Error Detection and Correction

Becker/Molitor, Chapter 13

Jan Reineke Universität des Saarlandes

Error Detection and Correction

System Architecture, Jan Reineke

Overview: Codes for Error Detection and Correction

- Motivation
- Codes
- Error Detection
 - general results
 - Example of a 1-error-detecting code: Parity code
- Error Correction
 - general results
 - Example of a 1-error-correcting code: Hamming code

Transmission and storage errors

→ Information storage and transfer must be exact

Problems: noise, crosstalk, attenuation
→ There is no exact data transfer or data storage
→ Goal: Coding that is robust against disturbances

Binary codes

Let $A=\{a_1,...,a_m\}$ be a finite alphabet of size m.

A mapping $c : A \rightarrow \{0,1\}^*$ is called **code**, if c is injective.

The set $c(A) := \{ c(a) \mid a \in A \}$ is the set of **codewords**.

A code $c : A \rightarrow \{0,1\}^n$ is called **fixed-length code.**

What is the minimum length n of a fixed-length code for a set A?

Binary codes

What is the minimum length n of a fixed-length code for a set A?

For a fixed-length code $c : A \rightarrow \{0,1\}^n$ we have: $n \ge \lceil \log_2 m \rceil$.

If $n = \lfloor \log_2 m \rfloor + r$ with r > 0, then the r additional bits can be used to **detect** and **correct errors**.

Motivation: Transmission errors + storage errors

A transmission error (storage error) of a word from {0, 1}* occurs if the received bit sequence differs from the sent (stored) bit sequence.

Transmission error = Flipping of individual bits $(0 \rightarrow 1, 1 \rightarrow 0)$

Transmission errors increase the (Hamming) distance dist(v,w) between the send bit sequence v and the received bit sequence w. The (Hamming) distance of two bit sequences is the number of places in which the two bit sequences differ.

Hamming distance: Example

dist(00001101,10001100) = *2*

dist(00001101,00001101) = *0*

A transmission error is called **simple**, if dist(v,w)=1.

Error-detecting Codes

Let $c : A \rightarrow \{0,1\}^n$ be a fixed-length code of A.

The code **c** is **k-error detecting**, if the receiver can always determine whether the sent codeword has been disturbed by flipping up to k bits.

The minimal distance

dist(c) := min {dist(c(a_i), c(a_j)) | $a_i, a_j \in A$ with $a_i \neq a_j$ }

between two codewords is called the code distance.

Lemma (Error Detection)

A fixed-length code c is *k*-error detecting *iff* dist(c) \ge k+1.

Repetition code: A 1-error-detecting code

Let $c : A \rightarrow \{0,1\}^n$ be a fixed-length code of A. Consider the repetition code $R2 : A \rightarrow \{0,1\}^{2n}$ that arises from c by repeating each bit of a codeword twice.

What is R2's code distance?

R2's code distance is 2 \Rightarrow Code R2 is 1-error-detecting!

Is the repetition code efficient?

Can we do better?

Parity code: A 1-error-detecting code

Parity Check:

A bit sequence $w \in \{0,1\}^n$ passes the **parity check**, if the number of bits that are 1 is even.

Parity Code:

Let $c : A \rightarrow \{0,1\}^n$ be a fixed-length code of A. Consider the code $C : A \rightarrow \{0,1\}^{n+1}$ that arises from c by adding one bit to each codeword c(a) so that the new code C(a) passes the parity check.

 \Rightarrow Code C is 1-error-detecting!

Error-correcting Codes

Let $c : A \rightarrow \{0,1\}^n$ be a fixed-length code of A.

Code c is k-error correcting, if the receiver can always determine whether the sent codeword has been disturbed by flipping up to k bits, and is able to restore the sent codeword from the received bit sequence.

Repetition code: A 1-error-correcting code

Let $c : A \rightarrow \{0,1\}^n$ be a fixed-length code of A. Consider the repetition code $R3 : A \rightarrow \{0,1\}^{3n}$ that arises from c by repeating each bit of a codeword three times.

 \Rightarrow Code R3 is 1-error-correcting!

Error-correcting Codes

Let $c : A \rightarrow \{0,1\}^n$ be a fixed-length code of A.

Code c is k-error correcting, if the receiver can always determine whether the sent codeword has been disturbed by flipping up to k bits, and is able to restore the sent codeword from the received bit sequence.

Lemma (Error Correction) A fixed-length code *c* is *k*-error correcting *iff* dist(c) \ge 2k+1.

Proof of Lemma (Error Correction)

Let $M(c(a_i), k) := \{w \in \{0,1\}^n \mid dist(c(a_i), w) \le k\}$ be the sphere around $c(a_i)$ with radius k.

Then we have:

c is k-error correcting \Leftrightarrow

 $\forall a_i, a_j \ i \neq j : M(c(a_i),k) \cap M(c(a_j),k) = \emptyset$

Thus, we need to show:

 $[\forall a_i, a_j \ i \neq j : M(c(a_i), k) \cap M(c(a_j), k) = \emptyset] \Leftrightarrow dist(c) \ge 2k+1$

Proof of Lemma (Error Correction)

To show: $[\forall a_i, a_j \ i \neq j : M(c(a_i), k) \cap M(c(a_j), k) = \emptyset]$ $\Leftrightarrow dist(c) \ge 2k+1$

" \Rightarrow " (Proof by contraposition)

Assumption: dist(c) < 2k+1 i.e., $\exists a_i, a_j$ with dist(c(a_i),c(a_j)) = d such that d < 2k+1; Thus there is a sequence: $c(a_i) = b_0, b_1, ..., b_{k-1}, b_k, b_{k+1}, ..., b_{2k} = c(a_j)$ with dist(b_i, b_{i+1}) = 0 or dist(b_i, b_{i+1}) = 1 (i=0,...,2k-1), and so $b_k \in M(c(a_i),k) \cap M(c(a_j),k)$.

Proof of Lemma (Error Correction)

To show: $[\forall a_i, a_j \ i \neq j : M(c(a_i), k) \cap M(c(a_j), k) = \emptyset]$ $\Leftrightarrow dist(c) \ge 2k+1$

"⇐" (Proof by contraposition)

Assumption: $\exists a_i, a_j \ i \neq j : M(c(a_i), k) \cap M(c(a_j), k) \neq \emptyset$ Thus there is a b in the intersection such that: $dist(c) \leq dist(c(a_i), c(a_j)) \leq dist(c(a_i), b) + dist(b, c(a_i)) \leq k + k$ How many additional bits are required for error correction?

Let $c : A \rightarrow \{0,1\}^{m+r}$ be a 1-error-correcting fixed-length code of A with $|A| = 2^{m}$.

Theorem (Lower Bound): Then: $r \ge 1 + \lfloor \log_2 m \rfloor$.

Proof: We must have $M(c(a_1), 1) \cap M(c(a_2), 1) = \emptyset$ for all $a_1, a_2 \in A$ with $a_1 \neq a_2$. We have |M(c(a),1)| = m+r+1 for all $a \in A$ (Why?). $\Rightarrow 2^m(m+r+1) \le 2^{m+r}$, from which the claim follows (after simple calculation).

Proof Theorem (Lower Bound)

It remains to show: $m+r+1 \le 2^r \implies r \ge 1 + \lfloor \log_2 m \rfloor$

Let $m = 2^k + l$ with $l, k \in \mathbb{N}, l \ge 0$ and k maximal. (I.e., k, l are chosen such that $k = \lfloor \log_2 m \rfloor$). Then we have:

 $m+r+1 \leq 2^{r}$ $\Leftrightarrow 2^{k} + 1 + r + 1 \leq 2^{r}$ $\Rightarrow 2^{k} + 1 \leq 2^{r}$ $\Rightarrow k \leq r$ $\Leftrightarrow 1+k \leq r$ $\Leftrightarrow 1+\lfloor \log_{2} m \rfloor \leq r$

1-error-correcting Code: Lower Bound

The lower bound from the theorem for the number of additional bits is not always exact. From the proof we can conclude:

Corollary: Let $c : A \rightarrow \{0,1\}^{m+r}$ be a 1-error correcting fixed-length code of A with $|A| = 2^m$. Then: $m+r+1 \le 2^r$.

Intuition:

Error-correcting bits must be able to encode the error location (there are m+r possible locations) or that there is no error (1 possibility).

The corollary may provide a slightly sharper lower bound for the number of additional bits.

Example: m = 63.
 The theorem provides r ≥ 6, with the corollary we get r ≥ 7.

1-error-correcting Code: Example

Hamming code:

- is a 1-error-correcting code
- extends non-error-correcting code by r bits; such that the number of additional bits r is minimal under the condition $m + r + 1 \le 2^r$,
- and thus corresponds **exactly** to the condition from the last corollary for the **minimum length** of a 1-error-correcting code!

\Rightarrow The Hamming code is thus space optimal.

Hamming code: Idea

Extend non-error-correcting code by **r** additional bits.

Use the bits at positions 2^0 , 2^1 , ... 2^{r-1} as error-correcting bits. The bit at position 2^j checks the bits at those positions whose binary representations are 1 at the *j*-th digit.

Bit position 2^j is chosen so that an even number of the bits at positions whose binary representations are 1 at the *j*-th digit are set.

Intuition:

Every error-correcting bit contributes a parity test that provides one bit of the binary encoding of the error location.

Input: 0111 0101 0000 1111 → m = 16, r = 5

What's the Hamming code of this input?

- The code is extended to 21 bits
- The "power-of-two" positions are used as error-correcting bits (numbering starts on the right with position 1) 0 1110_101 0000_111_1__

where the bit at position 2^{j} checks the bits at those positions whose binary representations have a 1 in the *j*-th digit.

	24	2 ³	2 ²	21	20	bit sequence to encode
3				X	Х	1
5			Х		Х	1
6			X	X		1
7			Х	Х	Х	1
9		Х			Х	0
10		Х		Х		0
11		Х		Х	Х	0
12		Х	Х			0
13		Х	Х		Х	1
14		Х	Х	X		0
15		Х	X	X	X	1
17	Х				Х	0
18	Х			Х		1
19	х			X	X	1
20	х		X			1
21	х		Х		Х	0

The error-correcting bit 2^j checks the bits whose encoding have a 1 in the *j*-th digit.

_								
		24	2 ³	22	21	20	bit sequence to encode	T1 $(1, 2)$
	3				1	1	1	The error-correcting bit 2 ^j
	5			1		1	1	checks the bits whose encoding
	6			1	1		1	have a 1 in the <i>j</i> -th digit.
	7			1	1	1	1	
	9		0			0	0	The error-correcting bit is
	10		0		0		0	determined as the
	11		0		0	0	0	sum modulo 2 of the
	12		0	0			0	corresponding column.
	13		1	1		1	1	corresponding cordinini.
	14		0	0	0		0	
	15		1	1	1	1	1	
	17	0				0	0	
	18	1			1		1	
	19	1			1	1	1	
	20	1		1			1	
	21	0		0		0	0	
		1						

U

The Hamming code of 0111 0101 0000 1111 is thus 0 1110 1101 0000 0111 0100

How to find an error?

The Hamming code of 0111 0101 0000 1111 is thus 0 1110 1101 0000 0111 0100

Assume there is an error in position 13!

How do we find the error location?

How to find an error?

	24	2 ³	22	21	20	bit sequence to encode	
3				1	1	1	
5			1		1	1	
6			1	1		1	
7			1	1	1	1	
9		0			0	0	
10		0		0		0	
11		0		0	0	0	
12		0	0			0	
13		0	0		0	0	
14		0	0	0		0	Error must be in row
15		1	1	1	1	1	8+4+1=13!
17	0				0	0	0,1,1,1,3,
18	1			1		1	
19	1			1	1	1	
20	1		1			1	
21	0		0		0	0	
	1	0	0	0	0		The columns 8, 4 and 1 do not
		t	Ť		t		the parity check!

Summary

- Basic definitions for codes
- Error detection, Error correction
- Examples: Parity check, Hamming code