The Boolean Calculus:

Boolean Functions,
Boolean Algebras,

Boolean Expressions

Boolean functions as
a2 mathematical model for circuits

Due to binary representation of numbers and characters,
assume B={0,1}.

iy

Br Circuit Bm

e.g. adder

Circuit implements/computes
a function f : B —> B™

Central questions

1. Can every Boolean function be implemented

by some circuit!

Given a Boolean function, can we systematically
construct a circuit that implements this function?

Given a Boolean function, can we systematically
construct an efficient circuit that implements this
function?

Overview

Boolean algebra

Boolean functions

* A mapping f: B"—> B™ is called
(total) Boolean function
in n variables.

+ B,, =B B"

* A mapping f: D — B™ with D < B" is called
(partial) Boolean function in n variables.

B, (D) :=D— B™ for D < B

Truth tables

Boolean functions can be represented
via truth tables:

Xl X2 X3 Sl SO
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
o 1 1|1 0 Question: How many
1 0 0|0 1 Boolean functions
0 1 /1 0 B, , are there’
1 1 0 1 0
1 1 1 1 1 |Bnm| = 7m*2"n
(g A\ J b
Y
2" input result vector

combinations

On-Set and Off-Set

Let m = 1, then

* ON():={a € B | fla) = 1}
is the On-Set of f,

 OFF():={a. € B" | lat) = O}
is the Off-Set of f.

For f: D - B™ with D < B™ we call
* the set def(f) := D domain (of definition) of {,
* the set DC(f) := B® \ D don‘t care set of .

Logic gates implement
simple Boolean functions

Electronic switches that implement Boolean functions
are constructed from simple electronic components (transistors)

(later: more about their construction)
[Source: https://en.wikipedia.org/wiki/Logic_gate]

Conjunction and Disjunction

INPUT OUTPUT
A B Q

| — 0 0 0
AND A D—Q A & | g A-BorAANB
B — B— 0
0
1

0| 1
10
11

INPUT OUTPUT

| 0
OR A:D—Q A1 =21 q A+BorAVB
B B — 0
1
1

Alternative denial and Joint denial

INPUT | OUTPUT
A B Q
~ — - 00 1
NAND A _)o—Q A & >—Q A-BorA1TB
B — B — 0|1 1
1,0 1
1 0
INPUT | OUTPUT
A B Q
| - 0|0 1
NOR A:D)—Q A =1 ~—Q A+BorA| B
B B— 0|1 0
1,0 0
11 0

Exclusive or and Biconditional

XOR Q -

A®BorAVY B

INPUT | OUTPUT
A B Q

0 0 0

0o 1 1
1.0 1
11 0

The output of a two input exclusive-OR is true only when the two input values are different, and false if they are equal, regardless of the value. If there
are more than two inputs, the output of the distinctive-shape symbol is undefined. The output of the rectangular-shaped symbol is true if the number of

true inputs is exactly one or exactly the number following the

"="in the qualifying symbol.

XNOR ~—Q

A®BorAG B

INPUT | OUTPUT
A B Q
0 0 1
0o 1 0
1.0 0
11 1

Two-element Boolean algebra

Dates back to Boole’s logical calculus (1847)

Two elements: B = {0, 1}

Two binary operators:

— Conjunction, logical and:

A (also -, AND)

— Disjunction, logical or

v (also +, OR)

One unary operator:
— Negation, — (also ~, NOT,)

Two-element Boolean algebra

We consider B = {0,1} with the two binary operators
* A (Conjunction),
* v (Disjunction), and

* the unary operator — (Negation).

Which laws hold for B under these operators?

Boolean algebras

* Boolean algebra =
Algebraic structure with particular properties

e Let M be a set equipped with binary operators - and + and a
unary operator ~ are defined.

e The tuple (M, -, +, ~) is called Boolean algebra,
if M is a non-empty set and for all x,y,z € M
the following axioms hold:

Commutativity xX+y=y+x X-y=y-X
Associativity x+(y+z)=(x+y)+z x-(y-z)=(x-y)-z
Absorption x+(x-y)=x x+(x+y)=x
Distributivity x+(y-z)=(x+y)-(x+2) x-(y*+z) =(x-y)+(x-2)
Complements x+(y-(~y))=x x-(y*+ (~y))= x

Theorem: (B, A, v, —) is a Boolean algebra.

Further laws in Boolean algebras

e There are further laws
that follow from these axioms.

* Before considering such laws and their proofs:
Examples of other Boolean Algebras

Boolean algebra of
Boolean functions in n variables

Operators in the Boolean algebra Operators in the
of Boolean functions Two-element Boolean algebra

Theorem: (B, -, +, ~) is a Boolean Algebra.

Proof: Showing that all axioms hold.

Boolean algebra of subsets of S

Theorem: (2°, N, U, ~) is a Boolean algebra.

Proof: Showing that all axioms hold.

Further laws in Boolean algebras,

derivable from the axioms

Existence of neutral (identity) elements:
J0:Vx:x+0=x,x-0=0
d1:Vx:x-1 =x,x+t1=1

Double negation:

Vx i ~(~x) =x

Uniqueness of complements:
Vxy:(x-y=0andx+y=1)= y=~x

Idempotence:

Vx:Xx+xXx=X VX:X-X=X

de Morgan’s laws:
Vxy:~&x+y)=(x)-(~y) Vxy:~&x-y)=(~x
Consensus law:
Vx,y,z: (x-y) + ((~x) - 2) = (x-y) + ((~x) - 2) + (y - 2)
Vx,yz: (x+y) - ((~x) +2) = (x+y) - ((~x) +2) - (y + 2)

Proof (Idempotence):

Absorption Complements

x=x+(x-(y+~y)=x+x

Proof (Neutr. elements):
LetQ=x-~x
Then we have:

Complements

x+0=x+(x-:~x)=x

+(~y)

Duality principle of Boolean algebra

Duality principle

Let p be an arbitrary law of Boolean algebra, then
the dual of p is also a law of Boolean algebra.

The dual of p, is obtained from p by exchanging +
and -, as well as O and 1.

Example

x-y+(~x-2)+(y-2)=&-y)+(~x) -2
x+y) - (+x)+2)-(y+rz)=&x+y) (~x) +2)

Boolean Calculus System Architecture, Jan Reineke

Boolean expressions: Goals

* Wanted: A way to describe Boolean functions

* So far: Truth tables. However: for n variables 2™ entries!

 QGoals:

— Enable compact representation

— Synthesis of circuits

Boolean expressions

Boolean expressions

Definition:

The set BE(X,) of fully parenthesized Boolean
expressions over X is the smallest subset of A*,
inductively defined as follows:

* The elements O and 1 are Boolean expressions

* The variables x;, ..., x_ are Boolean expressions

* Let g and h be Boolean expressions. Then so is
their Disjunction (g + h),
their Conjunction (g - h),
and their Negation (~g).

yolean Calculus System Architecture, Jan Reineke

BE(X): Operator precedence

* Negation ~ precedes conjunction -
* Conjunction - precedes disjunction +

—> Parentheses can be omitted without
introducing ambiguities

[nstead of - we often write A,

instead of + also v,

instead of ~x; also x; Or | Example:
~Xp X x5 = ((vx) - %) +xg

Interpretation of Boolean expressions

* Every Boolean expression can be associated
with a Boolean function via an
interpretation function y : BE(X_) —> B_ .

* y is defined inductively as follows:

- W(0) = 0= Axy ooy %o O

- \lj(l) =1= }\‘Xl’ ceey X0 1
- yx)ay,...,0,) =o; VoaeBr (“projection”)

- yl((g+h)) = w(g) + y(h) (“disjunction”)
- y((g - h) =y - yh) (“conjunction”)
- pl(~gh= ~w(g)) (“negation”)

Elements of the alphabet | | Operators of the Boolean alg. of Boolean functions

Interpretation of Boolean expressions

* For a valuation a0 € B, y(e)(a) is obtained by
replacing x; by o; for all i in e and evaluation in

the Boolean algebra B.

* Two BEs e, and e, are called equivalent (e, =e,)

if and only if y(ey) = yle,).

For instance, we have x; = x; + x4

Proof: W(x;) T wixy) + w(x;) T wix;+x,)

Idempotence Definition

Boolean functions versus

Boolean expressions

* Let y(e)=f for a Boolean expression ¢ and a
Boolean function f. Then we say

— that e is a Boolean expression for f, and

— that e describes the Boolean function f.

Every Boolean expression describes some
Boolean function.

But can every Boolean function be described by
some Boolean expression?

Systematic construction of
Boolean expressions

Brainstorming:
How to “build” a Boolean expression for an arbitrary
Boolean function defined by a truth table?

X; Xy X3 | S
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Boolean Calculus

(

as

—_
)

—_—

Special Boolean expressions:
Literals and monomials

* The Boolean expressions x; and x;’ are called literals, where
— x; is a positive literal and
— x;’ is a negative literal .

* A monomial (also product) is

— a conjunction of literals with additional properties:

* every literal appears at most once,
* it does not contain both the positive and the negative literal of any variable.

— or it is the Boolean expression 1.

* A monomial is called minterm, if each variable occurs either as
positive or as negative literal.

Question: What kind of functions are described by
minterms (and more generally monomials)?

Contruction of Boolean expressions
from truth tables

1. Consider all rows for which the
function is 1.

X, X, X3 | S

0 0 0 0

1. Construct the minterm for the O 0 110
valuation of x;, x, und x;inthe 0 1 o0 | 0
row as follows: o 1 1|1

— ifxis 1 = x 1 0 0] 0

— ifx,is 0 = x/ 10 1 1

1 1 0 1

2. Combine all minterms by a 11 1 |1

disjunction

Special Boolean expressions:
Polynomials

e For a valuation a0 € B™ we call

T
m(a) = N\ :U?i (Notation: mzl = a:@-,a:? = x)
1=1

the minterm associated with o.

* A disjunction of pairwise different monomials
is called polynomial.
[f all monomials in a polynomial are minterms,
then the polynomial is complete.

Normal forms

* A disjunctive normal form (DNF) of a Boolean
function f is a polynomial that describes f.

* A canonical disjunctive normal form (CDNF)
of a Boolean function f is a complete
polynomial that describes f.

Question: What do we mean by “canonical”’

Boolean functions/

Boolean expressions

Lemma:

For every Boolean function f € B, ; there is a
Boolean expression that describes f.

Proof:

We have that f=v¢| > m(a)
acON(f)

Remark:

There is no unique Boolean expression for a given Boolean function.

For every Boolean expression h we have y(h) = y(h+h) = y(h+h+h) ...

31

Canonical disjunctive normal form

is called canonical disjunctive normal form (CDNF) of f.

 The CDNEF of f is unique

up to the order of the literals in the minterms and the order
of the minterms in the polynomial.

e There are other “two-level” canonical normal forms,
e.g., the canonical conjunctive normal form.

Central questions

1. Can every Boolean function be implemented \/

by some circuit!

2. Given a Boolean function, can we systematically \/
construct a circuit that implements this function!

3. Given a Boolean function, can we systematically
construct an efficient circuit that implements this 7
function! ¢

Boolean calculus System Architecture, Jan Reineke

Open questions

[f there are many polynomials (Boolean expressions) for a
given function f, how do we find a “cheap” one?

How can Boolean expressions (polynomials) be
implemented in practice!

For the special case of polynomials:
programmable logic arrays (PLAs)

