Memory Virtualization:
Smaller Page Tables

Paging: Pros and Cons

Advantages:
* No external fragmentation:
— free memory does not have to be allocated contiguously

o All free (unallocated) pages are “equal”:
— easy to manage, allocate, and free pages

Disadvantages:
* Too slow: = TLBs
— every virtual” memory access results in two physical ones

* Page table are too big: (now)
— one entry for every page of address space

Quiz: How big are page tables?

PTE = page table entry

1. PTEs are 2 bytes, and 32 possible virtual page numbers
- 2 * 32 bytes = 64 bytes

2. PTEs are 2 bytes, virt. addresses: 24 bits, pages are 16 bytes
2> 2% 2 bytes =2 * 220=2 MB

3. PTEs are 4 bytes, virt. addresses: 32 bits, pages are 4 KB
> 4* 2212 bytes = 4 * 220 = 4 MB

4. PTEs are 4 bytes, virt. addresses: 64 bits, pages are 4 KB
> 4% 26412 bytes = 25¢ B = 24 TB

How big is each page table!?

Woaste!

Memory Virtualization: Smaller Page Tables

System Architecture, Jan Reineke

Many invalid page table entries

10 1 -X
- 0
23 1 rw-
_ - 0
0
0
0
...many more invalid entries...
- 0
- 0
- 0
- - 0
28 1 rw-
4 1 rw-

Avoid linear page table

Approach:

Use hierarchical data structure instead of “flat” array

Any data structure is possible with software-managed

TLB:

« HW looks for VPN on every memory access

* [f TLB does not contain VPN, TLB miss
I. HW generates exception, traps into OS
2. OS finds PPN for given VPN
3. OS enters PPN -> VPN into TLB
4.

Instruction that generated TLB miss is repeated
(“exception return” without change of “epc” in MIPS)

Approaches

Approaches

Observation:

Valid PTEs are contiguous

10 1 -X
: 0 .
)3 X - Idea: |
- 0 Combine
8 segmentation
0 and paging
...many more invalid entries...
0
0
0
- .0
28 1 rw-
4 1 I'W-

1. Combine paging and segmentation

Divide address space into segments (code, heap, stack)

* Segments can be variable length
Divide each segment into fixed-size pages

Virtual address divided into three portions:

Implementation: per segment

e Each segment has a page table (only as large as necessary)
* Base address and size of page table

Memory Virtualization: Smaller Page Tables System Architecture, Jan Reineke 13

Quiz: Paging and segmentation

Seg | Base

Bounds

RW

0 0x002000 | Oxff

10

0x01f

1 0x000000 | 0x00

00

0x011

2 0x001000 | 0x0f

0x002070
0x202016
0x104c84
0x010424
0x210014
0x203568

read:
read:
read:
write:
write:

read:

11

0x003

0x02a

0x013

0x00c

0x007

0x004

0x00b

0x006

0x001000

0x002000

14

Advantages of paging and segmentation

Advantages of segments

* Supports sparse address spaces
— decreases sizes of page tables
— no need for page table if segment not used

Advantages of paging
* no external fragmentation
* segments can grow without any reshuffling

* can run process when some pages are swapped to disk (later)

Advantages of both

* Increases flexibility of sharing
— share either single page or entire segment

Disadvantages of paging and
segmentation

Potentially large page tables (for each segment)

* Must allocate each page table contiguously

Approaches

2. Multi-level page tables

Goal: Allow each page table to be allocated non-contiguously

Idea: Hierarchical page tables
— Several translation levels, inner tables stored in pages
— Only allocate page tables for pages in use
— Used in x86 architectures (hardware can walk known structure)

30-bit address:

Quiz: Multi-level page table

Page directory @PPN:0x3 @PPN:0x92
PPN valid PPN el PPN valid

0x3 1 0x10 1 > 0

0 0x23 1 0

0 - 0 0

0 - 0 0

0 0x80 1 0

0 0x59 1 0

0 - 0 0

. 0 0 - 0

0x92 1 0 0x55 1

O0x45 1

20-bit address: ’

inner page
(4 bits)

_ 19

Quiz: Address format for multi-level paging

30-bit address:

_ inner page page offset (12 bits)

How should virtual addresses be structured?
— How many bits for each paging level?

Goal?

— Each page table fits within a page

— PTE size * number of PTEs = page size
e Assume: PTE size = 4 bytes
* Page size = 212 byte = 4 KB
e 22 byte * number of PTEs= 2212 bytes
= number of PTEs (per inner page table) = 2210

—> #bits for selecting inner page = 10
Remaining bits for outer page:
— 30 - 10 - 12 = 8 bits

Problem with 2 levels?

Problem: page directory (outer level) may not fit in

a page
64-bit address:

(10 bits)

olution: Additional translation levels

Memory Virtualization: Smaller Page Tables System Architecture, Jan Reineke

Size of the virtual address space

Quiz: How much space is “used” by a

multi-level page table in memory?
Example: 32-bit address:

PTE size 4 Byte

How much memory is required minimally for a
multi-level page table!?

2/°10*4 bytes = 4 KB for outer page table
+ 2/°10%4 bytes = 4 KB for one inner page table

How much memory is required maximally for a

multi-level page table!?

2/°10*4 bytes = 4 KB for outer page table
+ 270271074 bytes = 4 MB for 1024 inner page tables

Memory Virtualization: Smaller Page Tables System Architecture, Jan Reineke

Quiz: Full system with TLBs

On TLB miss: lookups with more levels more expensive

How much does a miss cost?

Assumptions:

o 3-level page table

e 256-byte pages

e 16-bit addresses

e ASID of current process is 211

ASID [VPN | PFN | Valid
211 OxBB [0x91 |1
211 OxFF |0x23 |1
122 Ox05 |0x91 |1
211 Ox05 |O0x12 |0

How many physical accesses for each instruction! (Ignore previous ops changing TLB)

(a) OxAA10: movl 0x1111, %edi

(b) 0xBB13: addl $0x3, %edi

(c) 0x0519: movl %edi, OxFF10

Summary:
Better page tables

Problem:

Simple linear page tables require too much memory

Many options for efficiently organizing page tables

If OS traps on TLB miss, OS can use any data structure

If HW handles TLB miss, page tables must follow
specific format:

* Multi-level page tables used in x86 architecture
* Each page table fits within a page

