CPU Virtualization:
Scheduling

CPU Virtualization:

Two Components

Dispatcher (Previous lecture)

— Low-level mechanism

— Performs context-switch
e Switch from user mode to kernel mode
» Save execution state (registers) of old process in PCB
* Insert PCB in ready queue
* Load state of next process from PCB to registers
» Switch from kernel to user mode
* Jump to instruction in new user process

e Scheduler (Today)

— Policy to determine which process gets CPU when

Review:

Mechanism vs Policy

Descheduled
Running Ready

Scheduled

I/O initiate I/O e
Blocked

Vocabulary

set of job descriptions (arrival time, run-time)
— Job: View as current CPU burst of a process

— Process alternates between CPU and /O
process moves between ready and blocked queues

Scheduler: logic that decides which ready job to run

measurement of scheduling quality

Performance metrics

turnaround ~— " completion arrival

response ~ * firstrun arrival

Maximize throughput
— Want many jobs to complete per unit of time
Minimize overhead
— Reduce number of context switches
Maximize fairness
— All jobs get same amount of CPU over some time interval
Meet deadlines: real-time systems
— Some tasks must finish at a given point in time

Workload assumptions

Initially, we make the following unrealistic assumptions:
1. Each job runs for the same amount of time

2. All jobs arrive at the same time
3. All jobs only use the CPU (no 1/0)
4

. Run-time of each job is known

We lift these assumptions one by one later on.

First In, First Out (FIFO),
also: First Come, First Served (FCFES)

In daily life: checkout at supermarket

Example: Jobs A, B, C, Run-time: 10 time units each,
all jobs arrive at time O.

A B C

0 20 40 60 80 100 120
Time

Average turnaround time!
Average response time!

Workload assumptions

. .
*

2. All jobs arrive at the same time
3. All jobs only use the CPU (no 1/0)

4. Run-time of each job is known

Convoy effect

Scheduling

System Architecture, Jan Reineke

11

Convoy effect

Extreme example: first job takes very long:
A B C

0 20 40 60 80 100 120
Time

Analogy: Country road

Average turnaround time!

Alternatives!

Shortest Job First

B C A

0 20 40 60 80 100 120
Time

Analogy in daily life: express checkouts

Optimal w.r.t. average turnaround time!

N | e [o= Why? Proof!

Workload assumptions

0 Al . | .
3. All jobs only use the CPU (no 1/0)

4. Run-time of each job is known

Stuck behind a tractor again!

B and C arrive shortly after A:

[B,C arrive]
A B C

0 20 40 60 80 100 120
Time

Ideas’

Preemptive scheduling

Previous schedulers:
* FIFO and SJF are non-preemptive

— Only schedule new job when previous job
voluntarily relinquishes CPU (performs I/O or exits)

New scheduler:

* Preemptive: Potentially schedule different job at any
point by taking CPU away from job

o STCF (Shortest Time-to-Completion First)

Shortest Time-to-Completion First
(STCF)

Preemptive variant of Shortest Job First.

[B,C arrive]
AlB C A

0 20 40 60 80 100 120
Time

Optimal w.r.t. average turnaround time!

= used e.g. in webservers: handle short pages first

Disadvantages:
1. Response time for interactive processes’

2. Very long jobs may starve (“starvation”)
Yy g] Yy

Round Robin

Alternate between ready processes every fixed-

length time time slice.
A B C

Shortest Job First: .

How long should
time slices be?

1
0 5 10 15 20

Context switches take time:

Time Saving and restoring
ABCABCABCABCABC register contents
Cache and TLB contents
Round Robin: I I I I I
I 1 I I 1
0 5 10 15 20 25 30
Time

—> Fair, no starvation, good in terms of response times
- Horrible turnaround times with equal job lengths

Workload assumptions

/) —:r\]/\n Oy Yol X 2 - pal
YR 4L X111 JUUD ALLIIVC Al U1IC OAdlllICT UIIIIC
2 1./'\1\(\ A1 Ixy FalWay I-L\r\ hDI T {1»-\/\ T/m\
S . 4L X111 JUUD U lly UOL L1IIU U1 U \11U 1/ /)

Are there any sensible programs without I/O?

Handling I/O

A A A A /\ B B B B B

U cPU I
Poor resource utilization:
Disk

10

0 120 140

T|me

E.o. Bittorrent in combination with CPU-intensive jobs

A B A B /\ B /\ B /\ B

Goal: Overlap CPU CPUI I

and disk utilization: Disk l l l l
10 ;

0 120 140

T|me

Open questions

* How to combine the advantages of
ShortestTime-to-Completion First and Round Robin!?

— Short turnaround time (STCF)
— Short response time (Round Robin)
— Fairness (Round Robin)

* How to lift the final assumption!’
(“Run-time of each job is known”)

Workload assumptions

/) A*‘ —:r\]/\n aOrericvian o4 4-]/\/‘\ faValt n'a WAl -2 Ik = ' Wa
YR 4L X111 JUUD ALLIIVC Al U1IC OAdlllICT UIIIIC
2 1./-\1\(\ Al i1l 4-1#\/'\ r\DIT {1»-\/\ T/m\
o 4L X111 JUUD Ulll UOL L1IIU U1 U \11U 1/ /)

Multi-Level Feedback Queue (MLEFQ)

Introduced in 1962 as part of the
Compatible Time-Sharing Systems.

Turing Award 1990 for Fernando Corbato (USA).

Variants of MLFQ found in
Windows, MacOS, and Linux.

Multi-Level Feedback Queue: Goals

Make the impossible possible:
* Short response times for interactive processes
e Short average turnaround time

... with a priori unknown run-times.

Basic idea:
Learn from history, as e.g. with caches.

Multi-Level Feedback Queue: Basic rules

Rule 1: Priority(A) > Priority(B)

[High Priority] Q8 —»@ —»
- A runs
Q7

Rule 2: Priority(A) = Priority(B)
- Round Robin between A and B

Q6

Q5
Q4 —»@
Q3

< Multi-level 2

Q2
[Low Priority] Q1 —>@

But: How are priorities set!

Learning from history

* Processes alternate between /O and CPU work

* Assumption:
Run-time of the next CPU burst (job) will be similar
to run-time of previous CPU burst of the same process

Multi-Level Feedback Queue:

Determination of priorities

* Rule 3: Processes start at top priority

* Rule 4a: Priority of processes that use their entire
time slice is reduced | > Probably high run-time

* Rule 4b: Priority of processes that do not use their
entire time slice is not reduced

—> Probably interactive processes

[]

Fxample 1: One long job

High priority Q2
O
Q1
h 4
Low priority QO

0 50 100 150 200

[]

Example

High priority
O

v

Low priority

2: A short job joins

0 50 100 150 200

- Approximates Shortest Time-to-Completion First

Example 3:

[/O-intensive + CPU-intensive processes

High priority Q2
O
"""""""" - Low response time for
interactive process
Q1
- Advantage over pure
---------------- Round Robin!!
v

o N IIIIIIIIIIIIIIIIIIII
0 50 100 150 200

Problem 1: “starvation”: long-running jobs may

never get to run

Scheduling
System Architecture, Jan Reineke 31

Priority boost

Rule 5: Every S time units boost the priority of

all jobs

Q2

.
Q1

i I
QO

_[jnnn

0 50 100 150 200

- How should S be chosen?

Q2
NN
N RN I

Qo0

TR
0 50 100 150 200

- “Voodoo” constant

Problem 2: “Gaming” the system
-2 Initiate short I/O shortly before end of time slice

- [T

L

0 100 1 200

Solution?

Scheduling System Architecture, Jan Reineke 33

Better bookkeeping

(New) Rule 4: Reduce priority of a job when it has
exhausted its budget at a priority level

(UL { 11 \I \I L

100 150 200

MLEQ: Summary

Rule 1: Priority(A) > Priority(B)
- A runs

Rule 2: Priority(A) = Priority(B)
- Round Robin between A and B

Rule 3: Processes start at top priority > Prefers
short jobs

Rule 4: Reduce priority of a job when it has

) : : “L . D)/
exhausted its budget at a priority level s
Rule 5: Every S time units boost the > Aon
T . : gainst
priority of all jobs (that haven’t been starvation

scheduled)

MLEQ): Fine tuning

Lower priority =2 longer time slices

Minimizes
overhead

Quiz: Optimization goals

Optimization goals:
— Maximizing throughput

Ce . : - STCF
— Minimizing turnaround time
— Minimizing response time
: - Round
— Fairness: .
Robin

No process should have to wait forever

Which scheduling algorithms are optimal?

Summary

* Schedulers must support different types of processes
with different goals:

— interactive vs non-interactive processes

* Properties of processes are a priori unknown

— Can be learned over time

Summary

» Shortest Time-to-Completion First (STCEF):
— Optimal w.r.t. average turnaround time
— Starvation possible

e Round Robin:

— No starvation, good in terms of reponse time
— Poor average turnaround time

e Multi-level Feedback Queue (MLEQ):

— Gives preference to interactive, short jobs like STCF
— No starvation
— Critical: “Voodoo” constants:

* Length of time slices!

* Number of priority levels?
* Time budget at each priority level?

