System Architecture
Summer Semester 2023 - Recap




Reminder - Exam Registration




1. Boolean Calculus

Boolean algebra




1. Boolean Calculus - Key Items

Partial and total Boolean functions

Truth tables, On-Set, Off-Set

Boolean algebra, axioms, laws, duality principle
Boolean expressions, syntax, semantics

Literals, monomials, polynomials

(Canonical) disjunctive/conjunctive normal form



2. PLAs and Logic Synthesis
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2. PLAs and Logic Synthesis - Key Items

* n-type and p-type transistors
* Programmable Logic Arrays (PLASs)

* Implementation of monomials and polynomials

in PLAs

* Cost of monomials and polynomials

* Two-level logic minimization, and the
corresponding covering problem on the hypercube



3. Implicants and Prime Implicants

Theorem (Quine):

Every minimal polynomial p of a
Boolean function f consists only of
prime implicants of f.

An implicant of f is a
monomial g with y(q) < f.
A prime implicant of f is a
maximal implicant q of f.

Theorem (Implicants):

A monomial m is an implicant of f if and only if, either
°* m is a minterm of f, or

¢ m-xand mx are implicants of f
for a variable x that does not occur in m.

Thus: m e Implicant(f) <
[m e Minterm(f)] v [m-x, mx' e Implicant(f)]




3. Implicants and Prime Implicants - Key Items

* Implicants and prime implicants
* Minimal polynomial
* Theorem of Quine

e Characterization of implicants



4. Quine/McCluskey Algorithm

Quine-Prime-Implicants(f: B» -> B)
L, := Minterm(f) . , .
- Quine’s algorithm
Prime(f) .= &
while (L., = @) and (i < n)

L :={m | |m|=ni, mx and m-x"are in L, for some x}

P;:={m | m e L,; and m is not covered by any m' € L}
Prime(f) := Prime(f) U P,
i=i+]

return Prime(f) U L,

Compare only those monomials
McCluskey’s * that contain the same variables, and
Improvement * whose number of positive literals
differs by one.




4. Quine/McCluskey Algorithm

Matrix-covering problem

1. Reduction Rule:

Remove from the prime implicant table PIT(f) all essential prime
implicants and all minterms that are covered by these prime implicants.

2. Reduction Rule:
Remove all minterms from the prime implicant table PI'T(f)
that dominate another minterm in PIT(f).

3. Reduction Rule

Remove all prime implicants from the prime implicant table
PIT(f) that are dominated by other prime implicants that are
not more expensive.




4. Quine/McCluskey Algorithm - Key [tems

* Quine’s algorithm
* McCluskey’s improvement

* Correctness and complexity of the Quine-McCluskey
algorithm

* The matrix covering problem

e Three reduction rules
— Essential prime implicants
— Column domination

— Row domination

* Cyclic covering problems, Petrick’s method



5. Combinatorial Circuits

Logic gates

Circuits and their
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5. Combinatorial Circuits - Key Items

* Logic gates, cell library

e Circuits

e Semantics of circuits

* Concrete and symbolic simulation
e Cost and depth of circuits

* Hierarchical circuits

* Circuits vs Boolean functions

* Implementation or associative operations



6. Number Representations

Questions:
I. How to represent natural numbers!?
2.  How to represent integers!

Challenge: negative numbers ﬁxed—pomt numbers
3. How to represent rational numbers!?
4.  How to represent very large ﬂoating—point numbers

and very small numbers?

Binary numbers: <d.d, ;...dp> := Xy, d;-2!

Two’s complement: [d.d, ;...dgl, == 2, di2t-d, - 20

ooooo

Floating-point numbers: sign, exponent, mantissa
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6. Number Representations - Key Items

e Numerals (digits), binary, decimal, hexadecimal
* Positional numeral system
e Natural numbers

* Signed-magnitude representation, One’s
complement, Two’s complement

* Fixed-point numbers

* Floating-point numbers



7. Arithmetic Circuits: Adders

Definition of an Adder Half and Full adders
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7. Arithmetic Circuits: Adders

Lower bounds for adders!

C(+.) > 2n, depth(+,)>log(n) + 1
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7. Arithmetic Circuits: Adders

Let M be a set and o : MxM — M an associative operation.
The parallel prefix sum PP M» — M" is defined as follows:

PP™ (x, 1, ...y X0) = (X1 O X, 9 +v O X, «vvy Xq O Xg, Xp)

depth(PPr) < (2 - log; n) - depth(o) C(PP®) < 2n - C(0)
Generated carry g;; from i to j: Carry— bi
¢; = 1 independently of Cit- Lookahead
Propagated carry p;; from i to j: : x
¢;=1ifand only if also ¢;y = 1 Adder EP ) oo oo
Generated and propagated carries 10 Prto (gifr: Pi»i. (200 Poo
can be captured as parallel prefixes i L
of associative operator.

C1



7. Arithmetic Circuits: Adders - Key Items

* Definition of adder

o Half adder, Full adder

* Ripple-carry adder, correctness, cost, depth
* Recursive constructions, inductive proofs

* Incrementer, Multiplexer

* Lower bounds on cost and depth

* Conditional-sum adder, divide-and-conquer

* Addition in two’s complement



7. Arithmetic Circuits: Adders - Key Items

* Parallel prefix operation and circuit

* Generated and propagated carries

* Carry-lookahead adder



Multiplication matrix
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8. Arithmetic Circuits

Arithmetic Logic Unit (ALU)
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8. Arithmetic Circuits - Key Items

o Subtractor, combined adder/subtractor
* Multiplier
* Carry-save adder

* Arithmetic logic unit



9. Sequential Circuits

Sequential Circuit Latches and Flip-Flops
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9. Sequential Circuits

model/abstraction

—

Sequential . .
. Finite state machines

circuits

implementation/synthesis

Mealy Machines




9. Sequential Circuits - Key Items

* SR latch, D latch, D flip-flop

* Register

 Random access memory (RAM)
* Decoder

* Static RAM and Dynamic RAM
* Sequential circuits

* Finite state machines, Mealy and Moore
machines

* Synthesis of sequential circuits



Encapsulation

module name (

input a,
a_ input [1:0] b,
input c,
2 Verilog output y
b —| —Y
module )7
¢ // functionality

endmodule

Hierarchical

circuits

reg x, yi

Blocking vs

begin
X =Y

always @ (posedge clk)

module fulladder (
input a0,
input bO,
input c,
output sO,
output sl
)i
wire haOc, haOs, halc;
halfadder haO(.a(a0),
halfadder hal (.a (haOs),
assign sl = haOc | halc;
endmodule

.b (b0),
.b(c),

HA

1\

T

S1

.c (haOc)
.c (halc),

, .s(haOs));
.s(s0));

So

reg x, yis
always @ (posedge clk)

non-blocking | -%

assignments

end

Assignments are blocking,
i.e., they are executed sequentially
= x and y are equal

begin
X <= Vi
y <= X
end

Assignments are non-blocking, i.e.,
are conceptually executed in parallel
= x and y are exchanged




10. Verilog - Key Items

Hardware description languages
Simulation and hardware synthesis
Blocking vs non-blocking assignments

Test benches



11. Instruction Set Architecture

Applications
Instruction set architecture (or just “architecture”)

e set of instructions, their encoding and semantics

»What" a computer computes

For example: x86, ARM

Machine programs

Operating system

» Instruction set architecture (ISA)

Microarchitecture .

Logic gates

2 ]

Transistors

MIPS instruction set

* instructions
* encoding




11. Instruction Set Architecture — Key Items

* Instruction set architecture

* Assembly language

* Machine language, instruction encoding
* MIPS instruction set

* Addressing modes

 Little endian, big endian

* Sign extension



12. Microarchitecture

Microarchitecture

= concrete implementation of an instruction set in hardware

= ,How" a computer works; e.g. Intel Skylake, AMD Zen 3, Apple M1

Single-cycle processor

TBranch

Petri nets

[ALUControl, o
—1Op  |ALUSKC
RegDst

IR = Mem[PC]

NPC=PC+4

A =Reg[IR[25...21]] B = Reg[IR[20...16]]

Zero = (A==B)

(Zero == false)
PC=NPC

(Zero == true)
PC = NPC + (SignExt(IR[15...0]) << 2)

Result|
ende

Microarchitecture System Architecture, Jan Reineke



12. Microarchitecture - Key Items

* Microarchitecture

* Datapath, control

* Petri nets

 Single-cycle system

 Main decoder, ALU decoder
* ALU implementation



13. Performance: Basic Concepts

Latency = time required to perform a single task

Throughput = number of tasks performed in one time unit

Processor time = Number of executed instructions
* Cycles per instruction
* Cycle time
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13. Performance: Basic Concepts - Key Items

* Performance definitions, latency, throughput
* Execution time, response time, processor time
* Cycles per instruction, cycle time

* Moore’s law

* Reduced Instruction Set Computer (RISC),
Complex Instruction Set Computer (CISC)

* Pipelining
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15. Advanced Pipelining Concepts

Deep + Superscalar Pipelines Tomasulo Algorithm

Out-of-order execution: Example
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Predict outcome of branches ADD_Ré€ReRT ],
MUL R5 < R6,R8 | ...
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+ Execute instructions speculatively e B
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15. Advanced Pipelining Concepts -
Key Items

* Flynn bottleneck

* Qut-of-order execution
* Reservation stations

* Tomasulo algorithm

* Speculative execution



16. Memory Hierarchy, Caches
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16. Memory Hierarchy, Caches - Key [tems

* Memory technologies, Memory Gap

 Memory Hierarchy

* Scratchpad memory, Caches

 Fully-associative, directmapped, set-associative

* Replacement policy

* Optimal replacement, Farthest-in-the-Future

* Leastrecently-used (LRU), First in, first out (FIFO)
* Online and offline algorithms

* Temporal and spatial locality



17. ISA, pArchitecture, and
Bad News from the Real World

Correct ISA Implementation? Leaky Abstractions

L |rdtscfﬁwdﬁnmﬁmnqnmunmf’

Instruction set architecture (ISA)

implements

Microarchitecture
RPN R R

nnnnnnnnnnn

Flush+Reload

Spectre Attack T
. Extracts a bit of “value
1. FLUSH memory line 7
. . sJavaScript“ | if (offset < bound) {
2" Walt d blt Code: value = some array[offset
3. Measure time to RELOAD line tmp = [other_data[[(value>>bit)sl])}
}

2. Secret-dependent memory access
System Architecture, Jan Reineke P Y




17. ISA, pArchitecture, and
Bad News from the Real World - Key Items

* Correct ISA implementation

 Flush+Reload
 Prime+Probe

* Spectre attack



19. Virtualization: The CPU

Direct execution

€SSES User PTroCeSsses

Oper System Operating System
Hardware

Limited direct execution

system call

Kernel

system call

mode

completed

Preemptive Multitasking

Limited direct execution System Architecture, Jan Reinel




19. Virtualization: The CPU - Key Items

* Process, process vs program

* Direct execution

» Restricted operations

* User mode vs kernel mode

» System calls, exception handling
* Mechanism vs policy

* Context switches

* Cooperative vs preemptive multitasking



20. Persistence: I/O Devices

OS read/writes to these

/ \

Microcontroller (CPU+RAM)
Extra RAM

Other special-purpose chips

polling  interrupts
Programmed- IO DMA

special instructions  memory-mapped I/O



20. Persistence: 1/O Devices - Key [tems

e 1/0O devices

* Busy waiting/polling vs interrupts

* Programmed I/O vs Direct Memory Access
(DMA)

e Drivers



21. Scheduling

Process state

Performance metrics

w i
G Turnaround time
\ / Response time

Throughput

Fairness

Meet deadlines

Scheduling policies

First Come, First Served (FCES) e ;
Shortest Job First (SJF) / T roug pu; |
Shortest Time-to-Completion First (STCF) N2 QLUTe Rt
Round Robin B Re.sponse time
Multi-Level Feedback Queue (MLFQ) \_Falrness

Combination



21. Scheduling - Key Items

* Dispatcher vs Scheduler
 Workload, Performance metric

* Turnaround time, Response time, Throughput,
Overhead, Fairness

* FIFO (also FCEFES), Convoy effect

e Shortest Job First (SJF), Shortest Time-to-Completion
First (STCF)

e Round Robin

o Multi-Level Feedback Queue (MLFQ)
e Starvation

* Voodoo constants



22. Memory Virtualization Foundations

Virtualization Goals (Virtual)
Transparency address
Protection space
Efficiency
Sharing

Mechanisms for virtual memory:

1. Time sharing

2. Static relocation (Dis-)advantages

3. Dynamic relocation | 5f these?

4. Segmentation

Memory Virtualization: Foundations System Architecture, Jan Reineke 48



22. Memory Virtualization Foundations -
Key Items

* Transparency, protection, efficiency, sharing
* Address space

 Static: code and global data, dynamic: stack and
heap

* Time sharing, Static relocation, Dynamic
relocation, Segmentation

* Memory Management Unit (MMU)
* Base and bounds
* Segment table



23. Paging

External and internal fragmentation

Segment A

Segment B m
Segment C free

Segment D

Paging

Address translation
/7

virtual page number

Process 3

1lol1l1lol1l0]1 Process 1
Process 2

physical page number =

physical memory



23. Paging - Key Items

* Internal and external fragmentation
* Paging

e Pages, page frames

* Page number, frame number, page offset
* Virtual address, physical address

* Page table

* Valid bit, protection bits



24. Translation Lookaside Buffers

“Naive” paging too slow

two physical accesses for
every virtual access

Translation Lookaside Buffers

Design choices

page sizes
associativity
replacement policy

CPU Memory
Page table

Translation
Cache

memory bus




24. Translation Lookaside Buffers - Key Items

* Translation Lookaside Buffer
* Directmapped, fully-associative, set-associative

* Influence of page size on performance

* Influence of locality on performance

* TLB replacement policies

* Address space identifiers (ASIDs)
* TLB miss handling



25. Smaller Page Tables

Sizes of page tables

4 byte PTEs, 4 KB pages 10 1 r-X
1. virt. addresses: 32 bits| 4 MB 23 .
2. virt. addresses: 64 bits| 214 TB | Address spaces
- | sparsely populated
, 0 ,
. ...many invalid entries...
Hierarchical page tables , 0 ,
, 0 ,
- 0
- 0
28 1 rw-
4 1 I'W-



25. Smaller Page Tables - Key Items

* Invalid page table entries
* Segmented page tables

* Multi-level page tables

* Quter page, inner page

* Page tables fit within pages



26. Swapping

Pages can be in memory or on disk
Disk

> Y,

-

Phys. memory

160 1 B\ )



26. Swapping- Key Items

Swappmg

Present bit in page table

Page fault

HW + OS cooperate on address translation
Precise interrupts

Page selection and Page replacement

Demand paging, Prefetching, Hints
Clock algorithm



28. Persistence: Disks + 1/O Scheduling

spindle

I Hard disks

Time to read/write

Seek =2 slow

Rotation =2 slow
Transfer time = fast

Performance depends
on workload

. kl 5
I / O Scheduhng Workload Toshiba  Seagate Exos

Sequential

Shortest Positioning Time First
SCAN algorithms
Anticipatory schedulers

Random

Disks & /O Scheduling System Architecture, Jan Reineke
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28. Persistence: Disks + I/O Scheduling -
Key Items

Persistent vs volatile memory

platter, surface, spindle, cylinder, track, sector,
read/write unit, read/write head

Seek, rotation, and transfer
Throughput on sequential and random workloads

Shortest Positioning Time First (SPTF),
Shortest Seek Time First (SSTF)

SCAN algorithms, Elevator algorithm, C-SCAN

Work conservation, anticipatory schedulers



29. Persistence: Flash-based Solid State Disks

Solid-state storage devices

* No mechanical or moving parts like HDD Flash cell
‘ stors: - 7
* Built out of transistors; but persistent N
unlike typical RAM 9 Gate Oxide
Gate . Floating Gate .
Source Cits OB Drain Source Tunnel Oxide Drain
n+ n+ n+ n+
. . . P P
Hierarchical organization
MOSFET Floating Gate Transistor
* electrons can be trapped in the floating gate
1] * electrons do not escape =2 persistent memory

Read: at page granularity
Page Write: 1 = 0: at page granularity
Erase: 0 = 1: only at block granularity

Flash-based Solid State Disks System Architecture, Jan Reineke 60



29. Persistence: Flash-based Solid State Disks -
Key Items

* Solid-state storage devices

* Floating-gate transistors

* Singlelevel cells, multi-level cells, etc.
* Basic operations: read, write, erase

» Reliability: wear out

* Qutof-place update
* Flash Translation Layer (FTL)



30. Error Detection and Correction

Hamming distance | dist(00001101,10001100) = 2

Lemma (Error Detection)

A fixed-length code c is k-error Parity code
detecting iff dist(c) > k+1.

Lemma (Error Correction)

Hamming code | | A fixed-length code c is k-error
correcting iff dist(c) > 2k+1.




30. Error Detection and Correction -
Key Items

 (Fixed-length) codes

 Hamming distance, code distance
* keerror detecting, k-error correcting
* Repetition code

* Parity code

 Hamming code



The End.



