
Memory Virtualization:
Time Sharing, Base+Bounds, Segmentation

OSTEP Chapters 13, (14), 15, 16:
http://pages.cs.wisc.edu/~remzi/OSTEP/vm-intro.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/vm-api.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/vm-mechanism.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/vm-segmentation.pdf

Jan Reineke
Universität des Saarlandes

System Architecture, Jan Reineke 1Memory Virtualization: Foundations

Virtual CPU:
illusion of private CPU registers

Virtual RAM:
illusion of private memory

System Architecture, Jan Reineke 2

Virtualization

Memory Virtualization: Foundations

System Architecture, Jan Reineke 3

Motivation for Virtualization

Memory Virtualization: Foundations

Uniprogramming: One process runs at a time

User
Process

OSPhysical
Memory

0

2n-1
Stack

Code

Heap

Address
Space

Disadvantages:
• Only one process runs at a time
• Process can destroy OS

Transparency
• Processes are not aware that memory is shared
• Works regardless of number and/or location of processes

Protection
• Integrity: Cannot corrupt OS or other processes
• Privacy/confidentiality: Cannot read data of other processes

Efficiency
• Do not waste memory resources (minimize fragmentation)

Sharing
• Cooperating processes can share portions of address space

System Architecture, Jan Reineke 4

Memory Virtualization Goals

Memory Virtualization: Foundations

Address space:
Each process has set of addresses
that map to bytes

Address space has static and
dynamic components:

• Static: Code and global variables

• Dynamic: Stack and Heap

System Architecture, Jan Reineke 5

Abstraction: Address space

Stack

Code

Heap

0

2n-1

Memory Virtualization: Foundations

• Do not know amount of memory needed at
compile time:

often depends on program inputs

• Would have to statically allocate memory for
the “worst case” à inefficient

System Architecture, Jan Reineke 6

Motivation for dynamic memory

Why do processes need dynamic allocation
of memory?

Memory Virtualization: Foundations

Examples:
• Recursive procedures
• Complex data structures:

lists, trees, hash maps, etc.

Two types of dynamic allocation:
• Stack
• Heap

System Architecture, Jan Reineke 7

Examples of dynamic memory
allocation

Memory Virtualization: Foundations

Definition: Memory is freed in opposite order from
allocation:

alloc(A);
alloc(B);
alloc(C);
free(C);
alloc(D);
free(D);
free(B);
free(A);

Simple and efficient implementation:
Pointer separates allocated and freed space
• Allocation: Decrement pointer
• Deallocation: Increment pointer

System Architecture, Jan Reineke 8

Stack organization

Memory Virtualization: Foundations

OS uses stack for procedure call frames:
local variables + parameters on the stack

System Architecture, Jan Reineke 9

Where are stacks used?

main () {
int A = 0;
foo (A);
printf(“A: %d\n”, A);

}

void foo (int Z) {
int A = 2;
Z = 5;
printf(“A: %d Z: %d\n”, A, Z);

}

Memory Virtualization: Foundations

Definition: Allocate from any random location: malloc(), new()
• Heap memory consists of allocated areas and free areas (holes)

• Order of allocation and free is unpredictable

Advantage:
• Works for all data structures

Disadvantages:
• Allocation more complex, can be slow
• Fragmentation

Division of work: OS + library

• OS gives big chunk of free memory to process;
library manages individual allocations

System Architecture, Jan Reineke 10

Heap organization

Free

Free

Alloc

Alloc

16 bytes

24 bytes

12bytes

16 bytes

A

B

Memory Virtualization: Foundations

System Architecture, Jan Reineke 11

Quiz: Match that address allocation

int x;
int main(int argc, char *argv[]) {
int y;
int *z = malloc(sizeof(int)););

}

Address Location

x
main
y
z
*z

Possible segments: static data, code, stack, heap
Location

Static data

Code

Stack

Stack

Heap

Memory Virtualization: Foundations

System Architecture, Jan Reineke 12

Memory accesses

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
int x;
x = x + 3;

}

movl -0x14(%rbp), %edi
addl $0x3, %edi
movl %edi, -0x14(%rbp)

(x86 Assembler)
%rbp is pointing to the base
of the current stack framegcc –o exp exp.c

otool -tv exp
(or objdump under Linux)

Memory Virtualization: Foundations

System Architecture, Jan Reineke 13

Quiz: Memory accesses?

Initial:
%rip = 0x10 (PC)
%rbp = 0x200 (Base addr. of stack)

0x10: movl -0x14(%rbp), %edi
0x13: addl $0x3, %edi
0x19: movl %edi, -0x14(%rbp)

1a) Instruction fetch at address 0x10
1b) Load from address 0x200 + -0x14 = 0x1EC

2a) Instruction fetch from address 0x13
2b) No memory access

3a) Instruction fetch at address 0x19
3b) Store to address 0x1EC

Memory Virtualization: Foundations

Possible solutions for mechanisms:
1. Time sharing

2. Static relocation

3. Dynamic relocation

4. Segmentation

System Architecture, Jan Reineke 14

How to virtualize memory?

Problem: How to run multiple processes simultaneously?

Challenge: Addresses are “hardcoded” into process binaries

Memory Virtualization: Foundations

Try similar approach to how OS virtualizes CPU

Observation: OS gives illusion of private CPUs by saving
CPU registers to memory when a process isn’t running

System Architecture, Jan Reineke 15

1. Time sharing of memory

Approach:
Save memory contents to disk when process isn‘t running

Memory Virtualization: Foundations

System Architecture, Jan Reineke 16

Example: Time sharing

Code
Data

Program

Memory

Memory Virtualization: Foundations

Code
Data

Program

Memory

Code
Data
Heap

Stack
Process 1

create

Memory Virtualization: Foundations System Architecture, Jan Reineke 17

Code
Data

Program

Memory

Code
Data
Heap

Stack
Process 1

Memory Virtualization: Foundations System Architecture, Jan Reineke 18

Code
Data

Program

Memory

Code
Data
Heap

Stack
Process 1

Memory Virtualization: Foundations System Architecture, Jan Reineke 19

Code
Data

Program

Memory

Code
Data
Heap

Stack
Process 1

Memory Virtualization: Foundations System Architecture, Jan Reineke 20

Code
Data

Program

Memory

Code
Data
Heap

Stack
Process 1

Code
Data2
Heap2

Stack2
Process 2

create

Memory Virtualization: Foundations System Architecture, Jan Reineke 21

Code
Data

Program

Memory

Code
Data
Heap

Stack
Process 1

Code
Data2
Heap2

Stack2
Process 2

Memory Virtualization: Foundations System Architecture, Jan Reineke 22

Code
Data

Program

Memory

Code
Data
Heap

Stack
Process 1

Code
Data2
Heap2

Stack2
Process 2

Memory Virtualization: Foundations System Architecture, Jan Reineke 23

Code
Data

Program

Memory

Code
Data
Heap

Stack
Process 1

Code
Data2
Heap2

Stack2
Process 2

Memory Virtualization: Foundations System Architecture, Jan Reineke 24

Code
Data

Program

Memory

Code
Data
Heap

Stack
Process 1

Code
Data2
Heap2

Stack2
Process 2

Memory Virtualization: Foundations System Architecture, Jan Reineke 25

Code
Data

Program

Memory

Code
Data
Heap

Stack
Process 1

Code
Data2
Heap2

Stack2
Process 2

Problem?
Memory Virtualization: Foundations System Architecture, Jan Reineke 26

Problem:
Extremely poor performance, as copying expensive

Better alternative: space sharing
• Physical memory is divided across

several processes

System Architecture, Jan Reineke 27

Problems with time sharing memory

Memory Virtualization: Foundations

Idea: OS rewrites each program before loading it
as a process in memory:

System Architecture, Jan Reineke 28

2. Static relocation

• Each rewrite for different process uses different addresses
and pointers

• Change jumps, loads of static data

Memory Virtualization: Foundations

System Architecture, Jan Reineke 29

Example: Static relocation

• 0x10:movl 0x8(%rbp), %edi
• 0x13:addl $0x3, %edi
• 0x19:movl %edi, 0x8(%rbp)

0x1010: movl 0x8(%rbp), %edi
0x1013: addl $0x3, %edi
0x1019: movl %edi, 0x8(%rbp)

0x3010: movl 0x8(%rbp), %edi
0x3013: addl $0x3, %edi
0x3019: movl %edi, 0x8(%rbp)

rewrite

rewrite

Memory Virtualization: Foundations

System Architecture, Jan Reineke 30

Example: Static relocation

(free)

Code

Stack

Heap

(free)

Code

Stack

Heap

(free)

(free)

(free)

4 KB

8 KB

12 KB

16 KB

Process 1

Process 2

0x1010: movl 0x8(%rbp), %edi
0x1013: addl $0x3, %edi
0x1019: movl %edi, 0x8(%rbp)

0x3010: movl 0x8(%rbp), %edi
0x3013: addl $0x3, %edi
0x3019: movl %edi, 0x8(%rbp)

Why didn’t OS rewrite stack
addresses?

Memory Virtualization: Foundations

No protection:

Process can destroy (and spy on) OS
or other processes

System Architecture, Jan Reineke 31

Static relocation: Disadvantages

Cannot move address space after it has been placed
à possible fragmentation

Memory Virtualization: Foundations

Goals:

1. Allow relocation of processes even after they
have been started

2. Protection or processes from one another

System Architecture, Jan Reineke 32

3. Dynamic relocation

Memory Virtualization: Foundations

• Requires hardware support:
Memory Management Unit (MMU)

• MMU dynamically changes process address at
every memory access
– Process generates virtual (or logical) address (in their address space)

– Hardware uses physical (or real) addresses

33

3. Dynamic relocation

CPU MMU

Memory

Process runs here OS can control MMU

Virtual
address

Physical
address

Memory Virtualization: Foundations

Two operating modes:
• Kernel (protected, privileged) mode: reserved for OS
– Can manipulate contents of MMU
– Allows OS to access all of physical memory

• User mode: for user processes
– MMU translates virtual addresses to physical addresses

Minimal MMU contains base register for translation
• base: start location for address space

System Architecture, Jan Reineke 34

Hardware support for dynamic
relocation

Memory Virtualization: Foundations

MMU sums value of base register onto virtual
addresses to obtain physical addresses

35

Implementation of dynamic relocation:
Base register

base modeRegister:
32 bits 1 bit

User
mode?

no

yes
+

base

virtual
address

physical
address

Memory Management Unit

OS writes correct value to base register upon
each context switch

System Architecture, Jan Reineke 36

Dynamic relocation with base register

Memory Virtualization: Foundations

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

same code

Example: Dynamic relocation

Memory Virtualization: Foundations System Architecture, Jan Reineke 37

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

P1 running

Memory Virtualization: Foundations System Architecture, Jan Reineke 38

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

base register

P2 is running

Memory Virtualization: Foundations System Architecture, Jan Reineke 39

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1

Virtual Physical

P2: load 100, R1 load 4196, R1

P2: load 1000, R1 load 5096, R1

P1: load 1000, R1 load 2024, R1

Memory Virtualization: Foundations System Architecture, Jan Reineke 40

What entity does translation of addresses?

(a) user process, (b) OS, or (c) HW

Which entity modifies the base register?

(a) user process, (b) OS, or (c) HW

System Architecture, Jan Reineke 41

Quiz: Who controls the base register?

Memory Virtualization: Foundations

What entity does translation of addresses?

(a) user process, (b) OS, or (c) HW

Which entity modifies the base register?

(a) user process, (b) OS, or (c) HW

System Architecture, Jan Reineke 42

Quiz: Who controls the base register?

Memory Virtualization: Foundations

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

Can P1 modify data of P2?

P1: load 100, R1 load 1124, R1

Virtuell Physisch

P2: load 100, R1 load 4196, R1

P2: load 1000, R1 load 5096, R1

P1: load 1000, R1 load 2024, R1

P1: store 3072, R1 store 4096, R1

Memory Virtualization: Foundations System Architecture, Jan Reineke 43

• Base register: smallest physical address

• Bounds register:
Size of the process’s virtual address space

• OS kills process if process loads/stores
beyond bounds

System Architecture, Jan Reineke 44

Dynamic relocation with base + bounds

Idea: Limit address space with a “bounds register”

Memory Virtualization: Foundations

System Architecture, Jan Reineke 45

Implementation of base + bounds

base modeRegister:
32 bits 1 bit

User
mode?

no

yes

+
base

virtual
address

physical
address

Memory Management Unit

< bounds?

bounds

32 bits

no

yes

P1

P2
4 KB

5 KB

6 KB

2 KB

3 KB

1 KB

0 KB

P1: load 100, R1 load 1124, R1

Virtual Physical

P2: load 100, R1 load 4196, R1

P2: load 1000, R1 load 5096, R1

P1: load 100, R1 load 2024, R1

P1: store 3072, R1 interrupt OS!

Memory Virtualization: Foundations System Architecture, Jan Reineke 46

Add fields for base and bounds of address space in
process control blocks (PCB)

System Architecture, Jan Reineke 47

Extension of OS for dynamic relocation

Precondition for security:
User processes are unable to modify base and bounds registers
à Ensured by execution in user mode

Context switch (in kernel mode):
1. Load base and bounds values of new process from

PCB into MMU registers
2. Switch to user mode and jump to new process

Memory Virtualization: Foundations

1. Supports dynamic relocation of processes at runtime

2. Provides protection across address spaces

• Simple and cheap to implement:
few registers, little logic in MMU

• Fast: Add and compare can be performed in parallel

System Architecture, Jan Reineke 48

Advantages of dynamic relocation

Memory Virtualization: Foundations

• Each process must be allocated contiguously in
physical memory
– Internal fragmentation

– External fragmentation

• No partial sharing:
Cannot share
limited parts of address space

System Architecture, Jan Reineke 49

Disadvantages of dynamic relocation

Stack

Code

Heap

0

2n-1

Memory Virtualization: Foundations

Divide address space into logical segments:

Code, Stack, Heap

Each segment can independently:

• be placed in physical memory

• grow and shrink

• be protected
(separate read/write/execute protection bits)

System Architecture, Jan Reineke 50

4. Segmentation

Memory Virtualization: Foundations

How does process designate a particular segment?

• Use part of virtual address:
– most-significant bits select segment
– other bits encode offset within segment

System Architecture, Jan Reineke 51

Segmented addressing

Memory Virtualization: Foundations

MMU contains segment table (per process):
• Each segment has own base and bounds,

protection bits
• Example: 14-bit virtual address, 4 segments
– How many segment bits?
– How many for offset?

System Architecture, Jan Reineke 52

Segmentation: Implementation

Segment Base Bounds R W

0 0x2000 0x6ff 1 0

1 0x0000 0x4ff 1 1

2 0x3000 0xfff 1 1

3 0x0000 0x000 0 0
Memory Virtualization: Foundations

System Architecture, Jan Reineke 53

Quiz: Address translations with
segmentation

Segment Base Bounds R W

0 0x2000 0x6ff 1 0

1 0x0000 0x4ff 1 1

2 0x3000 0xfff 1 1

3 0x0000 0x000 0 0

Translate logical addresses (in hex) to physical addresses?

0x0240:
0x1108:
0x265c:
0x3002:

Memory Virtualization: Foundations

• Enables “sparse” allocation of address space:
– Stack and heap grow independently of each other

à no internal fragmentation

– Heap: If no data on free list, dynamic memory allocator (in library)
requests more from OS (e.g., UNIX malloc calls sbrk())

– Stack: OS recognizes references outside legal segment,
extends stack implicitly

• Different protection for different segments:
– E.g. read-only status for code

• Enables sharing of selected segments
• Supports dynamic relocation of each segment

System Architecture, Jan Reineke 54

Advantages of segmentation

Memory Virtualization: Foundations

Stack

Code

Heap

Each segment must be allocated contiguously in
memory

à External fragmentation of the physical memory

à Paging as solution next lecture

System Architecture, Jan Reineke 55

Disadvantages of segmentation

Memory Virtualization: Foundations

• HW + OS work together to virtualize memory
–Memory Management Unit supports fast address

translation in HW

– OS only involved upon context switches or errors

System Architecture, Jan Reineke 56

Conclusion

Memory Virtualization: Foundations

