
Memory Virtualization:
Smaller Page Tables

OSTEP Chapter 20:
http://pages.cs.wisc.edu/~remzi/OSTEP/vm-smalltables.pdf

Jan Reineke
Universität des Saarlandes

System Architecture, Jan Reineke 1Memory Virtualization: Smaller Page Tables

Advantages:
• No external fragmentation:
– free memory does not have to be allocated contiguously

• All free (unallocated) pages are “equal”:
– easy to manage, allocate, and free pages

Disadvantages:
• Too slow: à TLBs
– every “virtual” memory access results in two physical ones

• Page table are too big: (now)
– one entry for every page of address space

System Architecture, Jan Reineke 2

Paging: Pros and Cons

Memory Virtualization: Smaller Page Tables

PTE = page table entry

System Architecture, Jan Reineke 3

Quiz: How big are page tables?

1. PTEs are 2 bytes, and 32 possible virtual page numbers

2. PTEs are 2 bytes, virt. addresses: 24 bits, pages are 16 bytes

3. PTEs are 4 bytes, virt. addresses: 32 bits, pages are 4 KB

4. PTEs are 4 bytes, virt. addresses: 64 bits, pages are 4 KB

How big is each page table?

à 2 * 32 bytes = 64 bytes

à 2 * 224-4 bytes = 2 * 220 = 2 MB

à 4 * 232-12 bytes = 4 * 220 = 4 MB

à 4 * 264-12 bytes = 254 B = 214 TB

Memory Virtualization: Smaller Page Tables

System Architecture, Jan Reineke 4

Waste!

Code
heap

stack

Virtual address space Physical address space

Waste!

Memory Virtualization: Smaller Page Tables

System Architecture, Jan Reineke 5

Many invalid page table entries

VPN valid protection
10 1 r-x
- 0 -
23 1 rw-
- 0 -
- 0 -
- 0 -
- 0 -

- 0 -
- 0 -
- 0 -
- 0 -
28 1 rw-
4 1 rw-

…many more invalid entries…How to avoid
storing these?

Memory Virtualization: Smaller Page Tables

Any data structure is possible with software-managed
TLB:
• HW looks for VPN on every memory access
• If TLB does not contain VPN, TLB miss

1. HW generates exception, traps into OS
2. OS finds PPN for given VPN
3. OS enters PPN -> VPN into TLB
4. Instruction that generated TLB miss is repeated

(“exception return” without change of “epc” in MIPS)

System Architecture, Jan Reineke 6

Avoid linear page table

Approach:
Use hierarchical data structure instead of “flat” array

Memory Virtualization: Smaller Page Tables

1. Segmented page tables

2. Multi-level page tables

System Architecture, Jan Reineke 7

Approaches

Memory Virtualization: Smaller Page Tables

1. Segmented page tables

2. Multi-level page tables

System Architecture, Jan Reineke 8

Approaches

Memory Virtualization: Smaller Page Tables

System Architecture, Jan Reineke 12

Observation:
Valid PTEs are contiguous

VPN valid protection
10 1 r-x
- 0 -
23 1 rw-
- 0 -
- 0 -
- 0 -
- 0 -

- 0 -
- 0 -
- 0 -
- 0 -
28 1 rw-
4 1 rw-

…many more invalid entries…How to avoid
storing these?

Idea:
Combine
segmentation
and paging

Memory Virtualization: Smaller Page Tables

Divide address space into segments (code, heap, stack)

• Segments can be variable length

Divide each segment into fixed-size pages

Virtual address divided into three portions:

System Architecture, Jan Reineke 13

1. Combine paging and segmentation

page offset (12 bits)page number (8 bits)
segment no.

(4 bits)

Implementation: per segment
• Each segment has a page table (only as large as necessary)
• Base address and size of page table

Memory Virtualization: Smaller Page Tables

14

Quiz: Paging and segmentation

Seg Base Bounds R W

0 0x002000 0xff 1 0

1 0x000000 0x00 0 0

2 0x001000 0x0f 1 1

...

0x01f

0x011

0x003

0x02a

0x013

...

0x00c

0x007

0x004

0x00b

0x006

...

0x001000

0x002000

0x002070 read:
0x202016 read:
0x104c84 read:
0x010424 write:
0x210014 write:
0x203568 read:

0x004070

0x003016
error

error

error

0x02a568

page offset (12 bits)page number (8 bits)
segment no.

(4 bits)

Advantages of segments
• Supports sparse address spaces

– decreases sizes of page tables
– no need for page table if segment not used

Advantages of paging
• no external fragmentation
• segments can grow without any reshuffling
• can run process when some pages are swapped to disk (later)

Advantages of both
• Increases flexibility of sharing

– share either single page or entire segment

System Architecture, Jan Reineke 15

Advantages of paging and segmentation

Memory Virtualization: Smaller Page Tables

Potentially large page tables (for each segment)

• Must allocate each page table contiguously

System Architecture, Jan Reineke 16

Disadvantages of paging and
segmentation

Memory Virtualization: Smaller Page Tables

1. Segmented page tables

2. Multi-level page tables

System Architecture, Jan Reineke 17

Approaches

Memory Virtualization: Smaller Page Tables

18

2. Multi-level page tables

Goal: Allow each page table to be allocated non-contiguously
Idea: Hierarchical page tables

– Several translation levels, inner tables stored in pages
– Only allocate page tables for pages in use
– Used in x86 architectures (hardware can walk known structure)

outer page (8 bits) inner page (10 bits) page offset (12 bits)
30-bit address:

base address

19

Quiz: Multi-level page table

PPN
0x3

-
-
-
-
-
-
-
-
-
-
-
-
-

0x92

valid
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1

Page directory
PPN
0x10
0x23
 -
 -
0x80
0x59
 -
 -
 -
 -
 -
 -
 -
 -
 -
-

valid
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0

@PPN:0x3
PPN
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
-

 0x55
 0x45

valid
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1

Translate 0x01ABC

outer page
(4 bits)

inner page
(4 bits) page offset (12 bits)

20-bit address:

Translate 0xFEED0

Translate 0x00000

0x23ABC

0x10000

0x55ED0

@PPN:0x92

System Architecture, Jan Reineke 20

Quiz: Address format for multi-level paging

How should virtual addresses be structured?
– How many bits for each paging level?

Goal?
– Each page table fits within a page
– PTE size * number of PTEs = page size

• Assume: PTE size = 4 bytes
• Page size = 2^12 byte = 4 KB
• 2^2 byte * number of PTEs= 2^12 bytes
à number of PTEs (per inner page table) = 2^10

à #bits for selecting inner page = 10
Remaining bits for outer page:

– 30 – 10 – 12 = 8 bits

outer page inner page page offset (12 bits)
30-bit address:

Memory Virtualization: Smaller Page Tables

Problem: page directory (outer level) may not fit in
a page

Solution: Additional translation levels

System Architecture, Jan Reineke 21

Problem with 2 levels?

outer page
(42 bits?)

inner page
(10 bits)

page offset (12 bits)

64-bit address:

PT idx page offsetPD idx 1

VPN

PD idx 0

Memory Virtualization: Smaller Page Tables

System Architecture, Jan Reineke 22

Size of the virtual address space

How large is the virtual address space with 4 KB pages,
 4 byte PTEs, every page table fits into a page?

4KB / 4 bytes à 1K entries per level
1 level: 1K * 4K = 2^22 = 4 MB

2 level: 1K * 1K * 4K = 2^32 ≈ 4 GB

3 level: 1K * 1K * 1K * 4K = 2^42 ≈ 4 TB

Memory Virtualization: Smaller Page Tables

System Architecture, Jan Reineke 23

Quiz: How much space is “used” by a
multi-level page table in memory?
Example: 32-bit address:

Memory Virtualization: Smaller Page Tables

outer page (10 bits) inner page (10 bits) page offset (12 bits)

How much memory is required minimally for a
multi-level page table?

PTE size 4 Byte

2^10*4 bytes = 4 KB for outer page table
+ 2^10*4 bytes = 4 KB for one inner page table

How much memory is required maximally for a
multi-level page table?

2^10*4 bytes = 4 KB for outer page table
+ 2^10*2^10*4 bytes = 4 MB for 1024 inner page tables

Quiz: Full system with TLBs

Assumptions:
• 3-level page table

• 256-byte pages

• 16-bit addresses

• ASID of current process is 211

How many physical accesses for each instruction? (Ignore previous ops changing TLB)

(a) 0xAA10: movl 0x1111, %edi

(b) 0xBB13: addl $0x3, %edi

(c) 0x0519: movl %edi, 0xFF10

ASID VPN PFN Valid

211 0xBB 0x91 1

211 0xFF 0x23 1

122 0x05 0x91 1

211 0x05 0x12 0

0xAA: (TLB miss -> 3 for addr. translation) + 1 instruction fetch
0x11: (TLB miss -> 3 for addr. translation) + 1 movl Total: 8

Total: 10xBB: (TLB hit -> 0 for addr. translation) + 1 instr. fetch

0x05: (TLB miss -> 3 for addr. translation) + 1 instr. fetch
0xFF: (TLB hit -> 0 fpr addr. translation) + 1 movl Total: 5

On TLB miss: lookups with more levels more expensive
How much does a miss cost?

Memory Virtualization: Smaller Page Tables

Problem:
Simple linear page tables require too much memory

System Architecture, Jan Reineke 25

Summary:
Better page tables

Memory Virtualization: Smaller Page Tables

Many options for efficiently organizing page tables

If OS traps on TLB miss, OS can use any data structure

If HW handles TLB miss, page tables must follow
specific format:
• Multi-level page tables used in x86 architecture
• Each page table fits within a page

