
Memory Virtualization:
Paging: Summary

Jan Reineke
Universität des Saarlandes

System Architecture, Jan Reineke 1Memory Virtualization: Summary



Transparency
• Processes are not aware that memory is shared
• Works regardless of number and/or location of processes

Protection
• Integrity: Cannot corrupt OS or other processes
• Privacy/confidentiality: Cannot read data of other processes 

Efficiency
• Do not waste memory resources (minimize fragmentation)

Sharing
• Cooperating processes can share portions of address space

System Architecture, Jan Reineke 2

Goals of Memory Virtualization

Memory Virtualization: Summary



Idea: Divide address spaces into fixed-size pages and 
physical memory into fixed-size page frames of the 
same size
• Eliminates external fragmentation
• Allows sharing of pages across processes
• Mapping under OS control: 

provides protection

System Architecture, Jan Reineke 3

Basic idea: Paging

ph
ys

ic
al

 m
em

or
y

Process 3
Process 1

Process 2
(Virtual) address spaces



0. Internal fragmentation: 
Wasted memory grows with larger pages

1. Substantial storage for page tables

• Simple page table: one entry for each page in 
address space, even if not allocated

2. Additional memory access to page table upon every memory access 

3. Size of physical memory limits memory allocation

System Architecture, Jan Reineke 4

Disadvantages of “naive” paging

Memory Virtualization: Paging

Solution: Multi-level page tables

Solution: Translation lookaside buffers (TLBs)

Solution: Swapping to disk



5

1. Multi-level page tables

Goal: Allow each page table to be allocated non-contiguously
Idea: Hierarchical page tables

– Several translation levels, inner tables stored in pages
– Only allocate page tables for pages in use
– Used in x86 architectures (hardware can walk known structure)

outer page (8 bits) inner page(10 bits) page offset (12 bits)
30-bit address:

base address



System Architecture, Jan Reineke 6

2. TLB = Translation “Cache”

CPU Memory

memory bus

Page table
Translation

Cache

TLB: Translation Lookaside Buffer

Memory Virtualization: TLBs



Requirements:
–Mechanism to manage location of each page: 

in memory or on disk

– Policy to determine which pages to keep in memory

3. Swapping of unused pages

Memory Virtualization: Summary System Architecture, Jan Reineke 7



Each page in virtual address space maps to one of three locations:
• Phys. memory: Small, fast, expensive
• Disk: Large, slow, cheap
• nowhere (not allocated)

Extend page tables with an extra bit: present
• Permissions (r/w), valid, present
• Page in memory à present = 1
• Page on disk à present = 0

– PTE points to block on disk
– Causes trap into OS when page is referenced: “page fault”

3. Swapping: Mechanisms

Memory Virtualization: Swapping System Architecture, Jan Reineke 8



Goal: Minimize number of page faults
• Page faults require milliseconds to handle 

(reading from disk)
• Implication: OS has plenty of time to make good decision

OS has two decisions:
• Page selection:

When should a page (or pages) on disk 
be brought into memory?
à Demand paging, prefetching, hints

• Page replacement:
Which resident page (or pages) in memory should 
be thrown out to disk?
à OPT, FIFO, LRU
à efficiently implementable: CLOCK

System Architecture, Jan Reineke 9

3. Swapping: Policies

Memory Virtualization: Swapping



Alternatives:

1. Caches associate data with virtual addresses

2. Caches associate data with physical addresses

System Architecture, Jan Reineke 10

Open question: How does cache interact 
with virtual memory?

Virt. 
Cache

CPU TLB
Phys. 

memory
VA VA PA

TLBCPU
Phys. 
Cache

Phys. 
memory

VA PA PA

Memory Virtualization: Summary



Advantage:
No address translation required before cache access

Disadvantages:
• Need to distinguish virtual addresses of different processes

à ASIDs (address space identifiers)
• Aliases due to sharing: two different virtual addresses may map 

to the same physical page
à Change of cache under virtual address A not visible under 
virtual address B
à Possible solution: direct-mapped cache + OS ensures that 
aliases have same index (A and B never in cache at same time)
à massive restriction!

System Architecture, Jan Reineke 11

Option 1: Use virtual addresses

Memory Virtualization: Summary



Advantage:
• No problems with aliases

Disadvantage:
• Must translate address before cache access

Approach: 
“virtually-indexed, physically-tagged” caches

System Architecture, Jan Reineke 12

Option 2: Use physical addresses

Memory Virtualization: Summary



13

Virtually-indexed, physically-tagged

page number

frame number

page offset

page offset

virtual address

physical address

32 bits

Translation

20 bits 12 bits

Observation: Page offset is the same for virtual and physical address
àPick cache parameters, so that page offset bits determine the index

in the cache completely
àUse TLB to translate page number into frame number in parallel

with access to cache set

Memory Virtualization: Summary System Architecture, Jan Reineke



14

Virtually-indexed, physically-tagged

...

B b
b

k s

log2(s) log2(8 � b) s

•

•

•

Tag Index
Block 
offset

Address:

B b
b

k s

log2(s) log2(8 � b)

•

•

•

B b
b

k s

log2(s) log2(8 � b)

•

•

•

Tag Data Block

Tag Data Block

...

Tag Data Block

Cache Set:

B b
b

k s

log2(s) log2(8 � b) s

•

•

•

Tag Data Block

Tag Data Block

...

Tag Data Block

Cache Set:

=?

No: 
Miss!

Yes: 
Hit!

MUX

Data

Translation 
Lookaside

Buffer

Access to tags in cache set can
be performed in parallel with
translation of the tag.

Constraints on cache parameters for this to work?
Assumptions: 
• k is the associativity (Size of individual cache sets)
• b is the block size
• s is the number of cache sets
• Page size (e.g. 4 KB) à page offset (e.g. 12 bits)

à index + block offset ≤ page offset
à log2 s + log2 b ≤ page offset
à log2 s*b ≤ page offset
à s*b ≤ page size (= 2^page offset)
à Capacity / associativity ≤ page size

page number page offset

frame number page offset

page number



1. TLB hit
1. Cache hit upon memory access
2. Cache miss upon memory access

2. TLB miss
1. Cache hit upon first access to page table

1. Cache hit upon second access to page table
1. Cache hit upon memory access
2. Cache miss upon memory access
3. Page fault: OS fetches missing page from disk

2. Cache miss upon second access to page table
1. ...

System Architecture, Jan Reineke 15

Quiz: Possible scenarios upon a memory 
access

Assumption: two-level page table, physically-tagged cache

Memory Virtualization: Summary



• Complex interplay of HW and OS
– TLBs for performance
• parallel access to TLB and cache with virtually-indexed 

cache 

–Multi-level page tables against waste of memory

– Swapping to provide illusion of more available 
memory

System Architecture, Jan Reineke 16

Summary: Paging

Memory Virtualization: Summary


