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Advantages:
• No external fragmentation:
– free memory does not have to be allocated contiguously

• All free (unallocated) pages are “equal”:
– easy to manage, allocate, and free pages

Disadvantages:
• Too slow: à TLBs 
– every “virtual” memory access results in two physical ones

• Page table are too big: (now)
– one entry for every page of address space
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Paging: Pros and Cons
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PTE = page table entry
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Quiz: How big are page tables?

1. PTEs are 2 bytes, and 32 possible virtual page numbers

2. PTEs are 2 bytes, virt. addresses: 24 bits, pages are 16 bytes

3. PTEs are 4 bytes, virt. addresses: 32 bits, pages are 4 KB

4. PTEs are 4 bytes, virt. addresses: 64 bits, pages are 4 KB

How big is each page table?

à 2 * 32 bytes = 64 bytes

à 2 * 224-4 bytes = 2 * 220 = 2 MB

à 4 * 232-12 bytes = 4 * 220 = 4 MB

à 4 * 264-12 bytes = 254 B = 214 TB
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Waste!

Code
heap

stack

Virtual address space Physical address space

Waste!
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Many invalid page table entries

VPN valid protection 
10  1  r-x 
-  0  - 
23  1  rw- 
-  0  - 
-  0  - 
-  0  - 
-  0  - 

-  0  - 
-  0  - 
-  0  - 
-  0  - 
28  1  rw- 
4  1  rw- 

…many more invalid entries…How to avoid 
storing these?
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Any data structure is possible with software-managed 
TLB:
• HW looks for VPN on every memory access
• If TLB does not contain VPN, TLB miss

1. HW generates exception, traps into OS
2. OS finds PPN for given VPN
3. OS enters PPN -> VPN into TLB
4. Instruction that generated TLB miss is repeated 

(“exception return” without change of “epc” in MIPS) 
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Avoid linear page table

Approach: 
Use hierarchical data structure instead of “flat” array
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1. Segmented page tables

2. Multi-level page tables
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Approaches
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1. Segmented page tables

2. Multi-level page tables
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Approaches
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Observation: 
Valid PTEs are contiguous

VPN valid protection 
10  1  r-x 
-  0  - 
23  1  rw- 
-  0  - 
-  0  - 
-  0  - 
-  0  - 

-  0  - 
-  0  - 
-  0  - 
-  0  - 
28  1  rw- 
4  1  rw- 

…many more invalid entries…How to avoid 
storing these?

Idea:
Combine 
segmentation
and paging
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Divide address space into segments (code, heap, stack)

• Segments can be variable length

Divide each segment into fixed-size pages

Virtual address divided into three portions:

System Architecture, Jan Reineke 13

1. Combine paging and segmentation

page offset (12 bits)page number (8 bits)
segment no.

(4 bits)

Implementation: per segment
• Each segment has a page table (only as large as necessary)
• Base address and size of page table
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Quiz: Paging and segmentation

Seg Base Bounds R W

0 0x002000 0xff 1 0

1 0x000000 0x00 0 0

2 0x001000 0x0f 1 1

...

0x01f

0x011

0x003

0x02a

0x013

...

0x00c

0x007

0x004

0x00b

0x006

...

0x001000

0x002000

0x002070 read:
0x202016 read:
0x104c84 read:
0x010424 write:
0x210014 write:
0x203568 read:

0x004070

0x003016
error

error

error

0x02a568

page offset (12 bits)page number (8 bits)
segment no.

(4 bits)



Advantages of segments
• Supports sparse address spaces

– decreases sizes of page tables
– no need for page table if segment not used

Advantages of paging
• no external fragmentation
• segments can grow without any reshuffling
• can run process when some pages are swapped to disk (later)

Advantages of both
• Increases flexibility of sharing

– share either single page or entire segment
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Advantages of paging and segmentation
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Potentially large page tables (for each segment)

• Must allocate each page table contiguously
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Disadvantages of paging and 
segmentation
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1. Segmented page tables

2. Multi-level page tables
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Approaches
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2. Multi-level page tables

Goal: Allow each page table to be allocated non-contiguously
Idea: Hierarchical page tables

– Several translation levels, inner tables stored in pages
– Only allocate page tables for pages in use
– Used in x86 architectures (hardware can walk known structure)

outer page (8 bits) inner page (10 bits) page offset (12 bits)
30-bit address:

base address
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Quiz: Multi-level page table

PPN
0x3

-
-
-
-
-
-
-
-
-
-
-
-
-

0x92

valid
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1

Page directory
PPN
0x10
0x23
 -
 -
0x80
0x59
 -
 -
 -
 -
 -
 -
 -
 -
 -
-

valid
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0

@PPN:0x3
PPN
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
-

 0x55
 0x45

valid
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

Translate 0x01ABC

outer page
(4 bits)

inner page
(4 bits) page offset (12 bits)

20-bit address:

Translate 0xFEED0

Translate 0x00000

0x23ABC

0x10000

0x55ED0

@PPN:0x92
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Quiz: Address format for multi-level paging

How should virtual addresses be structured?
– How many bits for each paging level?

Goal?  
– Each page table fits within a page
– PTE size * number of PTEs = page size

• Assume: PTE size = 4 bytes
• Page size = 2^12 byte = 4 KB
• 2^2 byte *  number of PTEs= 2^12 bytes
à number of PTEs (per inner page table) = 2^10

à #bits for selecting inner page = 10
Remaining bits for outer page: 

– 30 – 10 – 12 = 8 bits

outer page inner page page offset (12 bits)
30-bit address:
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Problem: page directory (outer level) may not fit in 
a page

Solution: Additional translation levels
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Problem with 2 levels?

outer page
(42 bits?)

inner page
(10 bits)

page offset (12 bits)

64-bit address:

PT idx page offsetPD idx 1

VPN

PD idx 0
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Size of the virtual address space

How large is the virtual address space with 4 KB pages, 
 4 byte PTEs, every page table fits into a page?

4KB / 4 bytes à 1K entries per level
1 level: 1K * 4K = 2^22 = 4 MB

2 level: 1K * 1K * 4K = 2^32 ≈ 4 GB

3 level: 1K * 1K * 1K * 4K = 2^42  ≈ 4 TB
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Quiz: How much space is “used” by a 
multi-level page table in memory? 
Example: 32-bit address:

Memory Virtualization: Smaller Page Tables

outer page (10 bits) inner page (10 bits) page offset (12 bits)

How much memory is required minimally for a
multi-level page table?

PTE size 4 Byte

2^10*4 bytes = 4 KB for outer page table
+ 2^10*4 bytes = 4 KB for one inner page table

How much memory is required maximally for a
multi-level page table?

2^10*4 bytes = 4 KB for outer page table
+ 2^10*2^10*4 bytes = 4 MB for 1024 inner page tables



Quiz: Full system with TLBs

Assumptions: 
• 3-level page table

• 256-byte pages

• 16-bit addresses

• ASID of current process is 211

How many physical accesses for each instruction? (Ignore previous ops changing TLB)

(a) 0xAA10: movl 0x1111, %edi

(b) 0xBB13: addl $0x3, %edi

(c) 0x0519: movl %edi, 0xFF10

ASID VPN PFN Valid

211 0xBB 0x91 1

211 0xFF 0x23 1

122 0x05 0x91 1

211 0x05 0x12 0

0xAA: (TLB miss -> 3 for addr. translation) + 1 instruction fetch
0x11: (TLB miss -> 3 for addr. translation) + 1 movl Total: 8

Total: 10xBB: (TLB hit -> 0 for addr. translation) + 1 instr. fetch

0x05: (TLB miss -> 3 for addr. translation) + 1 instr. fetch
0xFF: (TLB hit -> 0 fpr addr. translation) + 1 movl Total: 5

On TLB miss: lookups with more levels more expensive
How much does a miss cost?
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Problem:
Simple linear page tables require too much memory
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Summary:
Better page tables
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Many options for efficiently organizing page tables

If OS traps on TLB miss, OS can use any data structure

If HW handles TLB miss, page tables must follow 
specific format:
• Multi-level page tables used in x86 architecture
• Each page table fits within a page


