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OS goal: Support processes when not enough 
physical memory:

• single process with very large address space

• multiple processes with combined address spaces

Programs should be independent of amount of 
physical memory
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Motivation
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Leverage locality within processes:
• Spatial and temporal
• Processes spend majority of time in small portion 

of code
– Estimate: 90% of time in 10% of code

Implication:
• Only small amount of address space must be 

resident in physical memory

Once more: Locality
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Memory hierarchy
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Registers

Size
Speed + Cost
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• Goal: 
– OS keeps unreferenced pages on disk
– Process can run when not all pages are loaded into 

physical memory 
– OS and HW cooperate to provide illusion of large disk 

as fast as main memory

• Requirements:
– Mechanism to manage location of each page: 

in memory or on disk
– Policy to determine which pages to keep in memory

Virtual memory: Intuition
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Each page in virtual address space maps to one of three locations:
• Phys. memory: Small, fast, expensive
• Disk: Large, slow, cheap
• nowhere (not allocated)

Extend page tables with an extra bit: present
• Permissions (r/w), valid, present
• Page in memory à present = 1
• Page on disk à present = 0

– PTE points to block on disk
– Causes trap into OS when page is referenced: “page fault”

Virtual memory: Mechanisms
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Present Bit

PFN valid  prot        present
10 1  r-x  1
- 0  -  -
23 1  rw-  0

28 1  rw-  0
4 1  rw-  1

- 0  -  -
- 0  -  -
- 0  -  -
- 0  -  -
- 0  -  -
- 0  -  -
- 0  -  -
- 0  -  -

Phys. memory

Disk

16 1  rw-  1

What if we access VPN 0xb?
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HW and OS cooperate to translate addresses:
1. Hardware checks TLB for virtual address

– if TLB-Hit à address translation is done; page in physical memory

2. If TLB miss
– HW (or OS) “walk” page tables
– If present = 1, then page in physical memory, add entry in TLB

3. If page fault (present = 0)
– HW generates exception (also “trap”) à OS takes over

– OS selects victim page and
writes victim page out to disk if modified (add dirty bit to PTE)

– OS reads referenced page from disk into memory
– OS updates page table and sets present := 1

– Process continues execution 
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Virtual memory: Mechanisms

What should scheduler do?



Page fault may occur in middle of instruction:
• At instruction fetch
• At load or store
Requires hardware support for precise interrupts:
• All instructions “before” interrupt generating 

instruction are completed; all others are discarded
• Possible difficulties?
– Due to pipelining, later instructions may have already 

taken some effect à Needs to be reverted
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Mechanism: Precise interrupts

Memory Virtualization: Swapping



Goal: Minimize number of page faults
• Page faults require milliseconds to handle 

(reading from disk)
• Implication: OS has plenty of time to make good decision

OS has two decisions:
• Page selection:

When should a page (or pages) on disk 
be brought into memory?

• Page replacement:
Which resident page (or pages) in memory should 
be thrown out to disk?
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Virtual memory: Policies
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When should a page be brought from disk into memory?

1. Demand paging: Load pages only upon page faults
– When process starts: No pages are loaded in memory
– Disadvantage: Pay cost of page fault for every newly accessed page

2. Prefetching: Load page before referenced
– OS predicts future accesses and brings pages into memory early
– Works well for some access patterns (e.g. sequential)
– Problems?

3. Hints: Program informs OS about future behavior
– “need page soon”, “don’t need page anymore”, 

“sequential access pattern”
– Example: madvise() in Unix
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Page selection
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madvise()
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Which page in memory should be selected as victim?

1. OPT/BEL: Optimal strategy, requires knowledge 
about the future

2. LRU: Replace page not used for longest time in past

3. FIFO: Replace page that has been in memory the 
longest
– Advantage: easy to implement

Write page back to disk if it has been modified (dirty = 1)
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Page replacement
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In Software:

• OS maintains list of pages, ordered by the time of 
their last access

• Upon page access: Move page to front of list

• “Victim selection”: Select last page on list

• Trade off: 

– slow upon every memory access, 
– fast upon replacement.

22

LRU: Implementation alternatives

Does that make sense?
à Rather not, because (hopefully) 

Number of memory accesses >> Number of replacements



In Hardware:

• Store time of last access for each page

• Upon page access: Store current time in page table
• “Victim selection”: Search page table for oldest timestamp

                                                     

• Trade off:

– relatively fast upon every memory access,
– slow upon replacement
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LRU: Implementation alternatives
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Better, but also not great.



In practice: approximate LRU

• LRU approximates optimal replacement anyway,
so why not approximate more

• Goal: Find “old” page, 
        but not necessarily the oldest
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LRU: Implementation alternatives
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Hardware:
• Keep use bit for each page frame
• Upon page access: Set use bit to 1

Operating system:
• Page replacement: Look for page with use = 0
• Implementation:
– Keep pointer to last examined page frame
– Traverse pages in circular buffer
– Clear use bits upon traversal
– Stop when find page with already cleared use bit;

replace this page; increment pointer
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Clock algorithm
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Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=1 use=1 use=0 use=1

clock pointer
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Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=0 use=0 use=0 use=1

clock pointer

Evict page 2 because it has not been used recently.
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Clock: Look for a victim page

0 1 2 3 …Phys. memory:
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clock pointer



Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=0 use=0 use=1 use=1

Page 0 is accessed.
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clock pointer
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Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=0 use=0 use=0 use=0

clock pointer

Evict page 1 because it has not been used recently.
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Processes can run when 
sum of virtual address spaces > amount of physical memory

Mechanism:
• Extend page table entry with present bit
• OS handles page faults by reading in desired page from disk

Policy:
• Page selection: demand paging, prefetching, hints
• Page replacement: Clock as cheap approximation of LRU
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Summary
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