Error Detection and Correction

Becker/Molitor, Chapter 13

Jan Reineke
Universität des Saarlandes

Overview: Codes for Error Detection and Correction

- Motivation
- Codes
- Error Detection
- general results
- Example of a 1-error-detecting code: Parity code
- Error Correction
- general results
- Example of a 1-error-correcting code: Hamming code

Transmission and storage errors

Computers store, process and produce information
\rightarrow Information storage and transfer must be exact

Problems: noise, crosstalk, attenuation
\rightarrow There is no exact data transfer or data storage
\rightarrow Goal: Coding that is robust against disturbances

Binary codes

Let $A=\left\{a_{1}, \ldots, a_{m}\right\}$ be a finite alphabet of size m.
A mapping c : $\mathrm{A} \rightarrow\{0,1\}^{*}$ is called code, if c is injective.

The set $c(A):=\{c(a) \mid a \in A\}$ is the set of codewords.

A code $\mathrm{c}: \mathrm{A} \rightarrow\{0,1\}^{\mathrm{n}}$ is called fixed-length code.
What is the minimum length n of a fixed-length code for a set A?

Binary codes

What is the minimum length n of a fixed-length code for a set A?

For a fixed-length code $\mathrm{c}: \mathrm{A} \rightarrow\{0,1\}^{\mathrm{n}}$ we have: $\mathrm{n} \geq\left\lceil\log _{2} \mathrm{~m}\right\rceil$.

If $\mathrm{n}=\left\lceil\log _{2} \mathrm{~m}\right\rceil+\mathrm{r}$ with $\mathrm{r}>0$, then the r additional bits can be used to detect and correct errors.

Motivation:
 Transmission errors + storage errors

A transmission error (storage error) of a word from $\{0,1\}^{*}$ occurs if the received bit sequence differs from the sent (stored) bit sequence.

Transmission error $=$ Flipping of individual bits $(0 \rightarrow 1,1 \rightarrow 0)$

Transmission errors increase the (Hamming) distance dist(v,w) between the send bit sequence v and the received bit sequence w.

The (Hamming) distance of two bit sequences is the number of places in which the two bit sequences differ.

Hamming distance: Example

$\operatorname{dist}(00001101,10001100)=2$ dist $(00001101,00001101)=O$

A transmission error is called simple, if $\operatorname{dist}(v, w)=1$.

Error-detecting Codes

Let $\mathrm{c}: \mathrm{A} \rightarrow\{0,1\}^{\mathrm{n}}$ be a fixed-length code of A .
The code c is k-error detecting, if the receiver can always determine whether the sent codeword has been disturbed by flipping up to k bits.

The minimal distance

$$
\operatorname{dist}(\mathrm{c}):=\min \left\{\operatorname{dist}\left(c\left(\mathrm{a}_{\mathrm{i}}\right), c\left(\mathrm{a}_{\mathrm{j}}\right)\right) \mid \mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}} \in \mathrm{~A} \text { with } \mathrm{a}_{\mathrm{i}} \neq \mathrm{a}_{\mathrm{j}}\right\}
$$

between two codewords is called the code distance.

Lemma (Error Detection)
A fixed-length code c is k-error detecting iff $\operatorname{dist}(\mathrm{c}) \geq \mathrm{k}+1$.

Repetition code: A 1-error-detecting code

Let $\mathrm{c}: \mathrm{A} \rightarrow\{0,1\}^{\mathrm{n}}$ be a fixed-length code of A .
Consider the repetition code R2:A $\rightarrow\{0,1\}^{2 n}$ that arises from c by repeating each bit of a codeword twice.

What is R2's code distance?
R2's code distance is 2
\Rightarrow Code R2 is 1 -error-detecting!

Is the repetition code efficient?

Can we do better?

Parity code: A 1-error-detecting code

Parity Check:

A bit sequence $\mathrm{w} \in\{0,1\}^{\mathrm{n}}$ passes the parity check, if the number of bits that are 1 is even.

Parity Code:

Let $\mathrm{c}: \mathrm{A} \rightarrow\{0,1\}^{\mathrm{n}}$ be a fixed-length code of A .
Consider the code $\mathrm{C}: \mathrm{A} \rightarrow\{0,1\}^{\mathrm{n}+1}$ that arises from c by adding one bit to each codeword c(a) so that the new code $C(a)$ passes the parity check.
\Rightarrow Code C is 1 -error-detecting!

Error-correcting Codes

Let $\mathrm{c}: \mathrm{A} \rightarrow\{0,1\}^{\mathrm{n}}$ be a fixed-length code of A .

Code c is k -error correcting, if the receiver can always determine whether the sent codeword has been disturbed by flipping up to k bits, and is able to restore the sent codeword from the received bit sequence.

Repetition code: A 1-error-correcting code

Let $\mathrm{c}: \mathrm{A} \rightarrow\{0,1\}^{\mathrm{n}}$ be a fixed-length code of A .
Consider the repetition code R3:A $\rightarrow\{0,1\}^{3 n}$ that arises from c by repeating each bit of a codeword three times.
\Rightarrow Code R3 is 1-error-correcting!

Is the repetition code efficient?

Can we do better?

Error-correcting Codes

Let $\mathrm{c}: \mathrm{A} \rightarrow\{0,1\}^{\mathrm{n}}$ be a fixed-length code of A .

Code c is k-error correcting, if the receiver can always determine whether the sent codeword has been disturbed by flipping up to k bits, and is able to restore the sent codeword from the received bit sequence.

Lemma (Error Correction)

A fixed-length code c is k-error correcting iff dist $(\mathrm{c}) \geq 2 \mathrm{k}+1$.

Proof of Lemma (Error Correction)

Let $\mathrm{M}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{i}}\right), \mathrm{k}\right):=\left\{\mathrm{w} \in\{0,1\}^{\mathrm{n}} \mid \operatorname{dist}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{i}}\right), \mathrm{w}\right) \leq \mathrm{k}\right\}$ be the sphere around $c\left(a_{i}\right)$ with radius k.

Then we have:
c is k-error correcting \Leftrightarrow

$$
\forall \mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}} \mathrm{i} \neq \mathrm{j}: \mathrm{M}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{i}}\right), \mathrm{k}\right) \cap \mathrm{M}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{j}}\right), \mathrm{k}\right)=\varnothing
$$

Thus, we need to show:
$\left[\forall \mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}} \mathrm{i} \neq \mathrm{j}: \mathrm{M}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{i}}\right), \mathrm{k}\right) \cap \mathrm{M}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{j}}\right), \mathrm{k}\right)=\varnothing\right] \Leftrightarrow \operatorname{dist}(\mathrm{c}) \geq 2 \mathrm{k}+1$

Proof of Lemma (Error Correction)

To show: $\left[\forall \mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}} \mathrm{i} \neq \mathrm{j}: \mathrm{M}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{i}}\right), \mathrm{k}\right) \cap \mathrm{M}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{j}}\right), \mathrm{k}\right)=\varnothing\right]$ $\Leftrightarrow \operatorname{dist}(\mathrm{c}) \geq 2 \mathrm{k}+1$

" \Rightarrow " (Proof by contraposition)

Assumption: $\operatorname{dist}(\mathrm{c})<2 \mathrm{k}+1$
i.e., $\exists \mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}$ with $\operatorname{dist}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{i}}\right), \mathrm{c}\left(\mathrm{a}_{\mathrm{j}}\right)\right)=\mathrm{d}$ such that $\mathrm{d}<2 \mathrm{k}+1$;

Thus there is a sequence:

$$
c\left(a_{i}\right)=b_{0}, b_{1}, \ldots, b_{k-1}, b_{k}, b_{k+1}, \ldots b_{2 k}=c\left(a_{j}\right)
$$

with $\operatorname{dist}\left(\mathrm{b}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}+1}\right)=0 \operatorname{or} \operatorname{dist}\left(\mathrm{~b}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}+1}\right)=1(\mathrm{i}=0, \ldots, 2 \mathrm{k}-1)$, and so $\mathrm{b}_{\mathrm{k}} \in \mathrm{M}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{i}}\right), \mathrm{k}\right) \cap \mathrm{M}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{j}}\right), \mathrm{k}\right)$.

Proof of Lemma (Error Correction)

To show: $\left[\forall \mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}} \mathrm{i} \neq \mathrm{j}: \mathrm{M}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{i}}\right), \mathrm{k}\right) \cap \mathrm{M}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{j}}\right), \mathrm{k}\right)=\varnothing\right]$

$$
\Leftrightarrow \operatorname{dist}(\mathrm{c}) \geq 2 \mathrm{k}+1
$$

" $\Leftarrow "$ (Proof by contraposition)
Assumption: $\exists \mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}} \mathrm{i} \neq \mathrm{j}: \mathrm{M}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{i}}\right), \mathrm{k}\right) \cap \mathrm{M}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{j}}\right), \mathrm{k}\right) \neq \varnothing$
Thus there is $\mathrm{a} b$ in the intersection such that:

$$
\begin{aligned}
\operatorname{dist}(\mathrm{c}) & \leq \operatorname{dist}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{i}}\right), \mathrm{c}\left(\mathrm{a}_{\mathrm{j}}\right)\right) \\
& \leq \operatorname{dist}\left(\mathrm{c}\left(\mathrm{a}_{\mathrm{i}}\right), \mathrm{b}\right)+\operatorname{dist}\left(\mathrm{b}, \mathrm{c}\left(\mathrm{a}_{\mathrm{j}}\right)\right) \leq \mathrm{k}+\mathrm{k}
\end{aligned}
$$

How many additional bits are required for error correction?

Let $\mathrm{c}: \mathrm{A} \rightarrow\{0,1\}^{\mathrm{m}+\mathrm{r}}$ be a 1 -error-correcting
fixed-length code of A with $|\mathrm{A}|=2^{\mathrm{m}}$.
Theorem (Lower Bound): Then: $\mathrm{r} \geq 1+\left\lfloor\log _{2} \mathrm{~m}\right\rfloor$.

Proof:

We must have $M\left(c\left(a_{1}\right), 1\right) \cap M\left(c\left(a_{2}\right), 1\right)=\varnothing$ for all $a_{1}, a_{2} \in A$ with $a_{1} \neq a_{2}$.
We have $|\mathrm{M}(\mathrm{c}(\mathrm{a}), 1)|=\mathrm{m}+\mathrm{r}+1$ for all $\mathrm{a} \in \mathrm{A}$ (Why?).
$\Rightarrow 2^{\mathrm{m}}(\mathrm{m}+\mathrm{r}+1) \leq 2^{\mathrm{m}+\mathrm{r}}$, from which the claim follows (after simple calculation).

Proof Theorem (Lower Bound)

It remains to show: $m+r+1 \leq 2^{r} \Rightarrow r \geq 1+\left\lfloor\log _{2} m\right\rfloor$
Let $\mathrm{m}=2^{\mathrm{k}}+1$ with $\mathrm{l}, \mathrm{k} \in \mathrm{N}, \mathrm{l} \geq 0$ and k maximal.
(I.e., k, l are chosen such that $\mathrm{k}=\left\lfloor\log _{2} \mathrm{~m}\right\rfloor$).

Then we have:

$$
\begin{aligned}
& \mathrm{m}^{\mathrm{r}+}+1 \leq 2^{\mathrm{r}} \\
\Leftrightarrow & 2^{\mathrm{k}}+1+\mathrm{r}+1 \leq 2^{\mathrm{r}} \\
\Rightarrow & 2^{\mathrm{k}}+1 \leq 2^{\mathrm{r}} \\
\Rightarrow & \mathrm{k}<\mathrm{r} \\
\Leftrightarrow & 1+\mathrm{k} \leq \mathrm{r} \\
\Leftrightarrow & 1+\left\lfloor\log _{2} \mathrm{~m}\right\rfloor \leq \mathrm{r}
\end{aligned}
$$

1-error-correcting Code: Lower Bound

The lower bound from the theorem for the number of additional bits is not always exact. From the proof we can conclude:

Corollary:

Let $\mathrm{c}: \mathrm{A} \rightarrow\{0,1\}^{\mathrm{m}+\mathrm{r}}$ be a 1 -error correcting fixed-length code of A with $|A|=2^{\mathrm{m}}$. Then: $\mathrm{m}+\mathrm{r}+1 \leq 2^{\mathrm{r}}$.

Intuition:

Error-correcting bits must be able to encode the error location (there are $\mathrm{m}+\mathrm{r}$ possible locations) or that there is no error (1 possibility).

The corollary may provide a slightly sharper lower bound for the number of additional bits.

- Example: m = 63 .

The theorem provides $r \geq 6$, with the corollary we get $r \geq 7$.

1-error-correcting Code: Example

Hamming code:

- is a 1 -error-correcting code
- extends non-error-correcting code by r bits;
such that the number of additional bits r is minimal
under the condition $m+r+1 \leq 2^{\mathrm{r}}$,
- and thus corresponds exactly to the condition from the last corollary for the minimum length of a 1-error-correcting code!
\Rightarrow The Hamming code is thus space optimal.

Hamming code: Idea

Extend non-error-correcting code by r additional bits.
Use the bits at positions $2^{0}, 2^{1}, \ldots 2^{\mathrm{r}-1}$ as error-correcting bits. The bit at position 2^{j} checks the bits at those positions whose binary representations are 1 at the j-th digit.

Bit position 2^{j} is chosen so that an even number of the bits at positions whose binary representations are 1 at the j-th digit are set.

Intuition:

Every error-correcting bit contributes a parity test that provides one bit of the binary encoding of the error location.

Hamming code on an example

Input: 0111010100001111

$\rightarrow \mathrm{m}=16, \mathrm{r}=5$

What's the Hamming code of this input?

- The code is extended to 21 bits
- The "power-of-two" positions are used as error-correcting bits (numbering starts on the right with position 1)

$$
01110 \text { _1010000 _111_1__ }
$$

where the bit at position 2^{j} checks the bits at those positions whose binary representations have a 1 in the j-th digit.

Hamming code on an example

	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	bit sequence to encode
3				x	x	1
5			x		x	1
6			x	x		1
7			x	x	x	1
9		x			x	0
10		x		x		0
11		x		x	x	0
12		x	x			0
13		x	x		x	0
14		x	x	x		0
15		x	x	x	x	1
17	x				x	0
18	x			x		1
19	x			x	x	0
20	x		x			0
21	x		x		x	1

The error-correcting bit 2^{j} checks the bits whose encoding have a 1 in the j-th digit.

Hamming code on an example

	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	bit sequence to encode
3				1	1	1
5			1		1	1
6			1	1		1
7			1	1	1	1
9		0			0	0
10		0		0		0
11		0		0	0	0
12		0	0			0
13		1	1		1	1
14		0	0	0		0
15		1	1	1	1	1
17	0				0	0
18	1			1		1
19	1			1	1	1
20	1		1			1
21	0		0		0	0
	1	0	0	0	0	

The error-correcting bit 2^{j} checks the bits whose encoding have a 1 in the j-th digit.

The error-correcting bit is determined as the sum modulo 2 of the corresponding column.

Hamming code on an example

The Hamming code of
0111010100001111
is thus
011101101000001110100

How to find an error?

The Hamming code of
0111010100001111
is thus
011101101000001110100

Assume there is an error in position 13 !
How do we find the error location?

How to find an error?

	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	bit sequence to encode
3				1	1	1
5			1		1	1
6			1	1		1
7			1	1	1	1
9		0			0	0
10		0		0		0
11		0		0	0	0
12		0	0			0
13		0	0		0	0
14		0	0	0		0
15		1	1	1	1	1
17	0				0	0
18	1			1		0
19	1			1	1	1
20	1		1			1
21	0		0		0	1
	1	0	0	0	0	0

Error must be in row $8+4+1=13$!

The columns 8,4 and 1 do not pass the parity check!

Summary

- Basic definitions for codes
- Error detection, Error correction
- Examples: Parity check, Hamming code

