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• Codes

• Error Detection
– general results
– Example of a 1-error-detecting code: Parity code

• Error Correction
– general results
– Example of a 1-error-correcting code: Hamming code
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Overview: 
Codes for Error Detection and Correction

Error Detection and Correction



Computers store, process and produce information
à Information storage and transfer must be exact

Problems: noise, crosstalk, attenuation
à There is no exact data transfer or data storage
à Goal: Coding that is robust against disturbances
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Transmission and storage errors
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Let A={a1,...,am} be a finite alphabet of size m.

A mapping c : A ® {0,1}* is called code, if c is injective.

The set c(A) := { c(a) | aÎA } is the set of codewords.

A code c : A ® {0,1}n is called fixed-length code.
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Binary codes

What is the minimum length n of
a fixed-length code for a set A?



For a fixed-length code c : A ® {0,1}n we have: n ³ élog2 mù. 

If n = élog2 mù +r with r > 0, then the r additional bits can be used to
detect and correct errors.
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Binary codes

What is the minimum length n of
a fixed-length code for a set A?



A transmission error (storage error) of a word from {0, 1}* occurs if the
received bit sequence differs from the sent (stored) bit sequence.

Transmission error = Flipping of individual bits (0 ® 1, 1 ® 0)

Transmission errors increase the (Hamming) distance dist(v,w) between
the send bit sequence v and the received bit sequence w. 

The (Hamming) distance of two bit sequences is the number of places in 
which the two bit sequences differ.
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Motivation:
Transmission errors + storage errors
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dist(00001101,10001100) = 2

dist(00001101,00001101) = 0

A transmission error is called simple, if dist(v,w)=1.
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Hamming distance: Example
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Let c : A ® {0,1}n be a fixed-length code of A.
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Error-detecting Codes

Lemma (Error Detection)

A fixed-length code c is k-error detecting iff dist(c) ³ k+1.

The code c is k-error detecting, if the receiver can always determine

whether the sent codeword has been disturbed by flipping up to k bits.

The minimal distance
dist(c) := min {dist(c(ai),c(aj)) | ai,ajÎ A with ai ¹aj }

between two codewords is called the code distance.
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Repetition code: A 1-error-detecting code
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Let c : A ® {0,1}n be a fixed-length code of A.
Consider the repetition code R2 : A ® {0,1}2n that arises
from c by repeating each bit of a codeword twice.

R2’s code distance is 2
Þ Code R2 is 1-error-detecting!

Is the repetition code efficient?

Can we do better?

What is R2’s code distance?



Parity Check:

A bit sequence w Î {0,1}n passes the parity check, 
if the number of bits that are 1 is even.
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Parity code: A 1-error-detecting code
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Parity Code: 

Let c : A ® {0,1}n be a fixed-length code of A.
Consider the code C : A ® {0,1}n+1 that arises
from c by adding one bit to each codeword c(a) so 
that the new code C(a) passes the parity check.
Þ Code C is 1-error-detecting!



Let c : A ® {0,1}n be a fixed-length code of A.
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Error-correcting Codes

Code c is k-error correcting, if the receiver can always
determine whether the sent codeword has been disturbed
by flipping up to k bits, 
and is able to restore the sent codeword from the
received bit sequence.
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Repetition code: A 1-error-correcting code
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Let c : A ® {0,1}n be a fixed-length code of A.
Consider the repetition code R3 : A ® {0,1}3n that arises
from c by repeating each bit of a codeword three times.

Þ Code R3 is 1-error-correcting!

Is the repetition code efficient?

Can we do better?

Why?



Let c : A ® {0,1}n be a fixed-length code of A.

13

Error-correcting Codes

Code c is k-error correcting, if the receiver can always
determine whether the sent codeword has been disturbed
by flipping up to k bits, 
and is able to restore the sent codeword from the
received bit sequence.

Lemma (Error Correction)
A fixed-length code c is k-error correcting iff dist(c) ³ 2k+1.



Let M(c(ai), k) := {w ∈ {0,1}n | dist(c(ai),w) £ k} 
be the sphere around c(ai) with radius k.
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Proof of Lemma (Error Correction)

Thus, we need to show: 

["ai, aj i¹j : M(c(ai),k) Ç M(c(aj),k) = ø] Û dist(c) ³ 2k+1 

Then we have:

c is k-error correcting Û

"ai, aj i¹j : M(c(ai),k) Ç M(c(aj),k) = ø
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“Þ” (Proof by contraposition)

Assumption: dist(c) < 2k+1
i.e., $ai, aj with dist(c(ai),c(aj)) = d such that d < 2k+1; 

Thus there is a sequence: 
c(ai) =b0, b1,..., bk-1, bk, bk+1,...b2k= c(aj)

with dist(bi, bi+1) = 0 or dist(bi, bi+1) = 1 (i=0,...,2k-1),

and so bk Î M(c(ai),k) Ç M(c(aj),k). 
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Proof of Lemma (Error Correction)

To show: ["ai, aj i¹j : M(c(ai),k) Ç M(c(aj),k) = ø]  

Û dist(c) ³ 2k+1 
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“Ü” (Proof by contraposition)

Assumption: ∃ai, aj i¹j : M(c(ai),k) Ç M(c(aj),k) ¹ ø

Thus there is a b in the intersection such that: 

dist(c) £ dist(c(ai), c(aj)) 
£ dist(c(ai), b) + dist(b, c(aj)) £ k + k
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Proof of Lemma (Error Correction)

To show: ["ai, aj i¹j : M(c(ai),k) Ç M(c(aj),k) = ø]  

Û dist(c) ³ 2k+1 
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Let c : A ® {0,1}m+r be a 1-error-correcting 
fixed-length code of A with |A|= 2m.
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How many additional bits are required
for error correction?

Proof:
We must have M(c(a1), 1) Ç M(c(a2), 1) = ø for all a1, a2ÎA with a1¹a2.
We have|M(c(a),1)|=m+r+1 for all aÎA (Why?).
Þ 2m(m+r+1) £ 2m+r, from which the claim follows (after simple calculation).

Theorem (Lower Bound): Then: r ³ 1+ ëlog2 mû.
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It remains to show:  m+r+1 £ 2r Þ r ³ 1+ ëlog2 mû

Let m = 2k + l with l, kÎN, l ³ 0 and k maximal.
(I.e., k, l are chosen such that k = ëlog2 mû).

Then we have:
m+r+1 £ 2r

Û 2k + l + r +1 £ 2r  

Þ 2k + 1 £ 2r

Þ k < r
Û 1+k £ r
Û 1+ ëlog2 mû £ r
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Proof Theorem (Lower Bound)
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The lower bound from the theorem for the number of
additional bits is not always exact. 
From the proof we can conclude:
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1-error-correcting Code: Lower Bound

Corollary:
Let c : A ® {0,1}m+r be a 1-error correcting fixed-length
code of A with |A|= 2m. Then: m+r+1 £ 2r. 
Intuition: 
Error-correcting bits must be able to encode the error location (there
are m+r possible locations) or that there is no error (1 possibility).

The corollary may provide a slightly sharper lower bound for the
number of additional bits.
• Example: m = 63. 

The theorem provides r ³ 6, with the corollary we get r ³ 7.



Hamming code:
• is a 1-error-correcting code

• extends non-error-correcting code by r bits;

such that the number of additional bits r is minimal

under the condition m + r + 1 £ 2r, 

• and thus corresponds exactly to the condition from the last 

corollary for the minimum length of a 1-error-correcting code!
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1-error-correcting Code: Example

Þ The Hamming code is thus space optimal.
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Extend non-error-correcting code by r additional bits.
Use the bits at positions 20, 21, ... 2r-1 as error-correcting bits. 
The bit at position 2j checks the bits at those positions whose
binary representations are 1 at the j-th digit.

Bit position 2j is chosen so that an even number of the bits at 
positions whose binary representations are 1 at the j-th digit
are set.

Intuition:
Every error-correcting bit contributes a parity test that provides
one bit of the binary encoding of the error location.
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Hamming code: Idea
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Input: 0111 0101 0000 1111
è m = 16, r = 5

What‘s the Hamming code of this input?

• The code is extended to 21 bits
• The “power-of-two” positions are used as error-correcting 

bits (numbering starts on the right with position 1)
0 1110 _101 0000 _111 _1__

where the bit at position 2j checks the bits at those positions 
whose binary representations have a 1 in the j-th digit.
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Hamming code on an example
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Hamming code on an example
24 23 22 21 20 bit sequence to encode

3 x x 1

5 x x 1

6 x x 1

7 x x x 1

9 x x 0

10 x x 0

11 x x x 0

12 x x 0

13 x x x 1

14 x x x 0

15 x x x x 1

17 x x 0

18 x x 1

19 x x x 1

20 x x 1

21 x x x 0

The error-correcting bit 2j

checks the bits whose encoding
have a 1 in the j-th digit.
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Hamming code on an example
24 23 22 21 20 bit sequence to encode

3 1 1 1

5 1 1 1

6 1 1 1

7 1 1 1 1

9 0 0 0

10 0 0 0

11 0 0 0 0

12 0 0 0

13 1 1 1 1

14 0 0 0 0

15 1 1 1 1 1

17 0 0 0

18 1 1 1

19 1 1 1 1

20 1 1 1

21 0 0 0 0

The error-correcting bit 2j

checks the bits whose encoding
have a 1 in the j-th digit.

The error-correcting bit is
determined as the
sum modulo 2 of the
corresponding column.
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The Hamming code of

0111 0101 0000 1111
is thus

0 1110 1101 0000 0111 0100
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Hamming code on an example
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The Hamming code of

0111 0101 0000 1111
is thus

0 1110 1101 0000 0111 0100
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How to find an error?

Assume there is an error in position 13!

Error Detection and Correction

How do we find the error location?
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How to find an error?
24 23 22 21 20 bit sequence to encode

3 1 1 1

5 1 1 1

6 1 1 1

7 1 1 1 1

9 0 0 0

10 0 0 0

11 0 0 0 0

12 0 0 0

13 0 0 0 0

14 0 0 0 0

15 1 1 1 1 1

17 0 0 0

18 1 1 1

19 1 1 1 1

20 1 1 1

21 0 0 0 0

1 0 0 0 0 The columns 8, 4 and 1 do not pass
the parity check!

Error must be in row
8+4+1=13!



• Basic definitions for codes
• Error detection, Error correction
• Examples: Parity check, Hamming code
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Summary
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