Memory Virtualization:
Swapping

Motivation

OS goal: Support processes when not enough
physical memory:

* single process with very large address space

* multiple processes with combined address spaces

Programs should be independent of amount of
physical memory

< > Virtual memory

Program

N A
Disk or other

< > Virtual memory

i Code create

Program

N A
Disk or other

Process 1

< > Virtual memory

i Code create

Program

Process 1

What all is in code?

< > Virtual memory

LibA LibB & e Sl et e nne s I ibA | ibB
gLibC Prog SLbC |Prog
Data : :

i Data

Program

Heap

~_

Process 1

Many large libraries,
some of which are rarely/never used

How to avoid wasting physical pages

for rarely used virtual pages?

Virtual memory

o
LibC" Prog |
: Data :

Program

Phys. memory

-

. .
M sssssEsggEsEEEEEEEEEEEEREEEEEEEEEEEEEE -

Process 1

S~ _— Libet [Proy

Virtual memory

Lib o iivD
LibC" Prog |
: Data :

Program

Phys. mer.ory

. .
M sssssEsggEsEEEEEEEEEEEEREEEEEEEEEEEEEE -

Process 1

S~ _— Libet [Proy

Virtual memory

gLibr'. LIUD
iLIbC |Prog access LibB
: Data :

Program

Phys. mer.ory

. .
M sssssEsggEsEEEEEEEEEEEEREEEEEEEEEEEEEE -

Process 1

N __— Libe! [Proy

Virtual memory

Lib - iivD
LibC" Prog |
: Data :

Copy to
Phys. memory

Program

Phys. mer.ory

. .
M sssssEsggEsEEEEEEEEEEEEREEEEEEEEEEEEEE -

Process 1

Once more: Locality

Leverage locality within processes:
* Spatial and temporal

* Processes spend majority of time in small portion
of code

— Estimate: 90% of time in 10% of code

Implication:

* Only small amount of address space must be
resident in physical memory

Memory hierarchy

Speed + Cost

Registers

Cache + TLB

Phys. memory

Disk storage

Virtual memory: Intuition

e Goal:

— OS keeps unreferenced pages on disk

— Process can run when not all pages are loaded into
physical memory

— OS and HW cooperate to provide illusion of large disk
as fast as main memory

* Requirements:

— Mechanism to manage location of each page:
in memory or on disk

— Policy to determine which pages to keep in memory

Virtual memory: Mechanisms

Each page in virtual address space maps to one of three locations:
* Phys. memory: Small, fast, expensive
* Disk: Large, slow, cheap

* nowhere (not allocated)

Extend page tables with an extra bit: present
* Permissions (r/w), valid, present
* Page in memory 2 present = 1

* Page on disk 2 present = 0
— PTE points to block on disk

— Causes trap into OS when page is referenced: “page fault”

Present Bit

Disk

> /

-

Phys. memory

What if we access VPN Oxb?

Virtual memory: Mechanisms

HW and OS cooperate to translate addresses:
1. Hardware checks TLB for virtual address

— if TLB-Hit = address translation is done; page in physical memory
2. If TLB miss

— HW (or OS) “walk” page tables

— Ifpresent = 1, then page in physical memory, add entry in TLB
3. If page fault (present = 0)

— HW generates exception (also “trap”) = OS takes over

— OS selects victim page and
writes victim page out to disk if modified (add dirty bit to PTE)

— OS reads referenced page from disk into memory

— OS updates page table and sets present := 1

— Process continues execution

What should scheduler do?

Mechanism: Precise interrupts

Page fault may occur in middle of instruction:

* At instruction fetch

* At load or store

Requires hardware support for precise interrupts:

* All instructions “before” interrupt generating
instruction are completed; all others are discarded

e Possible difficulties?

— Due to pipelining, later instructions may have already
taken some effect 2 Needs to be reverted

Virtual memory: Policies

Goal: Minimize number of page faults

* Page faults require milliseconds to handle
(reading from disk)

* Implication: OS has plenty of time to make good decision

OS has two decisions:

* Page selection:
When should a page (or pages) on disk
be brought into memory?

e Page replacement:
Which resident page (or pages) in memory should
be thrown out to disk?

Page selection

When should a page be brought from disk into memory?

1. Demand paging: Load pages only upon page faults
— When process starts: No pages are loaded in memory
— Disadvantage: Pay cost of page fault for every newly accessed page

2. Prefetching: Load page before referenced
— OS predicts future accesses and brings pages into memory early
— Works well for some access patterns (e.g. sequential)

— Problems?

3. Hints: Program informs OS about future behavior

Y «

¢)) b))
— “need page soon”, “don’t need page anymore”,
“sequential access pattern”

— Example: madvise () in Unix

madvise - give advice about use of memory

SYNOPSIS top

#include <sys/mman.h>

int madvise(void *addr, size_t length, int advice);

Feature Test Macro Requirements for glibc (see feature test macros(7)):

madvise():
Since glibc 2.19:
_DEFAULT_SOURCE
Up to and including glibc 2.19:
_BSD_SOURCE

DESCRIPTION top

The madvise() system call is used to give advice or directions to the
kernel about the address range beginning at address addr and with
size length bytes. Initially, the system call supported a set of
"conventional" advice values, which are also available on several
other implementations. (Note, though, that madvise() is not
specified in POSIX.) Subsequently, a number of Linux-specific advice
values have been added.

Conventional advice values
The advice values listed below allow an application to tell the
kernel how it expects to use some mapped or shared memory areas, so
that the kernel can choose appropriate read-ahead and caching
techniques. These advice values do not influence the semantics of
the application (except in the case of MADV_DONTNEED), but may
influence its performance. All of the advice values listed here have
analogs in the POSIX-specified posix madvise(3) function, and the
values have the same meanings, with the exception of MADV_DONTNEED.

The advice is indicated in the advice argument, which is one of the
following:

MADV_NORMAL
No special treatment. This is the default.

MADV_RANDOM
Expect page references in random order. (Hence, read ahead
may be less useful than normally.)

MADV_SEQUENTIAL
Expect page references in sequential order. (Hence, pages in
the given range can be aggressively read ahead, and may be
freed soon after they are accessed.)

MADV_WILLNEED
Expect access in the near future. (Hence, it might be a good
idea to read some pages ahead.)

MADV_DONTNEED
Do not expect access in the near future. (For the time being,
the application is finished with the given range, so the
kernel can free resources associated with it.)

Page replacement

Which page in memory should be selected as victim!

1. OPT/BEL: Optimal strategy, requires knowledge
about the future

2. LRU: Replace page not used for longest time in past

3. FIFO: Replace page that has been in memory the
longest

— Advantage: easy to implement

Write page back to disk if it has been modified (dirty = 1)

LRU: Implementation alternatives

In Software:

e OS maintains list of pages, ordered by the time of
their last access

e Upon page access: Move page to front of list
* “Victim selection”: Select last page on list
e Trade off:

— slow upon every memory access,

— fast upon replacement.

Does that make sense?

— Rather not, because (hopefully)
Number of memory accesses >> Number of replacements

LRU: Implementation alternatives

In Hardware:
e Store time of last access for each page
* Upon page access: Store current time in page table

* “Victim selection”: Search page table for oldest timestamp

e Trade off:

— relatively fast upon every memory access,

— slow upon replacement

Better, but also not great.

LRU: Implementation alternatives

In practice: approximate LRU

e LRU approximates optimal replacement anyway,
so why not approximate more

* Goal: Find “old” page,
but not necessarily the oldest

Clock algorithm

Hardwavre:
* Keep use bit for each page frame
e Upon page access: Set use bit to 1

Operating system:
e Page replacement: Look for page with use = 0
* Implementation:

— Keep pointer to last examined page frame

— Traverse pages in circular buffer
— Clear use bits upon traversal

— Stop when find page with already cleared use bit;
replace this page; increment pointer

Clock: Look for a victim page

0]1[2]5].

Memory Virtualization: Swapping System Architecture, Jan Reineke 26

Clock: Look for a victim page

use=0

0l1[2]3].

Memory Virtualization: Swapping System Architecture, Jan Reineke

27

Clock: Look for a victim page

use=0

0l1[2]3].

Memory Virtualization: Swapping System Architecture, Jan Reineke

28

Clock: Look for a victim page

0l1[2]3].

page 2

emory Virtualization: Swapping System Architecture, Jan Reineke

29

Clock: Look for a victim page

use=1

0l1[2]3].

page 2

emory Virtualization: Swapping System Architecture, Jan Reineke

30

Clock: Look for a victim page

0l1[2]3].

page 2

emory Virtualization: Swapping System Architecture, Jan Reineke

Clock: Look for a victim page

0l1[2]3].

Page O

Memory Virtualization: Swapping System Architecture, Jan Reineke

32

Clock: Look for a victim page

use=1

0l1[2]3].

Memory Virtualization: Swapping System Architecture, Jan Reineke

33

Clock: Look for a victim page

0l1[2]3].

Memory Virtualization: Swapping System Architecture, Jan Reineke

34

Clock: Look for a victim page

use=0

0l1[2]5].

Memory Virtualization: Swapping System Architecture, Jan Reineke

35

Clock: Look for a victim page

use=0

0]1[2]5].

Memory Virtualization: Swapping System Architecture, Jan Reineke 36

Clock: Look for a victim page

use=0

0l1[2]3].

Memory Virtualization: Swapping System Architecture, Jan Reineke

37

Clock: Look for a victim page

0l1[2]3].

page 1

Memory Virtualization: Swapping System Architecture, Jan Reineke

38

Summary

Processes can run when
sum of virtual address spaces > amount of physical memory

Mechanism:
* Extend page table entry with present bit
* OS handles page faults by reading in desired page from disk

Policy:
* Page selection: demand paging, prefetching, hints

e Page replacement: Clock as cheap approximation of LRU

