:
"x : ~(~x)  = x

• Uniqueness of complements:
"x,y : (x × y = 0 and x + y = 1) Þ y = ~x

• Idempotence:
"x : x + x = x "x : x × x = x

• de Morgan’s laws:

"x,y : ~ (x + y) = (~x) × (~ y) "x,y : ~ (x × y) = (~ x) + (~ y)

• Consensus law:

"x,y,z : (x × y) + ((~x) × z) = (x × y) + ((~x) × z) + (y × z)
"x,y,z : (x + y) × ((~x) + z) = (x + y) × ((~x) + z) × (y + z)

Further laws in Boolean algebras, 
derivable from the axioms

Proof (Idempotence):

x = x + (x × (y + ~y)) = x + x
Absorption Complements

Proof (Neutr. elements):
Let 0 = x × ~x
Then we have:
x + 0 = x + (x × ~x) = x

Complements
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Duality principle
Let p be an arbitrary law of Boolean algebra, then 
the dual of p is also a law of Boolean algebra.
The dual of p, is obtained from p by exchanging +
and ×, as well as 0 and 1.

Duality principle of Boolean algebra

Example
(x × y) + ((~ x) × z) + (y × z) = (x × y) + ((~ x) × z)
(x + y) × ((~ x) + z) × (y + z) = (x + y) × ((~ x) + z)
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• Wanted: A way to describe Boolean functions

• So far: Truth tables. However: for n variables 2n entries!

• Goals:
– Enable compact representation

– Synthesis of circuits

Boolean expressions: Goals
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• Let Xn = {x1, x2, ..., xn} be the set of variables.

• Boolean expressions are defined on the alphabet
A = Xn È {0, 1 , + , × , ~ , ( , )},

i.e. Boolean expressions are a subset of A*.

Boolean expressions
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Definition:
The set BE(Xn) of fully parenthesized Boolean 
expressions over Xn is the smallest subset of A*, 
inductively defined as follows:
• The elements 0 and 1 are Boolean expressions
• The variables x1, ..., xn are Boolean expressions
• Let g and h be Boolean expressions. Then so is

their Disjunction (g + h),
their Conjunction (g × h),
and their Negation (~g).

Boolean expressions
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• Negation ~ precedes conjunction ×
• Conjunction × precedes disjunction +
à Parentheses can be omitted without 

introducing ambiguities

Instead of × we often write Ù,
instead of + also Ú,

instead of  ~xi also xi‘ or xi.

BE(Xn): Operator precedence

_

Example:
~x1 × x2 + x3 º ((~x1) × x2) + x3
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• Every Boolean expression can be associated 
with a Boolean function via an
interpretation function y : BE(Xn ) ® Bn .

• y is defined inductively as follows:
- y(0) = 0 = lx1, ..., xn. 0

- y(1) = 1 = lx1, ..., xn. 1

- y(xi)(a1,...,an) = ai "a Î Bn (“projection”)

- y((g+h)) = y(g) + y(h) (“disjunction”)
- y((g × h)) = y(g) × y(h) (“conjunction”)

- y((~g)) = ~(y(g)) (“negation”)
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Elements of the alphabet Operators of the Boolean alg. of Boolean functions

Interpretation of Boolean expressions



• For a valuation a Î Bn, y(e)(a) is obtained by 
replacing xi by ai for all i in e and evaluation in 
the Boolean algebra B.

• Two BEs e1 and e2 are called equivalent (e1 º e2)
if and only if y(e1) = y(e2).

Interpretation of Boolean expressions

For instance, we have x1 º x1 + x1

Proof: y(x1) = y(x1) + y(x1) = y(x1+x1)

Idempotence Definition y
Boolean Calculus 24



• Let y(e)=f for a Boolean expression e and a 
Boolean function f. Then we say
– that e is a Boolean expression for f, and 

– that e describes the Boolean function f.

Boolean functions versus 
Boolean expressions

But can every Boolean function be described by
some Boolean expression?

Every Boolean expression describes some
Boolean function.
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Brainstorming:
How to “build” a Boolean expression for an arbitrary 
Boolean function defined by a truth table?

Systematic construction of
Boolean expressions

1111
1011
1101
0001
1110
0010
0100
0000
sx3x2x1
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• The Boolean expressions xi and xi’ are called literals, where 
– xi is a positive literal and 
– xi’ is a negative literal .

• A monomial (also product) is
– a conjunction of literals with additional properties:

• every literal appears at most once,
• it does not contain both the positive and the negative literal of any variable.

– or it is the Boolean expression 1.

• A monomial is called minterm, if each variable occurs either as 
positive or as negative literal.

Special Boolean expressions:
Literals and monomials

Question: What kind of functions are described by
minterms (and more generally monomials)?
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1. Consider all rows for which the 
function is 1.

1. Construct the minterm for the 
valuation of x1, x2 und x3 in the 
row as follows:
– if xi is 1 Þ xi 

– if xi is 0 Þ xi’ 

2. Combine all minterms by a 
disjunction

Contruction of Boolean expressions 
from truth tables

1111
1011
1101
0001
1110
0010
0100
0000
sx3x2x1
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• For a valuation a Î Bn we call

the minterm associated with a.
• A disjunction of pairwise different monomials 

is called polynomial.
If all monomials in a polynomial are minterms, 
then the polynomial is complete.

Special Boolean expressions:
Polynomials
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• A disjunctive normal form (DNF) of a Boolean 
function f is a polynomial that describes f.

• A canonical disjunctive normal form (CDNF) 
of a Boolean function f is a complete 
polynomial that describes f.

Normal forms

Question: What do we mean by “canonical”?
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Lemma:

For every Boolean function f Î Bn,1 there is a 
Boolean expression that describes f.

Boolean functions/
Boolean expressions

Proof:

We have that

Remark:
There is no unique Boolean expression for a given Boolean function.
For every Boolean expression h we have y(h) = y(h+h) = y(h+h+h) …
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• The CDNF of f is unique 
up to the order of the literals in the minterms and the order 
of the minterms in the polynomial. 

• There are other “two-level” canonical normal forms, 
e.g.,  the canonical conjunctive normal form.

Canonical disjunctive normal form

is called canonical disjunctive normal form (CDNF) of f.
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3. Given a Boolean function, can we systematically 
construct an efficient circuit that implements this 
function?

Central questions

1. Can every Boolean function be implemented
by some circuit?

2. Given a Boolean function, can we systematically
construct a circuit that implements this function?
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How can Boolean expressions (polynomials) be 
implemented in practice?

Open questions

If there are many polynomials (Boolean expressions) for a 
given function f, how do we find a “cheap” one?

For the special case of polynomials:
programmable logic arrays (PLAs)
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