
Memory Virtualization:
Swapping

OSTEP Chapters 21+22:
http://pages.cs.wisc.edu/~remzi/OSTEP/vm-beyondphys.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/vm-beyondphys-policy.pdf

Jan Reineke
Universität des Saarlandes

System Architecture, Jan Reineke 1
Memory Virtualization:
Swapping

OS goal: Support processes when not enough
physical memory:

• single process with very large address space

• multiple processes with combined address spaces

Programs should be independent of amount of
physical memory

System Architecture, Jan Reineke 2

Motivation

Memory Virtualization: Swapping

Code
Data

Program

Virtual memory

Disk or other
persistent memory

Memory Virtualization: Swapping System Architecture, Jan Reineke 3

Code
Data

Program

Virtual memory

Code
Data
Heap

Stack
Process 1

create

Disk or other
persistent memory

Memory Virtualization: Swapping System Architecture, Jan Reineke 4

Code
Data

Program

Code
Data
Heap

Stack
Process 1

create

What all is in code?

Virtual memory

Memory Virtualization: Swapping System Architecture, Jan Reineke 5

Data

Program

LibA LibB
ProgLibC

create

Data
Heap

Stack
Process 1

LibA LibB
ProgLibC

Many large libraries,
some of which are rarely/never used

Virtual memory

How to avoid wasting physical pages
for rarely used virtual pages?

Memory Virtualization: Swapping System Architecture, Jan Reineke 6

Data

Program

LibA LibB
ProgLibC Data

Heap

Stack
Process 1

LibA LibB
ProgLibC

Virtual memory

Phys. memory

ProgLibC

Memory Virtualization: Swapping System Architecture, Jan Reineke 7

Data

Program

LibA LibB
ProgLibC Data

Heap

Stack
Process 1

LibA LibB
ProgLibC

Virtual memory

Phys. memory

ProgLibC

Memory Virtualization: Swapping System Architecture, Jan Reineke 8

Data

Program

LibA LibB
ProgLibC Data

Heap

Stack
Process 1

LibA LibB
ProgLibC

Virtual memory

Phys. memory

ProgLibC

access LibB

Memory Virtualization: Swapping System Architecture, Jan Reineke 9

Data

Program

LibA
ProgLibC Data

Heap

Stack
Process 1

LibA LibB
ProgLibC

Virtual memory

Phys. memory

ProgLibC

Copy to
Phys. memory

LibB

LibB

Memory Virtualization: Swapping System Architecture, Jan Reineke 10

Leverage locality within processes:
• Spatial and temporal
• Processes spend majority of time in small portion

of code
– Estimate: 90% of time in 10% of code

Implication:
• Only small amount of address space must be

resident in physical memory

Once more: Locality

Memory Virtualization: Swapping System Architecture, Jan Reineke 11

Memory hierarchy

Disk storage

Phys. memory

Cache + TLB

Registers

Size
Speed + Cost

Memory Virtualization: Swapping System Architecture, Jan Reineke 12

• Goal:
– OS keeps unreferenced pages on disk
– Process can run when not all pages are loaded into

physical memory
– OS and HW cooperate to provide illusion of large disk

as fast as main memory

• Requirements:
– Mechanism to manage location of each page:

in memory or on disk
– Policy to determine which pages to keep in memory

Virtual memory: Intuition

Memory Virtualization: Swapping System Architecture, Jan Reineke 13

Each page in virtual address space maps to one of three locations:
• Phys. memory: Small, fast, expensive
• Disk: Large, slow, cheap
• nowhere (not allocated)

Extend page tables with an extra bit: present
• Permissions (r/w), valid, present
• Page in memory à present = 1
• Page on disk à present = 0

– PTE points to block on disk
– Causes trap into OS when page is referenced: “page fault”

Virtual memory: Mechanisms

Memory Virtualization: Swapping System Architecture, Jan Reineke 14

Present Bit

PFN valid prot present
10 1 r-x 1
- 0 - -
23 1 rw- 0

28 1 rw- 0
4 1 rw- 1

- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -
- 0 - -

Phys. memory

Disk

16 1 rw- 1

What if we access VPN 0xb?
Memory Virtualization: Swapping System Architecture, Jan Reineke 15

HW and OS cooperate to translate addresses:
1. Hardware checks TLB for virtual address

– if TLB-Hit à address translation is done; page in physical memory

2. If TLB miss
– HW (or OS) “walk” page tables
– If present = 1, then page in physical memory, add entry in TLB

3. If page fault (present = 0)
– HW generates exception (also “trap”) à OS takes over

– OS selects victim page and
writes victim page out to disk if modified (add dirty bit to PTE)

– OS reads referenced page from disk into memory
– OS updates page table and sets present := 1

– Process continues execution

16

Virtual memory: Mechanisms

What should scheduler do?

Page fault may occur in middle of instruction:
• At instruction fetch
• At load or store
Requires hardware support for precise interrupts:
• All instructions “before” interrupt generating

instruction are completed; all others are discarded
• Possible difficulties?
– Due to pipelining, later instructions may have already

taken some effect à Needs to be reverted

System Architecture, Jan Reineke 17

Mechanism: Precise interrupts

Memory Virtualization: Swapping

Goal: Minimize number of page faults
• Page faults require milliseconds to handle

(reading from disk)
• Implication: OS has plenty of time to make good decision

OS has two decisions:
• Page selection:

When should a page (or pages) on disk
be brought into memory?

• Page replacement:
Which resident page (or pages) in memory should
be thrown out to disk?

System Architecture, Jan Reineke 18

Virtual memory: Policies

Memory Virtualization: Swapping

When should a page be brought from disk into memory?

1. Demand paging: Load pages only upon page faults
– When process starts: No pages are loaded in memory
– Disadvantage: Pay cost of page fault for every newly accessed page

2. Prefetching: Load page before referenced
– OS predicts future accesses and brings pages into memory early
– Works well for some access patterns (e.g. sequential)
– Problems?

3. Hints: Program informs OS about future behavior
– “need page soon”, “don’t need page anymore”,

“sequential access pattern”
– Example: madvise() in Unix

System Architecture, Jan Reineke 19

Page selection

Memory Virtualization: Swapping

System Architecture, Jan Reineke 20

madvise()

Memory Virtualization: Swapping

Which page in memory should be selected as victim?

1. OPT/BEL: Optimal strategy, requires knowledge
about the future

2. LRU: Replace page not used for longest time in past

3. FIFO: Replace page that has been in memory the
longest
– Advantage: easy to implement

Write page back to disk if it has been modified (dirty = 1)

System Architecture, Jan Reineke 21

Page replacement

Memory Virtualization: Swapping

In Software:

• OS maintains list of pages, ordered by the time of
their last access

• Upon page access: Move page to front of list

• “Victim selection”: Select last page on list

• Trade off:

– slow upon every memory access,
– fast upon replacement.

22

LRU: Implementation alternatives

Does that make sense?
à Rather not, because (hopefully)

Number of memory accesses >> Number of replacements

In Hardware:

• Store time of last access for each page

• Upon page access: Store current time in page table
• “Victim selection”: Search page table for oldest timestamp

• Trade off:

– relatively fast upon every memory access,
– slow upon replacement

23

LRU: Implementation alternatives

Memory Virtualization: Swapping System Architecture, Jan Reineke

Better, but also not great.

In practice: approximate LRU

• LRU approximates optimal replacement anyway,
so why not approximate more

• Goal: Find “old” page,
 but not necessarily the oldest

24

LRU: Implementation alternatives

Memory Virtualization: Swapping System Architecture, Jan Reineke

Hardware:
• Keep use bit for each page frame
• Upon page access: Set use bit to 1

Operating system:
• Page replacement: Look for page with use = 0
• Implementation:
– Keep pointer to last examined page frame
– Traverse pages in circular buffer
– Clear use bits upon traversal
– Stop when find page with already cleared use bit;

replace this page; increment pointer

System Architecture, Jan Reineke 25

Clock algorithm

Memory Virtualization: Swapping

Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=1 use=1 use=0 use=1

clock pointer

Memory Virtualization: Swapping System Architecture, Jan Reineke 26

Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=0 use=1 use=0 use=1

clock pointer

Memory Virtualization: Swapping System Architecture, Jan Reineke 27

Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=0 use=0 use=0 use=1

clock pointer

Memory Virtualization: Swapping System Architecture, Jan Reineke 28

Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=0 use=0 use=0 use=1

clock pointer

Evict page 2 because it has not been used recently.

Memory Virtualization: Swapping System Architecture, Jan Reineke 29

Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=0 use=0 use=1 use=1

clock pointer

Evict page 2 because it has not been used recently.

Memory Virtualization: Swapping System Architecture, Jan Reineke 30

Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=0 use=0 use=1 use=1

Evict page 2 because it has not been used recently.

Memory Virtualization: Swapping System Architecture, Jan Reineke 31

clock pointer

Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=0 use=0 use=1 use=1

Page 0 is accessed.

Memory Virtualization: Swapping System Architecture, Jan Reineke 32

clock pointer

Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=1 use=0 use=1 use=1

Memory Virtualization: Swapping System Architecture, Jan Reineke 33

clock pointer

Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=1 use=0 use=1 use=1

Memory Virtualization: Swapping System Architecture, Jan Reineke 34

clock pointer

Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=1 use=0 use=1 use=0

clock pointer

Memory Virtualization: Swapping System Architecture, Jan Reineke 35

Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=1 use=0 use=1 use=0

clock pointer

Memory Virtualization: Swapping System Architecture, Jan Reineke 36

Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=0 use=0 use=1 use=0

clock pointer

Memory Virtualization: Swapping System Architecture, Jan Reineke 37

Clock: Look for a victim page

0 1 2 3 …Phys. memory:

use=0 use=0 use=0 use=0

clock pointer

Evict page 1 because it has not been used recently.

Memory Virtualization: Swapping System Architecture, Jan Reineke 38

Processes can run when
sum of virtual address spaces > amount of physical memory

Mechanism:
• Extend page table entry with present bit
• OS handles page faults by reading in desired page from disk

Policy:
• Page selection: demand paging, prefetching, hints
• Page replacement: Clock as cheap approximation of LRU

System Architecture, Jan Reineke 39

Summary

Memory Virtualization: Swapping

