
The Boolean Calculus:
Boolean Functions,
Boolean Algebras,
Boolean Expressions

Becker/Molitor, Chapter 2
Harris/Harris, Chapters 2.2 and 2.3

Jan Reineke
Universität des Saarlandes

Boolean calculus 1System Architecture, Jan Reineke

Due to binary representation of numbers and characters,
assume B={0,1}.

Boolean functions as
a mathematical model for circuits

in

i1

om

o1

Circuit
e.g. adder

Bn Bm……

Circuit implements/computes
a function f : Bn ® Bm

Boolean calculus 2System Architecture, Jan Reineke

3. Given a Boolean function, can we systematically
construct an efficient circuit that implements this
function?

Central questions

1. Can every Boolean function be implemented
by some circuit?

2. Given a Boolean function, can we systematically
construct a circuit that implements this function?

Boolean calculus 3System Architecture, Jan Reineke

Overview

Boolean functions

Circuits

implement

Boolean expressions

desc
rib

e

can be
converted
into each
other

Boolean algebra
Rules for the manipulation
of Boolean functions

Boolean calculus 4

model

• A mapping f : Bn® Bm is called
(total) Boolean function
in n variables.

• Bn,m := Bn® Bm

• A mapping f : D ® Bm with D Í Bn is called
(partial) Boolean function in n variables.
Bn,m(D) := D® Bm for D Í Bn

Boolean functions

Boolean calculus 5System Architecture, Jan Reineke

Boolean functions can be represented
via truth tables:

Truth tables

11111
01011
01101
10001
01110
10010
10100
00000
s0s1x3x2x1

2n input
combinations

result vector

Question: How many
Boolean functions
Bn,m are there?

|Bn,m| = 2m*2^n

6

Let m = 1, then
• ON(f) := {a Î Bn | f(a) = 1}

is the On-Set of f,
• OFF(f):={a Î Bn | f(a) = 0}

is the Off-Set of f.

For f : D ® Bm with D Í Bn we call
• the set def(f) := D domain (of definition) of f,
• the set DC(f) := Bn \ D don‘t care set of f.

On-Set and Off-Set

Boolean Calculus 7System Architecture, Jan Reineke

Electronic switches that implement Boolean functions
are constructed from simple electronic components (transistors)

(later: more about their construction)

Logic gates implement
simple Boolean functions

[Source: https://en.wikipedia.org/wiki/Logic_gate]

...

[Source: https://en.wikipedia.org/wiki/Logic_gate]

...

[Source: https://en.wikipedia.org/wiki/Logic_gate]

• Dates back to Boole’s logical calculus (1847)

• Two elements: B = {0, 1}
• Two binary operators:
– Conjunction, logical and:
Ù (also ×, AND)

– Disjunction, logical or
Ú (also +, OR)

• One unary operator:
– Negation, ¬ (also ~, NOT, `)

Two-element Boolean algebra

George Boole (1815-1864) Boolean Calculus System Architecture, Jan Reineke

We consider B = {0,1} with the two binary operators

• Ù (Conjunction),

• Ú (Disjunction), and

• the unary operator ¬ (Negation).

Which laws hold for B under these operators?

Two-element Boolean algebra

Boolean Calculus 12

• Boolean algebra =
Algebraic structure with particular properties

• Let M be a set equipped with binary operators × and + and a
unary operator ~ are defined.

• The tuple (M, ×, +, ~) is called Boolean algebra,
if M is a non-empty set and for all x, y, z Î M
the following axioms hold:

Boolean algebras

Commutativity x+y=y+x x×y=y×x
Associativity x+(y+z)=(x+y)+z x×(y×z)=(x×y)×z
Absorption x+(x×y)=x x×(x+y)=x
Distributivity x+(y×z)=(x+y)×(x+z) x×(y+z) =(x×y)+(x×z)
Complements x+(y×(~y))=x x×(y+ (~y))= x

Theorem: (B, Ù, Ú, ¬) is a Boolean algebra.
13

• There are further laws
that follow from these axioms.

• Before considering such laws and their proofs:
Examples of other Boolean Algebras

Further laws in Boolean algebras

Boolean Calculus 14System Architecture, Jan Reineke

Bn := Bn,1 Set of Boolean functions in n variables, m=1
f × g Î Bn defined as (f × g)(a) = f(a) × g(a) "aÎBn

f + g Î Bn defined as (f + g)(a) = f(a) + g(a) "aÎBn

~f Î Bn defined as (~f)(a) = ~(f(a)) "aÎBn

Boolean algebra of
Boolean functions in n variables

Operators in the Boolean algebra
of Boolean functions

Operators in the
Two-element Boolean algebra

Boolean Calculus 15System Architecture, Jan Reineke

Theorem: (Bn, × , + , ~) is a Boolean Algebra.

Proof: Showing that all axioms hold.

• S : arbitrary non-empty set
• 2S : the power set of S
• M1 È M2 : the union of the sets M1 and M2 from 2S

• M1 Ç M2 : the intersection of the sets M1 and M2 from 2S

• ~M : the complement S\M of M relative to S

Boolean algebra of subsets of S

Theorem: (2S, Ç , È , ~) is a Boolean algebra.

Proof: Showing that all axioms hold.

Boolean Calculus 16System Architecture, Jan Reineke

• Existence of neutral (identity) elements:
$0 : "x : x + 0 = x, x × 0 = 0
$1 : "x : x × 1 = x, x + 1 = 1

• Double negation:
"x : ~(~x) = x

• Uniqueness of complements:
"x,y : (x × y = 0 and x + y = 1) Þ y = ~x

• Idempotence:
"x : x + x = x "x : x × x = x

• de Morgan’s laws:

"x,y : ~ (x + y) = (~x) × (~ y) "x,y : ~ (x × y) = (~ x) + (~ y)

• Consensus law:

"x,y,z : (x × y) + ((~x) × z) = (x × y) + ((~x) × z) + (y × z)
"x,y,z : (x + y) × ((~x) + z) = (x + y) × ((~x) + z) × (y + z)

Further laws in Boolean algebras,
derivable from the axioms

Proof (Idempotence):

x = x + (x × (y + ~y)) = x + x
Absorption Complements

Proof (Neutr. elements):
Let 0 = x × ~x
Then we have:
x + 0 = x + (x × ~x) = x

Complements

Boolean Calculus 17System Architecture, Jan Reineke

Duality principle
Let p be an arbitrary law of Boolean algebra, then
the dual of p is also a law of Boolean algebra.
The dual of p, is obtained from p by exchanging +
and ×, as well as 0 and 1.

Duality principle of Boolean algebra

Example
(x × y) + ((~ x) × z) + (y × z) = (x × y) + ((~ x) × z)
(x + y) × ((~ x) + z) × (y + z) = (x + y) × ((~ x) + z)

Boolean Calculus 18System Architecture, Jan Reineke

• Wanted: A way to describe Boolean functions

• So far: Truth tables. However: for n variables 2n entries!

• Goals:
– Enable compact representation

– Synthesis of circuits

Boolean expressions: Goals

Boolean Calculus 19System Architecture, Jan Reineke

• Let Xn = {x1, x2, ..., xn} be the set of variables.

• Boolean expressions are defined on the alphabet
A = Xn È {0, 1 , + , × , ~ , (,)},

i.e. Boolean expressions are a subset of A*.

Boolean expressions

Boolean Calculus 20System Architecture, Jan Reineke

Definition:
The set BE(Xn) of fully parenthesized Boolean
expressions over Xn is the smallest subset of A*,
inductively defined as follows:
• The elements 0 and 1 are Boolean expressions
• The variables x1, ..., xn are Boolean expressions
• Let g and h be Boolean expressions. Then so is

their Disjunction (g + h),
their Conjunction (g × h),
and their Negation (~g).

Boolean expressions

Boolean Calculus 21System Architecture, Jan Reineke

• Negation ~ precedes conjunction ×
• Conjunction × precedes disjunction +
à Parentheses can be omitted without

introducing ambiguities

Instead of × we often write Ù,
instead of + also Ú,

instead of ~xi also xi‘ or xi.

BE(Xn): Operator precedence

_

Example:
~x1 × x2 + x3 º ((~x1) × x2) + x3

Boolean Calculus 22System Architecture, Jan Reineke

• Every Boolean expression can be associated
with a Boolean function via an
interpretation function y : BE(Xn) ® Bn .

• y is defined inductively as follows:
- y(0) = 0 = lx1, ..., xn. 0

- y(1) = 1 = lx1, ..., xn. 1

- y(xi)(a1,...,an) = ai "a Î Bn (“projection”)

- y((g+h)) = y(g) + y(h) (“disjunction”)
- y((g × h)) = y(g) × y(h) (“conjunction”)

- y((~g)) = ~(y(g)) (“negation”)

Boolean Calculus 23System Architecture, Jan Reineke

Elements of the alphabet Operators of the Boolean alg. of Boolean functions

Interpretation of Boolean expressions

• For a valuation a Î Bn, y(e)(a) is obtained by
replacing xi by ai for all i in e and evaluation in
the Boolean algebra B.

• Two BEs e1 and e2 are called equivalent (e1 º e2)
if and only if y(e1) = y(e2).

Interpretation of Boolean expressions

For instance, we have x1 º x1 + x1

Proof: y(x1) = y(x1) + y(x1) = y(x1+x1)

Idempotence Definition y
Boolean Calculus 24

• Let y(e)=f for a Boolean expression e and a
Boolean function f. Then we say
– that e is a Boolean expression for f, and

– that e describes the Boolean function f.

Boolean functions versus
Boolean expressions

But can every Boolean function be described by
some Boolean expression?

Every Boolean expression describes some
Boolean function.

Boolean Calculus 25System Architecture, Jan Reineke

Brainstorming:
How to “build” a Boolean expression for an arbitrary
Boolean function defined by a truth table?

Systematic construction of
Boolean expressions

1111
1011
1101
0001
1110
0010
0100
0000
sx3x2x1

Boolean Calculus 26

• The Boolean expressions xi and xi’ are called literals, where
– xi is a positive literal and
– xi’ is a negative literal .

• A monomial (also product) is
– a conjunction of literals with additional properties:

• every literal appears at most once,
• it does not contain both the positive and the negative literal of any variable.

– or it is the Boolean expression 1.

• A monomial is called minterm, if each variable occurs either as
positive or as negative literal.

Special Boolean expressions:
Literals and monomials

Question: What kind of functions are described by
minterms (and more generally monomials)?

27

1. Consider all rows for which the
function is 1.

1. Construct the minterm for the
valuation of x1, x2 und x3 in the
row as follows:
– if xi is 1 Þ xi

– if xi is 0 Þ xi’

2. Combine all minterms by a
disjunction

Contruction of Boolean expressions
from truth tables

1111
1011
1101
0001
1110
0010
0100
0000
sx3x2x1

Boolean Calculus 28System Architecture, Jan Reineke

• For a valuation a Î Bn we call

the minterm associated with a.
• A disjunction of pairwise different monomials

is called polynomial.
If all monomials in a polynomial are minterms,
then the polynomial is complete.

Special Boolean expressions:
Polynomials

Boolean Calculus 29System Architecture, Jan Reineke

• A disjunctive normal form (DNF) of a Boolean
function f is a polynomial that describes f.

• A canonical disjunctive normal form (CDNF)
of a Boolean function f is a complete
polynomial that describes f.

Normal forms

Question: What do we mean by “canonical”?

Boolean Calculus 30System Architecture, Jan Reineke

Lemma:

For every Boolean function f Î Bn,1 there is a
Boolean expression that describes f.

Boolean functions/
Boolean expressions

Proof:

We have that

Remark:
There is no unique Boolean expression for a given Boolean function.
For every Boolean expression h we have y(h) = y(h+h) = y(h+h+h) …

31

• The CDNF of f is unique
up to the order of the literals in the minterms and the order
of the minterms in the polynomial.

• There are other “two-level” canonical normal forms,
e.g., the canonical conjunctive normal form.

Canonical disjunctive normal form

is called canonical disjunctive normal form (CDNF) of f.

å
Î

=
)(
)(

fON
mf

a

a

Boolean Calculus 32System Architecture, Jan Reineke

3. Given a Boolean function, can we systematically
construct an efficient circuit that implements this
function?

Central questions

1. Can every Boolean function be implemented
by some circuit?

2. Given a Boolean function, can we systematically
construct a circuit that implements this function?

Boolean calculus 33System Architecture, Jan Reineke

✓
✓
?

How can Boolean expressions (polynomials) be
implemented in practice?

Open questions

If there are many polynomials (Boolean expressions) for a
given function f, how do we find a “cheap” one?

For the special case of polynomials:
programmable logic arrays (PLAs)

Boolean Calculus 34System Architecture, Jan Reineke

