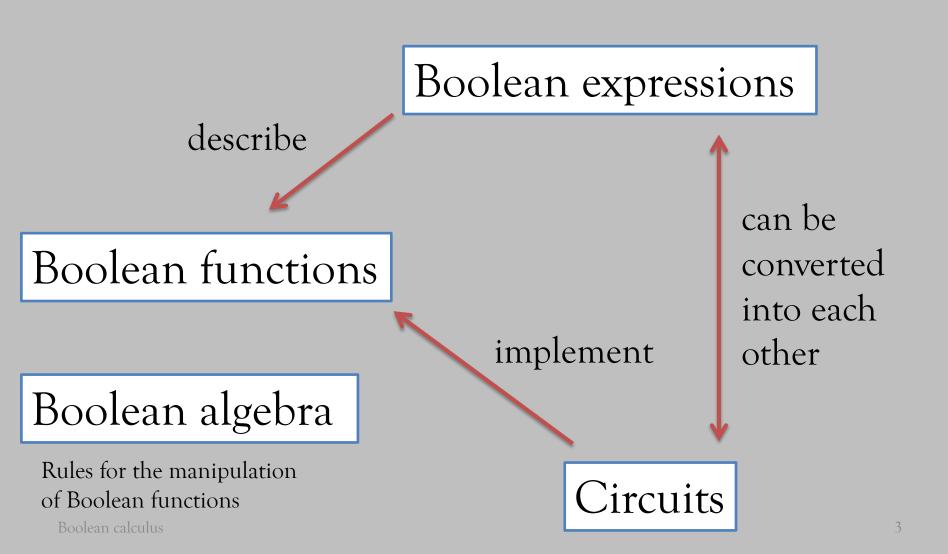
System Architecture Summer Semester 2023 – Recap

Jan Reineke Universität des Saarlandes

Reminder - Exam Registration

- Final Exam: July 25, 2023, 10:00-12:00
- Registration in LSF: July 19, 2023 (Today!)

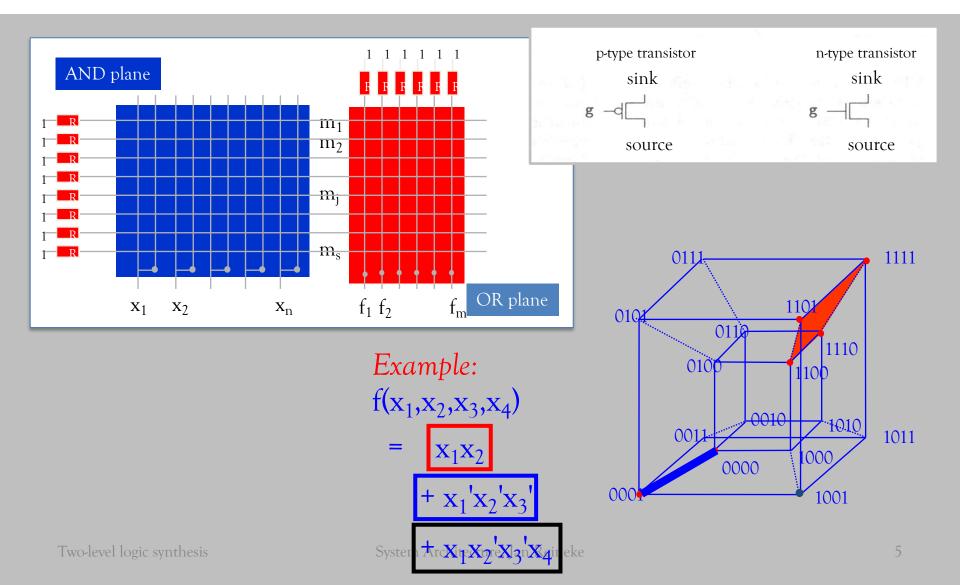
1. Boolean Calculus



1. Boolean Calculus - Key Items

- Partial and total Boolean functions
- Truth tables, On-Set, Off-Set
- Boolean algebra, axioms, laws, duality principle
- Boolean expressions, syntax, semantics
- Literals, monomials, polynomials
- (Canonical) disjunctive/conjunctive normal form

2. PLAs and Logic Synthesis



2. PLAs and Logic Synthesis - Key Items

- n-type and p-type transistors
- Programmable Logic Arrays (PLAs)
- Implementation of monomials and polynomials in PLAs
- Cost of monomials and polynomials
- Two-level logic minimization, and the corresponding covering problem on the hypercube

3. Implicants and Prime Implicants

An implicant of f is a monomial q with $\psi(q) \le f$. A prime implicant of f is a maximal implicant q of f.

Theorem (Quine):

Every minimal polynomial p of a Boolean function f consists only of prime implicants of f.

Theorem (Implicants):

A monomial m is an implicant of f if and only if, either

- m is a minterm of f, or
- m·x and m·x' are implicants of f for a variable x that does not occur in m.

```
Thus: m \in Implicant(f) \Leftrightarrow [m \in Minterm(f)] \vee [m \cdot x, m \cdot x' \in Implicant(f)]
```

3. Implicants and Prime Implicants - Key Items

- Implicants and prime implicants
- Minimal polynomial
- Theorem of Quine
- Characterization of implicants

4. Quine/McCluskey Algorithm

```
Quine-Prime-Implicants(f: B^n \rightarrow B)

L_0 := Minterm(f)
i := 1

Prime(f) := \emptyset

while (L_{i\cdot 1} \neq \emptyset) and (i \leq n)

L_i := \{m \mid |m| = n \cdot i, m \cdot x \text{ and } m \cdot x' \text{ are in } L_{i\cdot 1} \text{ for some } x\}
P_i := \{m \mid m \in L_{i\cdot 1} \text{ and } m \text{ is not covered by any } m' \in L_i\}
Prime(f) := Prime(f) \cup P_i
i := i + 1

return Prime(f) \cup L_{i\cdot 1}
```

McCluskey's Improvement

Compare only those monomials

- that contain the same variables, and
- whose number of positive literals differs by one.

4. Quine/McCluskey Algorithm

Matrix-covering problem

1. Reduction Rule:

Remove from the prime implicant table PIT(f) all essential prime implicants and all minterms that are covered by these prime implicants.

2. Reduction Rule:

Remove all minterms from the prime implicant table PIT(f) that dominate another minterm in PIT(f).

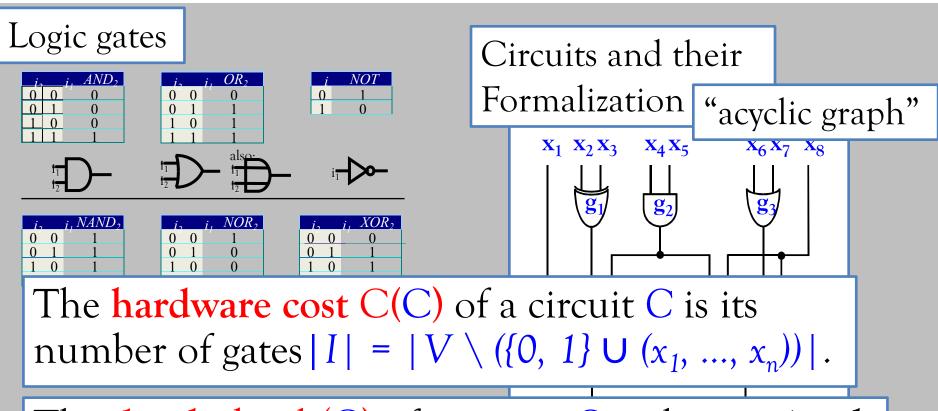
3. Reduction Rule

Remove all prime implicants from the prime implicant table PIT(f) that are dominated by other prime implicants that are not more expensive.

4. Quine/McCluskey Algorithm - Key Items

- Quine's algorithm
- McCluskey's improvement
- Correctness and complexity of the Quine-McCluskey algorithm
- The matrix covering problem
- Three reduction rules
 - Essential prime implicants
 - Column domination
 - Row domination
- Cyclic covering problems, Petrick's method

5. Combinatorial Circuits



The depth depth(C) of a circuit C is the maximal number of gates on a path from an arbitrary input x_i to an arbitrary output y_j of C.

5. Combinatorial Circuits - Key Items

- Logic gates, cell library
- Circuits
- Semantics of circuits
- Concrete and symbolic simulation
- Cost and depth of circuits
- Hierarchical circuits
- Circuits vs Boolean functions
- Implementation or associative operations

6. Number Representations

Questions:

- 1. How to represent *natural numbers*?
- 2. How to represent *integers*? Challenge: negative numbers
- 3. How to represent rational numbers?
- 4. How to represent very large and very small numbers?

fixed-point numbers

floating-point numbers

Binary numbers: $\langle d_n d_{n-1} ... d_0 \rangle := \sum_{i=0,...,n} d_i \cdot 2^i$

Two's complement: $[d_n d_{n-1} ... d_0]_2 := \sum_{i=0,...,n-1} d_i \cdot 2^i \cdot d_n \cdot 2^n$

Fixed-point numbers: $[d_n d_{n-1} ... d_0, d_1 ... d_k]_2 := \sum_{i=-k,...,n-1} d_i \cdot 2^i - d_n \cdot 2^n$

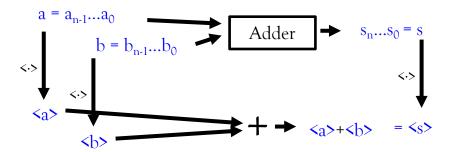
Floating-point numbers: sign, exponent, mantissa

6. Number Representations - Key Items

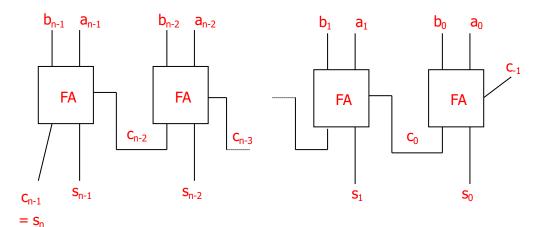
- Numerals (digits), binary, decimal, hexadecimal
- Positional numeral system
- Natural numbers
- Signed-magnitude representation, One's complement, Two's complement
- Fixed-point numbers
- Floating-point numbers

7. Arithmetic Circuits: Adders

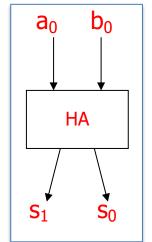
Definition of an Adder

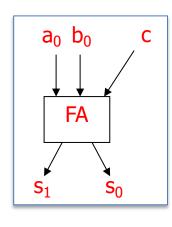


Ripple-carry Adders



Half and Full adders





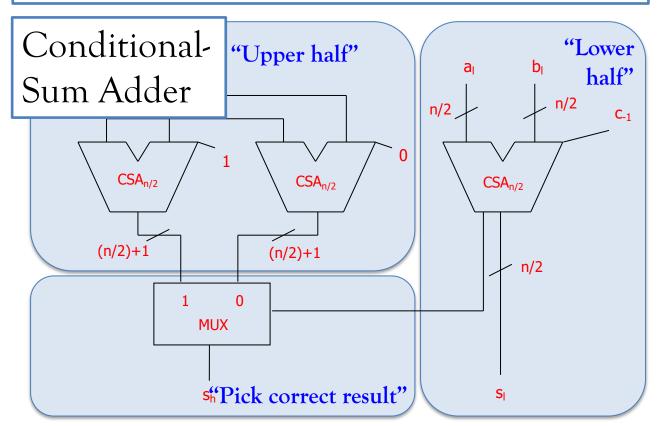
$$C(RC_n) = n \cdot C(FA) = 5n$$

$$depth(RC_n) = 3 + 2(n-1)$$

7. Arithmetic Circuits: Adders

Lower bounds for adders! $C(+) > 2n \qquad donth(+) > 1$

$$C(+_n) \ge 2n$$
, depth $(+_n) \ge \log(n) + 1$



$$depth(CSA_n) = 3 \log_2 n + 3$$

$$C(CSA_n) = 10n^{\log 3} \cdot 3n \cdot 2$$

7. Arithmetic Circuits: Adders

Let M be a set and $o: M \times M \to M$ an associative operation. The parallel prefix sum PPⁿ: $M^n \to M^n$ is defined as follows:

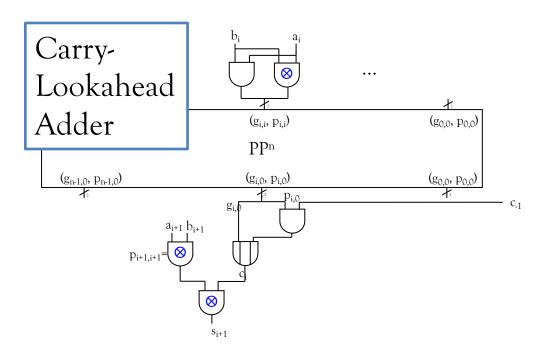
$$PP^{n}(x_{n-1}, ..., x_{0}) = (x_{n-1} o x_{n-2} ... o x_{0}, ..., x_{1} o x_{0}, x_{0})$$

 $depth(PP^n) < (2 \cdot log_2 n) \cdot depth(o)$

 $C(PP^n) \le 2n \cdot C(o)$

Generated carry $g_{j,i}$ from i to j: $c_j = 1$ independently of c_{i-1} . Propagated carry $p_{j,i}$ from i to j: $c_j = 1$ if and only if also $c_{i-1} = 1$

Generated and propagated carries can be captured as parallel prefixes of associative operator.



7. Arithmetic Circuits: Adders - Key Items

- Definition of adder
- Half adder, Full adder
- Ripple-carry adder, correctness, cost, depth
- Recursive constructions, inductive proofs
- Incrementer, Multiplexer
- Lower bounds on cost and depth
- Conditional-sum adder, divide-and-conquer
- Addition in two's complement

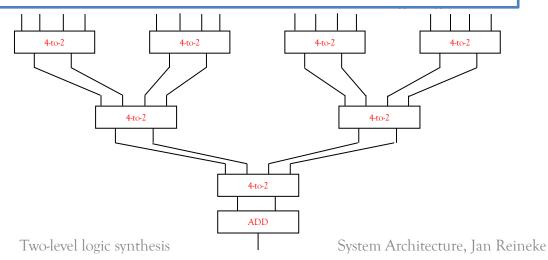
7. Arithmetic Circuits: Adders - Key Items

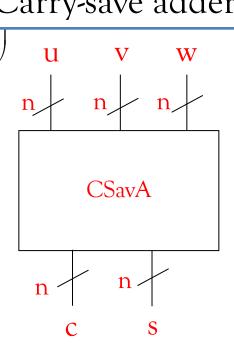
- Parallel prefix operation and circuit
- Generated and propagated carries
- Carry-lookahead adder

8. Arithmetic Circuits

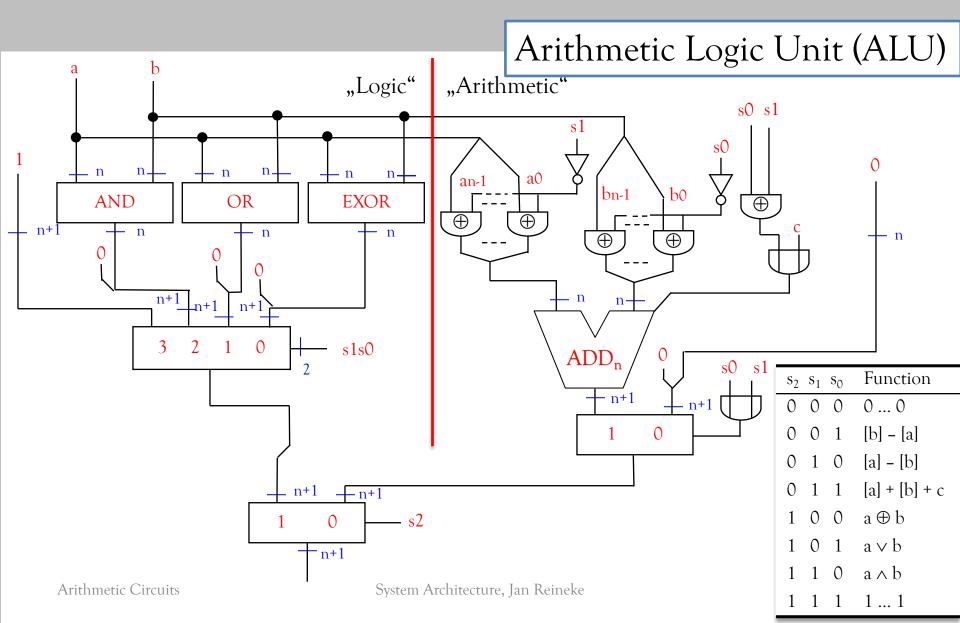
Multiplication matrix

Adder stage of log-time multiplier





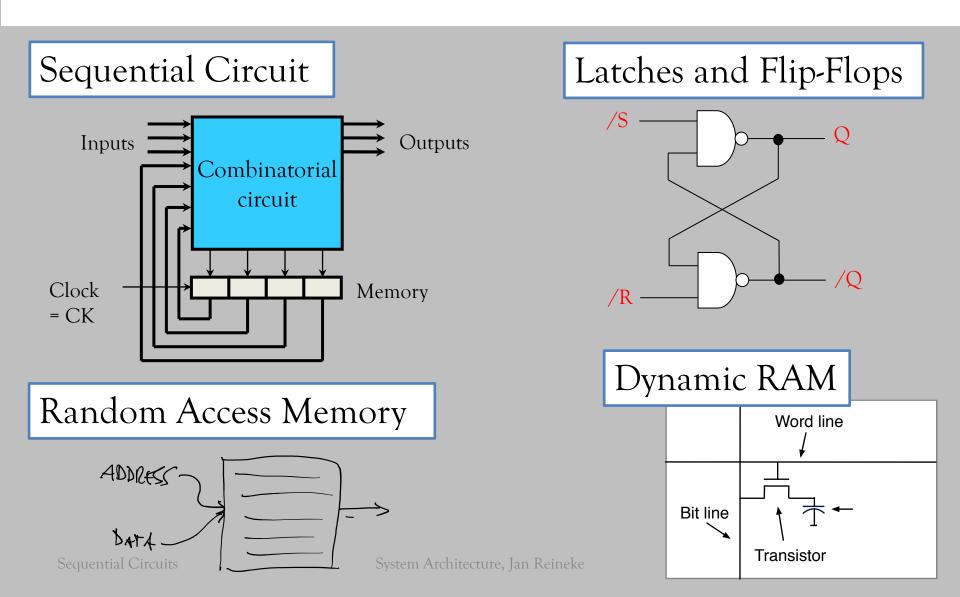
8. Arithmetic Circuits



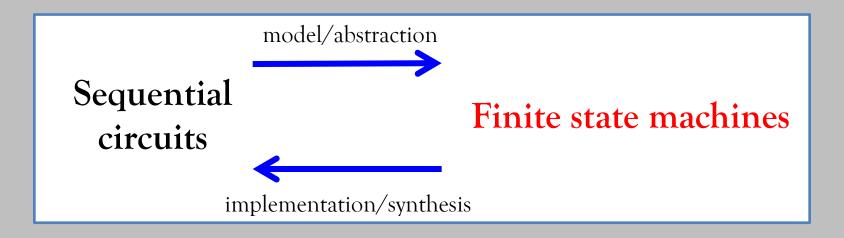
8. Arithmetic Circuits - Key Items

- Subtractor, combined adder/subtractor
- Multiplier
- Carry-save adder
- Arithmetic logic unit

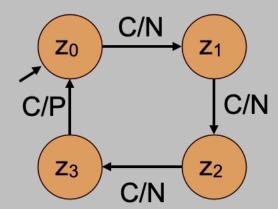
9. Sequential Circuits



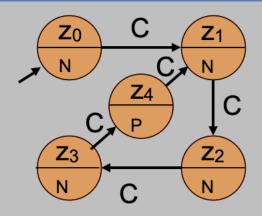
9. Sequential Circuits



Mealy Machines



Moore Machines



9. Sequential Circuits - Key Items

- SR latch, D latch, D flip-flop
- Register
- Random access memory (RAM)
- Decoder
- Static RAM and Dynamic RAM
- Sequential circuits
- Finite state machines, Mealy and Moore machines
- Synthesis of sequential circuits

10. Verilog

Encapsulation

```
a → Verilog module → y

c → verilog module → y

input [1:0] b,

input c,

output y

);

// functionality
```

Hierarchical circuits

```
module fulladder(
  input a0,
  input b0,
  input c,
  output s0,
  output s1
);
  wire ha0c, ha0s, ha1c;
  halfadder ha0(.a(a0), .b(b0), .c(ha0c), .s(ha0s));
  halfadder ha1(.a(ha0s), .b(c), .c(ha1c), .s(s0));
  assign s1 = ha0c | ha1c;
endmodule
```

 a_0 b_0

HA

Blocking vs non-blocking assignments

Blocking assignment

```
reg x, y;
always @(posedge clk)
begin
  x = y;
  y = x;
end
```

Assignments are blocking, i.e., they are executed **sequentially** $\Rightarrow x$ and y are equal

Non-blocking assignment

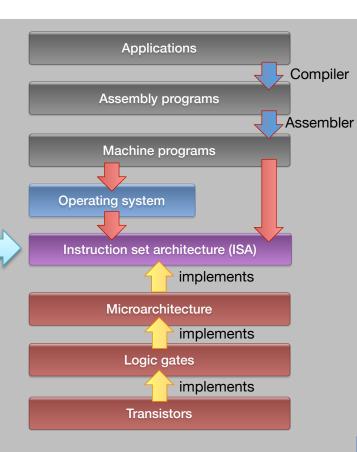
```
reg x, y;
always @(posedge clk)
begin
    x <= y;
    y <= x;
end

Assignments are non-blocking, i.e.,
are conceptually executed in parallel
    x and y are exchanged</pre>
```

10. Verilog – Key Items

- Hardware description languages
- Simulation and hardware synthesis
- Blocking vs non-blocking assignments
- Test benches

11. Instruction Set Architecture



Instruction set architecture (or just "architecture")

- = set of instructions, their **encoding** and **semantics**
- = "What" a computer computes For example: x86, ARM

Assembly language = textual representation

Assembler + Linker

Machine language = binary representation

MIPS instruction set

- instructions
- encoding

Instruction Set Architecture

System Memiceture, Jan Remek

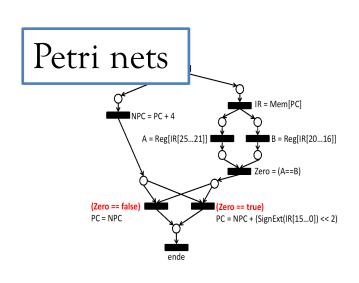
11. Instruction Set Architecture - Key Items

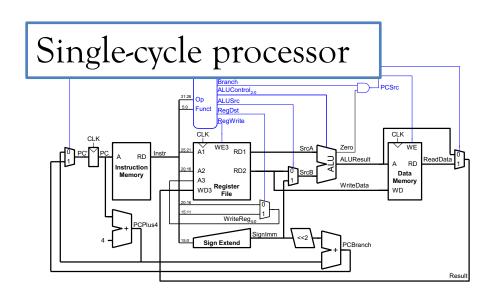
- Instruction set architecture
- Assembly language
- Machine language, instruction encoding
- MIPS instruction set
- Addressing modes
- Little endian, big endian
- Sign extension

12. Microarchitecture

Microarchitecture

- = concrete implementation of an instruction set in hardware
- = "How" a computer works; e.g. Intel Skylake, AMD Zen 3, Apple M1





12. Microarchitecture - Key Items

- Microarchitecture
- Datapath, control
- Petri nets
- Single-cycle system
- Main decoder, ALU decoder
- ALU implementation

13. Performance: Basic Concepts

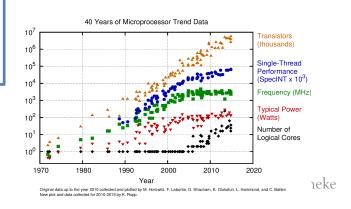
Latency = time required to perform a single task

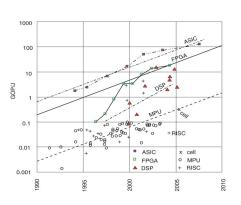
Throughput = number of tasks performed in one time unit

Processor time = Number of executed instructions

- * Cycles per instruction
- * Cycle time

Technological developments



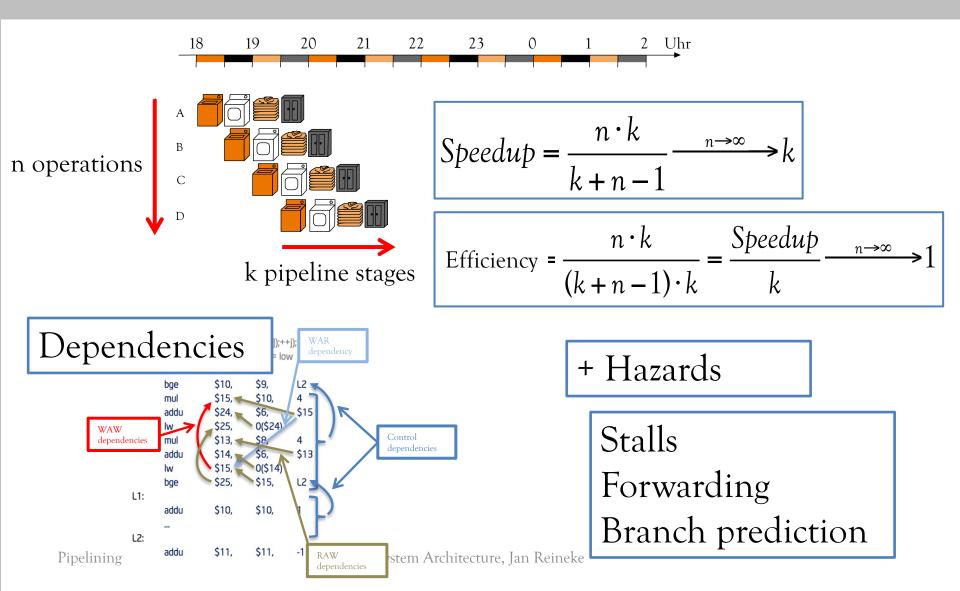


Performance: Basic concepts

13. Performance: Basic Concepts - Key Items

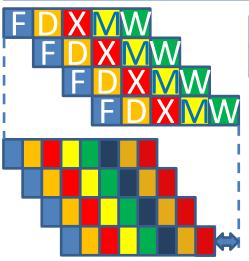
- Performance definitions, latency, throughput
- Execution time, response time, processor time
- Cycles per instruction, cycle time
- Moore's law
- Reduced Instruction Set Computer (RISC),
 Complex Instruction Set Computer (CISC)
- Pipelining

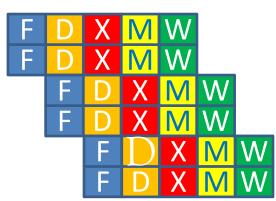
14. Pipelining



15. Advanced Pipelining Concepts

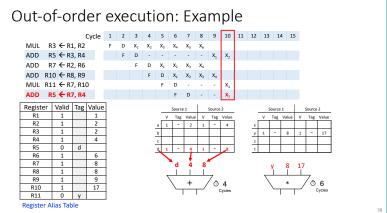
Deep + Superscalar Pipelines





Best case CPI = 1/width

Tomasulo Algorithm



Speculative Execution

Predict outcome of branches

+ Execute instructions speculatively

Reorder Buffer

LOAD R3 \leftarrow 0(R1) ... \leftarrow head

BEQ R2, R3, 40 ...

ADD R4 \leftarrow R6, R7 ...

MUL R5 \leftarrow R6, R8 ...

ADD R7 \leftarrow R9, R9 ...

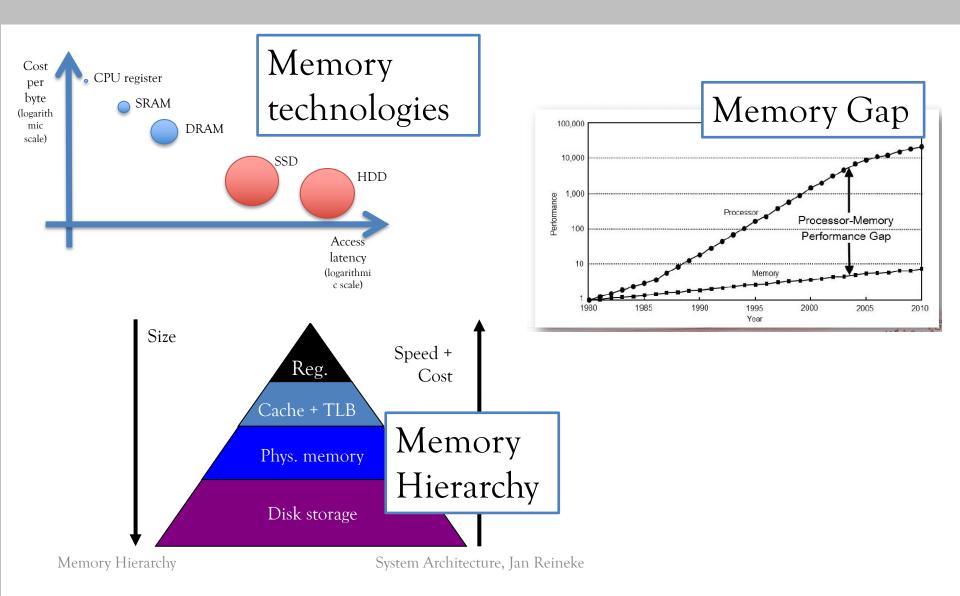
ADD R3 \leftarrow R6, R8 ...

... \leftarrow tail

15. Advanced Pipelining Concepts – Key Items

- Flynn bottleneck
- Out-of-order execution
- Reservation stations
- Tomasulo algorithm
- Speculative execution

16. Memory Hierarchy, Caches

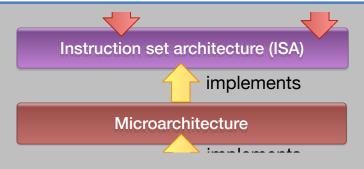


16. Memory Hierarchy, Caches - Key Items

- Memory technologies, Memory Gap
- Memory Hierarchy
- Scratchpad memory, Caches
- Fully-associative, direct-mapped, set-associative
- Replacement policy
- Optimal replacement, Farthest-in-the-Future
- Least-recently-used (LRU), First in, first out (FIFO)
- Online and offline algorithms
- Temporal and spatial locality

17. ISA, µArchitecture, and Bad News from the Real World

Correct ISA Implementation?

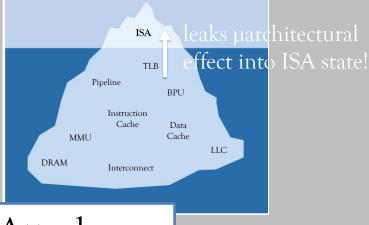


Flush+Reload

- 1. FLUSH memory line
- 2. Wait a bit
- 3. Measure time to **RELOAD** line

Leaky Abstractions

rdtsc: "read time-stamp counter"



Spectre Attack

```
Extracts a bit of "value"
```

```
"JavaScript"-
Code:

value = some_array[offset];

tmp = other_data[(value>>bit)&1];
}
```

2. Secret-dependent memory access

System Architecture, Jan Reineko

17. ISA, μArchitecture, and Bad News from the Real World - Key Items

- Correct ISA implementation
- Flush+Reload
- Prime+Probe
- Spectre attack

19. Virtualization: The CPU

Direct execution

User processes

Operating System

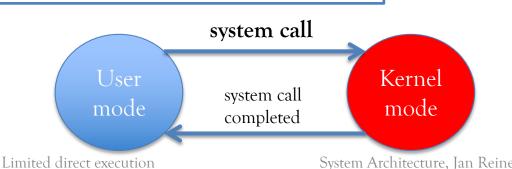
Hardware

User processes

Operating System

Hardware

Limited direct execution

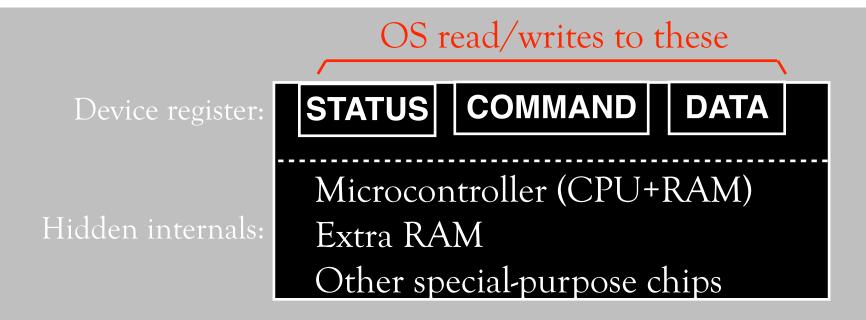


Preemptive Multitasking

19. Virtualization: The CPU - Key Items

- Process, process vs program
- Direct execution
- Restricted operations
- User mode vs kernel mode
- System calls, exception handling
- Mechanism vs policy
- Context switches
- Cooperative vs preemptive multitasking

20. Persistence: I/O Devices

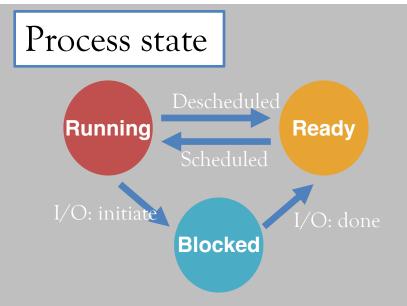


- Status checks: polling vs. interrupts
- Data: Programmed-IO vs. DMA
- Control: special instructions vs. memory-mapped I/O
 Persistence: I/O devices System Architecture, Jan Reineke

20. Persistence: I/O Devices - Key Items

- I/O devices
- Busy waiting/polling vs interrupts
- Programmed I/O vs Direct Memory Access (DMA)
- Drivers

21. Scheduling



Performance metrics

Turnaround time Response time Throughput Fairness Meet deadlines

Scheduling policies

First Come, First Served (FCFS)

Shortest Job First (SJF)

Shortest Time-to-Completion First (STCF)

Round Robin

Multi-Level Feedback Queue (MLFQ)

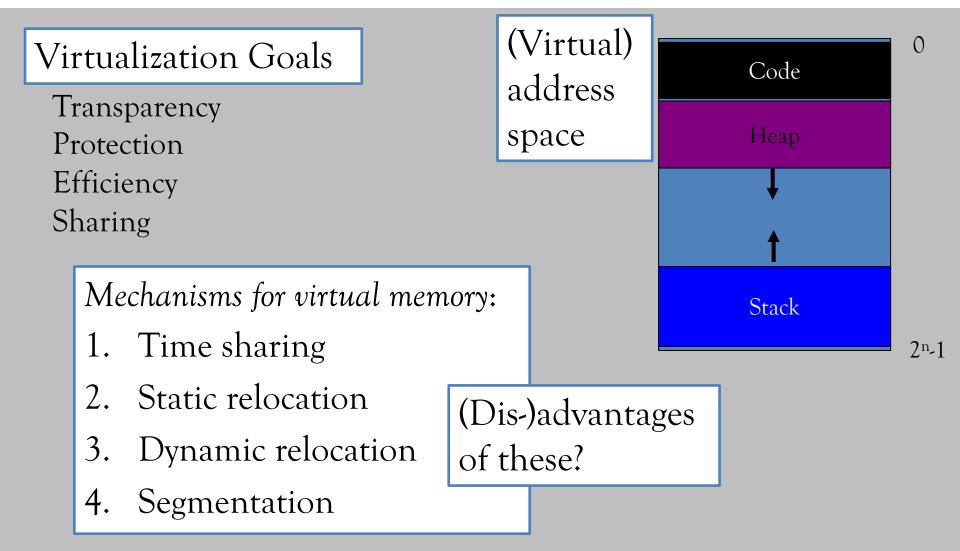
System Architecture, Jan Reineke

Throughput
Turnaround time
Response time
Fairness
Combination

21. Scheduling – Key Items

- Dispatcher vs Scheduler
- Workload, Performance metric
- Turnaround time, Response time, Throughput, Overhead, Fairness
- FIFO (also FCFS), Convoy effect
- Shortest Job First (SJF), Shortest Time-to-Completion First (STCF)
- Round Robin
- Multi-Level Feedback Queue (MLFQ)
- Starvation
- Voodoo constants

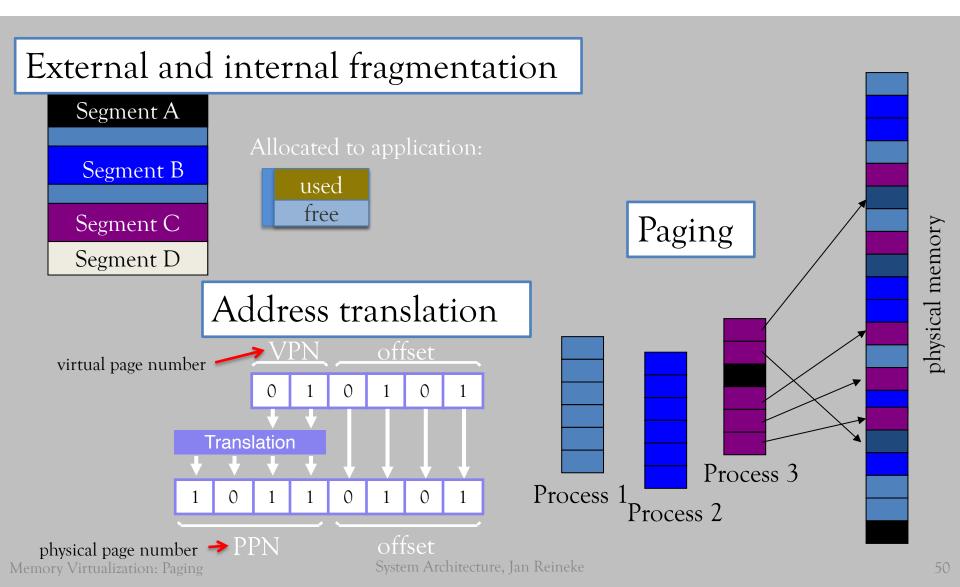
22. Memory Virtualization Foundations



22. Memory Virtualization Foundations – Key Items

- Transparency, protection, efficiency, sharing
- Address space
- Static: code and global data, dynamic: stack and heap
- Time sharing, Static relocation, Dynamic relocation, Segmentation
- Memory Management Unit (MMU)
- Base and bounds
- Segment table

23. Paging



23. Paging - Key Items

- Internal and external fragmentation
- Paging
- Pages, page frames
- Page number, frame number, page offset
- Virtual address, physical address
- Page table
- Valid bit, protection bits

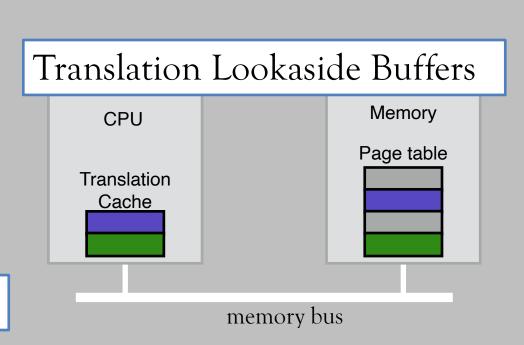
24. Translation Lookaside Buffers

"Naïve" paging too slow

two physical accesses for every virtual access

Design choices

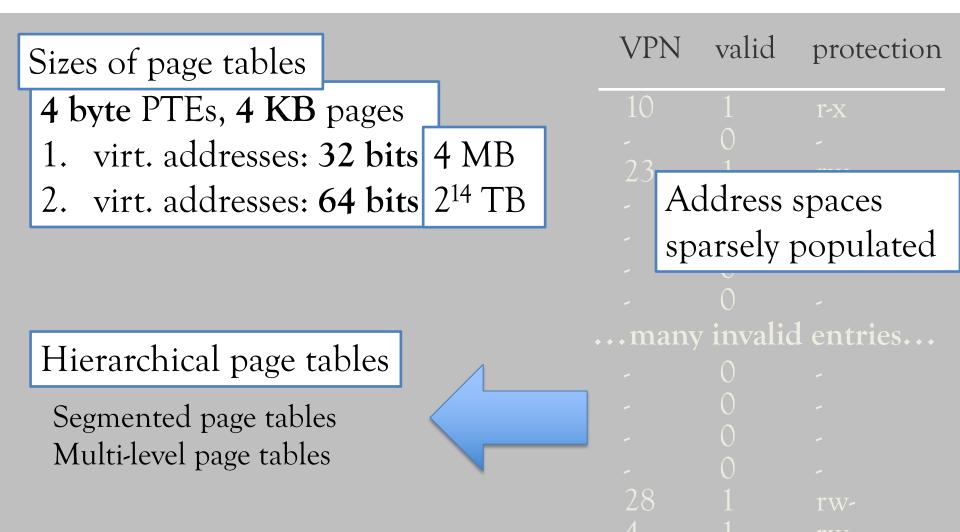
page sizes associativity replacement policy



24. Translation Lookaside Buffers - Key Items

- Translation Lookaside Buffer
- Direct-mapped, fully-associative, set-associative
- Influence of page size on performance
- Influence of locality on performance
- TLB replacement policies
- Address space identifiers (ASIDs)
- TLB miss handling

25. Smaller Page Tables

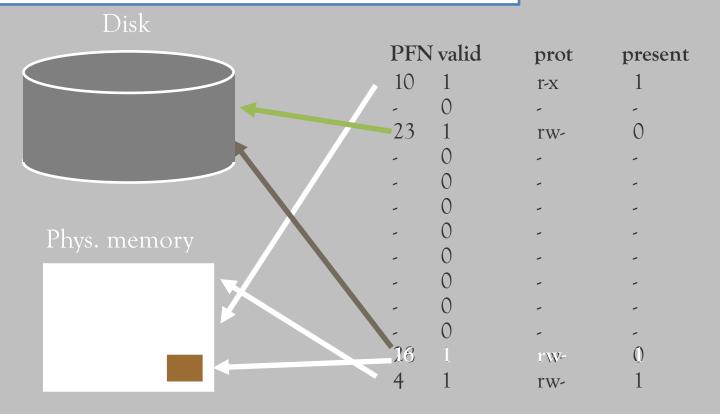


25. Smaller Page Tables - Key Items

- Invalid page table entries
- Segmented page tables
- Multi-level page tables
- Outer page, inner page
- Page tables fit within pages

26. Swapping

Pages can be in memory or on disk



26. Swapping- Key Items

- Swapping
- Present bit in page table
- Page fault
- HW + OS cooperate on address translation
- Precise interrupts
- Page selection and Page replacement
- Demand paging, Prefetching, Hints
- Clock algorithm

28. Persistence: Disks + I/O Scheduling



I/O Scheduling

Shortest Positioning Time First SCAN algorithms
Anticipatory schedulers

Time to read/write

Seek → slow

Rotation \rightarrow slow

Transfer time \rightarrow fast

Performance depends on workload

Workload	Toshiba	Seagate Exos
Sequential	290 MB/s	261 MB/s
Random	1 MB/s	0,47 MB/s

28. Persistence: Disks + I/O Scheduling – Key Items

- Persistent vs volatile memory
- platter, surface, spindle, cylinder, track, sector, read/write unit, read/write head
- Seek, rotation, and transfer
- Throughput on sequential and random workloads
- Shortest Positioning Time First (SPTF), Shortest Seek Time First (SSTF)
- SCAN algorithms, Elevator algorithm, C-SCAN
- Work conservation, anticipatory schedulers

29. Persistence: Flash-based Solid State Disks

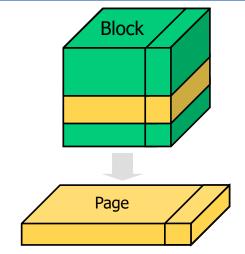
Solid-state storage devices

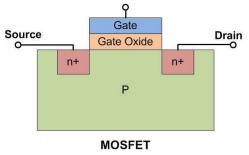
No mechanical or moving parts like HDD

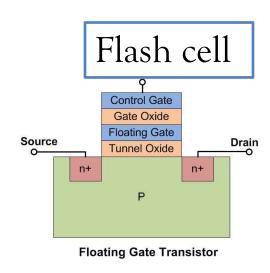
Built out of transistors; but persistent

unlike typical RAM

Hierarchical organization







- electrons can be **trapped in** the floating gate
- electrons do not escape → persistent memory

Read: at page granularity

Write: $1 \rightarrow 0$: at page granularity

Erase: $0 \rightarrow 1$: only at block granularity

29. Persistence: Flash-based Solid State Disks – Key Items

- Solid-state storage devices
- Floating-gate transistors
- Single-level cells, multi-level cells, etc.
- Basic operations: read, write, erase
- Reliability: wear out
- Out-of-place update
- Flash Translation Layer (FTL)

30. Error Detection and Correction

Hamming distance

dist(00001101,10001100) = 2

Lemma (Error Detection)

A fixed-length code c is k-error detecting iff dist(c) $\geq k+1$.

Parity code

Hamming code

Lemma (Error Correction)

A fixed-length code c is k-error correcting iff dist(c) $\geq 2k+1$.

30. Error Detection and Correction – Key Items

- (Fixed-length) codes
- Hamming distance, code distance
- k-error detecting, k-error correcting
- Repetition code
- Parity code
- Hamming code

The End.