
Memory Virtualization:
Faster with TLBs

OSTEP Chapter 19:
http://pages.cs.wisc.edu/~remzi/OSTEP/vm-tlbs.pdf

Jan Reineke
Universität des Saarlandes

System Architecture, Jan Reineke 1Memory Virtualization: TLBs



2

Review: Paging

P1

P2

P2

P1

PT

P1

0x4000

0x5000

0x6000

0x2000

0x3000

0x1000

0x0000

PT

Page table of P11 5 4 …

Page table of P26 2 3 …

P2
0x7000

Virtual Physical

0x0800

load 0x0000 load 0x0800
load 0x6000

load 0x1444 load 0x0808
load 0x2444

load 0x1444 load 0x0008
load 0x5444

Assumption: Page size 4 KB 

What do we need to know for translation?
Location of page table in memory (ptbr)

ptbr

Size of each page table entry (here: 8 Byte)

P2

P1

Memory Virtualization: TLBs



Advantages:
• No external fragmentation:
– free memory does not have to be allocated contiguously

• All free (unallocated) pages are “equal”:
– easy to manage, allocate, and free pages

Disadvantages:
• Page table are too big: (later)
– one entry for every page of address space

• Too slow: (now)
– every “virtual” memory access results in two physical ones

System Architecture, Jan Reineke 3

Paging: Pros and Cons

Memory Virtualization: TLBs



1. Determine VPN (virtual page number) from 
VA (virtual address)

2. Calculate address of PTE (page table entry)
3. Read PTE from memory
4. Extract PFN (page frame number) 
5. Build PA (physical address) 

from PFN and offset
6. Read contents of PA from memory

System Architecture, Jan Reineke 4

Address translation: Step by step

Quiz: Which steps are expensive?

expensive

expensive

Memory Virtualization: TLBs

Goal of TLBs: avoid step 3



5

Example: Array iterator

int sum = 0;
for (i=0; i<N; i++){

sum += a[i];
}
Assumption: ‘a’ begins at 0x3000
Ignore instruction fetches

Virtual addresses:

load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

Physical addresses:

load 0x100C
load 0x7000

load 0x100C
load 0x7004

load 0x100C
load 0x7008

load 0x100C
load 0x700C

Observation:
Repeatedly access same PTE 
of page table

Aside: What can you infer?
• ptbr: 0x1000; PTE 4 bytes each
• VPN 3 à PPN 7



System Architecture, Jan Reineke 6

Approach: TLB = Translation “Cache”

CPU Memory

memory bus

Page table
Translation

Cache

TLB: Translation Lookaside Buffer

Memory Virtualization: TLBs



System Architecture, Jan Reineke 7

TLB: Organization

Tag (Virtual page number) Physical page number (page table entry)
TLB entry:

Lookup
• Compute set (tag % number of sets)
• Search for tag within resulting set

0
1
2
3
4
5
6
7

2-way set associative

Set

In
de

x

Extreme cases:
• Direct mapped: every set contains only one entry
• Fully associative: single set that contains all entries

Memory Virtualization: TLBs



Higher associativity
+ Fewer collisions
- More hardware

Lower associativity
+ Simple, less hardware
- More collisions

System Architecture, Jan Reineke 8

TLB associativity trade-offs

TLBs often small, but fully associative

Memory Virtualization: TLBs



System Architecture, Jan Reineke 9

Array iterator with TLB

int sum = 0;
for (i = 0; i < 2048; i++){
sum += a[i];

}
Assumption: Generates following virtual addresses:
load 0x1000

load 0x1004

load 0x1008

load 0x100C
…

What will TLB behavior look like?

Memory Virtualization: TLBs



1 1 5

System Architecture, Jan Reineke 10

Example: Sequential accesses
Virtual Physical

P1

P2

P2

P1

PT

P1

16 KB

20 KB

24 KB

8 KB

12 KB

4 KB

0 KB

PT
Page table P1

1 5 4 …

P2
28 KB

0 1 2 3

TLB state

PTBR

Valid VPN PPN

load 0x1000

load 0x1004

load 0x1008

load 0x100c

…

load 0x2000

load 0x2004

load 0x0004
load 0x5000
(TLB hit)
load 0x5004
(TLB hit)
load 0x5008
(TLB hit)
load 0x500C
...

load 0x0008
load 0x4000
(TLB hit)
load 0x4004

1 2 4

Memory Virtualization: TLBs



System Architecture, Jan Reineke 11

Performance of TLB?

int sum = 0;
for (i=0; i<2048; i++){

sum += a[i];
}

Calculate miss rate of TLB for data accesses:
TLB misses / TLB lookups

TLB lookups = number of accesses to array a = 2048

TLB misses = Number of unique pages accessed
= 2048 / (elements of ‘a’ per 4 KB page) 
= 2K / (4K / sizeof(int)) = 2K / 1K = 2

à Miss rate = 2/2048 = 0.1%
à Hit rate? (1 – miss rate) = 99.9%

How does the hit rate depend on the page sizes?

Memory Virtualization: TLBs



How can system improve TLB performance (hit rate) 
given fixed number of TLB entries?

Increase page size:

à fewer unique page translations needed to access 
same amount of memory

à but: potentially more internal fragmentation 

System Architecture, Jan Reineke 12

TLB performance

Memory Virtualization: TLBs



Sequential array accesses almost always hit in TLB!

What access pattern will be slow?

à Highly random, with no repeat accesses

System Architecture, Jan Reineke 13

TLB performance with 
different workloads

Memory Virtualization: TLBs



System Architecture, Jan Reineke 14

Two and a half access patterns

int sum = 0;
for (i=0; i<2048; i++) {

sum += a[i];
}

int sum = 0;
srand(1234);
for (i=0; i<1000; i++) {
 sum += a[rand() % N];
}

Access pattern A Access pattern B

Expected hit rate?
TLB size: 1

Hit rate ca. 99.9%

Depends on N:
Let N = n*1024, then the
expected hit rate is exactly 1/n.

Memory Virtualization: TLBs



15

Two and a half access patterns

int sum = 0;
for (i=0; i<2048; i++) {

sum += a[i];
}

int sum = 0;
for (j=0; j<50; j++) {

srand(1234);
for (i=0; i<20; i++) {

 sum += a[rand() % N];
}

}

Access pattern A Access pattern B

For large N the hit rate depends on 
the size of the TLB:
- Size of TLB ≥ 20: almost only hits
- Size of TLB < 20: mostly misses

Memory Virtualization: TLBs

Expected hit rate?



System Architecture, Jan Reineke 16

Two access patterns

Time

A
dd

re
ss

Sequential accesses

Time

A
dd

re
ss

Repeated random accesses

… …

Spatial locality Temporal locality

Memory Virtualization: TLBs



Spatial locality: 
future accesses will be to nearby addresses

Temporal locality: 
future accesses will be repeats to the same address

System Architecture, Jan Reineke 17

Locality

The larger the pages, the better spatial locality is exploited.
The more entries, the better temporal locality is exploited.

Memory Virtualization: TLBs

Which TLB properties determine how well 
locality is exploited?



As with caches:

• LRU: Least-recently-used
– Evict least-recently-used entry

• FIFO: First-in, First-out
– Evict entry that has been in the TLB for the longest time

• Farthest-in-the-Future 
– Optimal offline strategy

System Architecture, Jan Reineke 18

TLB replacement policies

Memory Virtualization: TLBs



What happens if a process uses cached TLB entries from another 
process?

Solutions?

Alternatives:
1. Flush TLB on every context switch
2. Track which entries are for which process
– Address space identifier, ASID
– Tag each TLB entry with an 8-bit ASID

• How many ASIDs do we get?
• Why not PIDs? à typically 32-bit, thus high overhead

System Architecture, Jan Reineke 19

Context switches

Memory Virtualization: TLBs



20

Example: TLB with ASIDs

P1

P2

P2

P1

PT

P1

16 KB

20 KB

24 KB

8 KB

12 KB

4 KB

0 KB

Virtual Physical

PT

P2
28 KB

PTBR

load 0x1444 load 0x2444

load 0x1444 load 0x5444

Page table of P1 (ASID 11)1 5 4 …

Page table of P2 (ASID 12)6 2 3 …

Valid Virtual Physical ASID

0 1 9 11

1 1 5 11

1 1 2 12

1 0 1 11

TLB state:

ASID: 12

ASID: 11

Memory Virtualization: TLBs System Architecture, Jan Reineke



Even with ASIDs, context switches are not free

àProcess A’s TLB entries evict process B’s entries,
and vice versa

Architectures can have multiple TLBs

• Data TLB + Instruction TLB

• Hierarchy of TLBs

• TLB for regular pages + TLB for “huge pages”

System Architecture, Jan Reineke 21

TLB Performance

Memory Virtualization: TLBs



Who handles TLB misses? HW or OS?

Hardware:
• CPU must know where page tables are
• Page table structure fixed and agreed upon between HW and OS
• HW traverses page table and fills TLB

OS: CPU generates exception upon TLB miss
• “Software-managed TLB”
• OS can use arbitrary data structures for page table,

traverses page table and fills TLB
• Modifying TLB entries is privileged (only in Kernel mode)

– otherwise, what could process do?

System Architecture, Jan Reineke 22

Open questions: HW vs OS

Memory Virtualization: TLBs



• Pages are great, but accessing page tables for every 
memory access is slow

• Idea: Cache page translations à TLB

• TLB performance strongly depends on workload
– Sequential vs random access patterns
– Larger page sizes increase hit rate, 

but: internal fragmentation

• TLB misses can be handled by either HW or SW

System Architecture, Jan Reineke 23

Summary

Memory Virtualization: TLBs


