
Memory Virtualization:
Paging

OSTEP Chapter 18:
http://pages.cs.wisc.edu/~remzi/OSTEP/vm-paging.pdf

Jan Reineke
Universität des Saarlandes

System Architecture, Jan Reineke 1Memory Virtualization: Paging

System Architecture, Jan Reineke 2

Review: Segmentation

Assumption: 14-bit virtual addresses, 2 most-significant bits determine segment

Segments:
0 => Code
1 => Heap
2 => Stack.

0x0000 0x1000 0x2000 0x3000 0x4000

0x4000 0x5000 0x6000 0x7000 0x8000

Virtual
memory

Physical
memory

? ? ?
Code Heap Stack

Where does the segment table live?
à Registers in MMU for active process
à Process Control Block (PCB) otherwise

Segment Base Bounds

0 0x4000 0xfff

1 0x5800 0xfff

2 0x6800 0x7ff

Memory Virtualization: Paging

3

Review: Memory accesses

0x0010: movl 0x1100, %edi
0x0013: addl $0x3, %edi
0x0019: movl %edi, 0x1100

Seg Base Bounds

0 0x4000 0xfff

1 0x5800 0xfff

2 0x6800 0x7ff

Physical Memory Accesses?
1) Instruction Fetch, virtual address 0x0010

– Physical addr.:

Load from virtual address 0x1100

– Physical addr.:

2) Instruction Fetch from virtual address 0x0013

– Physical addr.:

3) Instruction Fetch from virtual address 0x0019

– Physical addr.:

Store to virtual address 0x1100

– Physical addr.:

0x4010

0x5900

0x4013

0x4019

0x5900

Total of 5 memory accesses (3 instruction fetches, 2 load/stores).
Memory Virtualization: Paging System Architecture, Jan Reineke

Definition (Fragmentation): Free memory that cannot be usefully allocated

Why?
• Free memory (hole) is too small and scattered

• Rules for allocating memory prohibit using this free space

Types of fragmentation:

• External: visible to OS

• Internal: visible to application (e.g. if must allocate at some granularity)

System Architecture, Jan Reineke 4

Problem: External fragmentation

Segment A

Segment C

Segment D

Segment B

Segment E

No contiguous space available!

used

free

Allocated to application:

Internal
fragmentation

External fragmentation

Goal: Eliminate requirement that address space is contiguous
• Eliminate external fragmentation
• Grow segments as needed
Idea: Divide address spaces into fixed-size pages and

physical memory into fixed-size page frames of the same size
• Size 2n, Example: 4 KB

System Architecture, Jan Reineke 5

Paging

ph
ys

ic
al

 m
em

or
y

Process 3
Process 1

Process 2
(Virtual) address spaces

• How to translate virtual addresses into physical addresses?
– Most-significant bits determine page number
– Least-significant bits determine offset within page

System Architecture, Jan Reineke 6

Address translation

page number page offset Virtual address

Physical address

32 bits

frame number

translate

20 bits 12 bits

page offset

How should OS translate VPN to PPN?

What data structure is good?

System Architecture, Jan Reineke 7

Address translation

0 1 0 1 0 1

VPN offset

1 1 0 1 0 11 0

PPN offset

Translation

virtual page number

physical page number

Big array:
page table

Memory Virtualization: Paging

8

Quiz: Page table

Virtual
address space

Physical
memory

P2 P3

0 1 2 3 4 5 6 7 8 9 10 11

P1

Page tables:

P1
3

1

7

10

P2
0

4

2

6

P3
8

5

9

11

Memory Virtualization: Paging

How big is a typical page table?
• 32-bit address space
• 4 KB pages

• 32 Bit = 4 byte entries

Solution: 2 ^ (32 – log2 (4*1024))*4 Byte = 4 MB
• Size of page table = Number of entries * Size of individual entries

• Number of entries = Number of pages = 2^(bits for page number)

• Bits for page number = 32 – bits for offset = 32 – log2(4096) = 32-12 = 20

• Thus, 220 4-byte entries

System Architecture, Jan Reineke 9

Where are page tables stored?

Memory Virtualization: Paging

What happens on a context switch:

• Save old page table base register in PCB of
descheduled process

• Change contents of page table base register to newly
scheduled process

System Architecture, Jan Reineke 10

Where are page tables stored?

Implication:
Store page table in memory, not in registers.
Hardware finds page table with page table base register.

Memory Virtualization: Paging

• valid bit = is the page allocated?

• protection bits, encode access rights
• present bit
• reference bit
• dirty bit

System Architecture, Jan Reineke 11

Other page table info

discussed later on

What other info is in page table entries besides translation?

Memory Virtualization: Paging

12

Memory accesses with paging
0x0010: movl 0x1100, %edi
0x0013: addl $0x3, %edi
0x0019: movl %edi, 0x1100

Page table is at phys. addr. 0x5000
Every entry is 4 bytes
4KB pages, i.e., 12 bits for offset

First 4 entries of the
page table

2

0

80

99

Doubling number of memory accesses!

Physical memory accesses with paging?
1) Instruction Fetch at virtual address 0x0010:

• VPN = 0, so access entry 0 of page table

• Access 1: 0x5000 to learn: PPN = 2

• Access 2: Instruction fetch at phys. addr. 0x2010

Load at virtual address 0x1100:

• VPN = 1, so access entry 1 of page table

• Access 3: 0x5004 to learn: PPN = 0

• Access 4: Load at phys. addr. 0x0100

No external fragmentation:
Any page can be placed in any frame in physical memory

Fast to allocate and free:
Linked list of free pages

Simple to swap-out portions of memory to disk (later lecture)
• Page size = disk block size
• Can run process when some pages are on disk
– Add present bit to page table entries

System Architecture, Jan Reineke 13

Advantages of paging

Memory Virtualization: Paging

Internal fragmentation:
Wasted memory grows with larger pages

Additional memory access to page table upon every memory access
à extremely inefficient

• Page table must be stored in memory

• MMU stores only base address of page table

Substantial storage for page tables
• Simple page table: one entry for each page in

address space, even if not allocated

System Architecture, Jan Reineke 14

Disadvantages of paging

Memory Virtualization: Paging

Stack

Code

Heap

