
CPU Virtualization:
Scheduling

OSTEP Chapter 7:
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-sched.pdf

Jan Reineke
Universität des Saarlandes

"The best performance improvement is the transition from the non-
working state to the working state.

That's infinite speedup.”

John OusterhoutScheduling 1

Dispatcher (Previous lecture)
– Low-level mechanism
– Performs context-switch
• Switch from user mode to kernel mode
• Save execution state (registers) of old process in PCB
• Insert PCB in ready queue
• Load state of next process from PCB to registers
• Switch from kernel to user mode
• Jump to instruction in new user process

• Scheduler (Today)
– Policy to determine which process gets CPU when

CPU Virtualization:
Two Components

Scheduling System Architecture, Jan Reineke 2

Review:
Mechanism vs Policy

Running Ready

Blocked

How to transition? à “mechanism”
When to transition? à “policy”

Scheduling System Architecture, Jan Reineke 3

Descheduled

Scheduled

I/O: doneI/O: initiate

Workload: set of job descriptions (arrival time, run-time)

– Job: View as current CPU burst of a process

– Process alternates between CPU and I/O
process moves between ready and blocked queues

Scheduler: logic that decides which ready job to run

Metric: measurement of scheduling quality

Vocabulary

Scheduling System Architecture, Jan Reineke 5

Minimize turnaround time
– Do not want to wait long for job to complete
– Completion_time – arrival_time

Minimize response time
– Schedule interactive jobs promptly so users see output quickly
– Initial_schedule_time – arrival_time

Maximize throughput
– Want many jobs to complete per unit of time

Minimize overhead
– Reduce number of context switches

Maximize fairness
– All jobs get same amount of CPU over some time interval

Meet deadlines: real-time systems
– Some tasks must finish at a given point in time

Performance metrics

Scheduling System Architecture, Jan Reineke 7

Tresponse = Tfirstrun −Tarrival

Tturnaround = Tcompletion −Tarrival

Initially, we make the following unrealistic assumptions:
1. Each job runs for the same amount of time

2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)

4. Run-time of each job is known

Workload assumptions

Scheduling System Architecture, Jan Reineke 8

We lift these assumptions one by one later on.

In daily life: checkout at supermarket
Example: Jobs A, B, C, Run-time: 10 time units each,

all jobs arrive at time 0.

Average turnaround time?
Average response time?

First In, First Out (FIFO),
also: First Come, First Served (FCFS)

SCHEDULING: INTRODUCTION 3

(FCFS). FIFO has a number of positive properties: it is clearly very simple
and thus easy to implement. Given our assumptions, it works pretty well.

Let’s do a quick example together. Imagine three jobs arrive in the
system, A, B, and C, at roughly the same time (Tarrival = 0). Because
FIFO has to put some job first, let’s assume that while they all arrived
simultaneously, A arrived just a hair before B which arrived just a hair
before C. Assume also that each job runs for 10 seconds. What will the
average turnaround time be for these jobs?

0 20 40 60 80 100 120

Time

A B C

Figure 7.1: FIFO Simple Example

From Figure 7.1, you can see that A finished at 10, B at 20, and C at 30.
Thus, the average turnaround time for the three jobs is simply 10+20+30

3 =

20. Computing turnaround time is as easy as that.
Now let’s relax one of our assumptions. In particular, let’s relax as-

sumption 1, and thus no longer assume that each job runs for the same
amount of time. How does FIFO perform now? What kind of workload
could you construct to make FIFO perform poorly?

(think about this before reading on ... keep thinking ... got it?!)
Presumably you’ve figured this out by now, but just in case, let’s do

an example to show how jobs of different lengths can lead to trouble for
FIFO scheduling. In particular, let’s again assume three jobs (A, B, and
C), but this time A runs for 100 seconds while B and C run for 10 each.

0 20 40 60 80 100 120

Time

A B C

Figure 7.2: Why FIFO Is Not That Great

As you can see in Figure 7.2, Job A runs first for the full 100 seconds
before B or C even get a chance to run. Thus, the average turnaround
time for the system is high: a painful 110 seconds (100+110+120

3 = 110).
This problem is generally referred to as the convoy effect [B+79], where

a number of relatively-short potential consumers of a resource get queued
behind a heavyweight resource consumer. This scheduling scenario might
remind you of a single line at a grocery store and what you feel like when

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Scheduling System Architecture, Jan Reineke 9

1. Each job runs for the same amount of time

2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)

4. Run-time of each job is known

Workload assumptions

Scheduling System Architecture, Jan Reineke 10

Convoy effect

Scheduling System Architecture, Jan Reineke 11

Extreme example: first job takes very long:

Analogy: Country road

Average turnaround time?

Convoy effect

SCHEDULING: INTRODUCTION 3

(FCFS). FIFO has a number of positive properties: it is clearly very simple
and thus easy to implement. Given our assumptions, it works pretty well.

Let’s do a quick example together. Imagine three jobs arrive in the
system, A, B, and C, at roughly the same time (Tarrival = 0). Because
FIFO has to put some job first, let’s assume that while they all arrived
simultaneously, A arrived just a hair before B which arrived just a hair
before C. Assume also that each job runs for 10 seconds. What will the
average turnaround time be for these jobs?

0 20 40 60 80 100 120

Time

A B C

Figure 7.1: FIFO Simple Example

From Figure 7.1, you can see that A finished at 10, B at 20, and C at 30.
Thus, the average turnaround time for the three jobs is simply 10+20+30

3 =

20. Computing turnaround time is as easy as that.
Now let’s relax one of our assumptions. In particular, let’s relax as-

sumption 1, and thus no longer assume that each job runs for the same
amount of time. How does FIFO perform now? What kind of workload
could you construct to make FIFO perform poorly?

(think about this before reading on ... keep thinking ... got it?!)
Presumably you’ve figured this out by now, but just in case, let’s do

an example to show how jobs of different lengths can lead to trouble for
FIFO scheduling. In particular, let’s again assume three jobs (A, B, and
C), but this time A runs for 100 seconds while B and C run for 10 each.

0 20 40 60 80 100 120

Time

A B C

Figure 7.2: Why FIFO Is Not That Great

As you can see in Figure 7.2, Job A runs first for the full 100 seconds
before B or C even get a chance to run. Thus, the average turnaround
time for the system is high: a painful 110 seconds (100+110+120

3 = 110).
This problem is generally referred to as the convoy effect [B+79], where

a number of relatively-short potential consumers of a resource get queued
behind a heavyweight resource consumer. This scheduling scenario might
remind you of a single line at a grocery store and what you feel like when

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Alternatives?
Scheduling 12

Analogy in daily life: express checkouts

Optimal w.r.t. average turnaround time!
Why? Proof?

Shortest Job First

4 SCHEDULING: INTRODUCTION

TIP: THE PRINCIPLE OF SJF
Shortest Job First represents a general scheduling principle that can be
applied to any system where the perceived turnaround time per customer
(or, in our case, a job) matters. Think of any line you have waited in: if
the establishment in question cares about customer satisfaction, it is likely
they have taken SJF into account. For example, grocery stores commonly
have a “ten-items-or-less” line to ensure that shoppers with only a few
things to purchase don’t get stuck behind the family preparing for some
upcoming nuclear winter.

you see the person in front of you with three carts full of provisions and
a checkbook out; it’s going to be a while2.

So what should we do? How can we develop a better algorithm to
deal with our new reality of jobs that run for different amounts of time?
Think about it first; then read on.

7.4 Shortest Job First (SJF)

It turns out that a very simple approach solves this problem; in fact
it is an idea stolen from operations research [C54,PV56] and applied to
scheduling of jobs in computer systems. This new scheduling discipline
is known as Shortest Job First (SJF), and the name should be easy to
remember because it describes the policy quite completely: it runs the
shortest job first, then the next shortest, and so on.

0 20 40 60 80 100 120

Time

B C A

Figure 7.3: SJF Simple Example

Let’s take our example above but with SJF as our scheduling policy.
Figure 7.3 shows the results of running A, B, and C. Hopefully the dia-
gram makes it clear why SJF performs much better with regards to aver-
age turnaround time. Simply by running B and C before A, SJF reduces
average turnaround from 110 seconds to 50 (10+20+120

3 = 50), more than
a factor of two improvement.

In fact, given our assumptions about jobs all arriving at the same time,
we could prove that SJF is indeed an optimal scheduling algorithm. How-

2Recommended action in this case: either quickly switch to a different line, or take a long,
deep, and relaxing breath. That’s right, breathe in, breathe out. It will be OK, don’t worry.

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

Scheduling System Architecture, Jan Reineke 13

1. Each job runs for the same amount of time

2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)

4. Run-time of each job is known

Workload assumptions

Scheduling System Architecture, Jan Reineke 14

B and C arrive shortly after A:

Stuck behind a tractor again!

SCHEDULING: INTRODUCTION 5

ASIDE: PREEMPTIVE SCHEDULERS

In the old days of batch computing, a number of non-preemptive sched-
ulers were developed; such systems would run each job to completion
before considering whether to run a new job. Virtually all modern sched-
ulers are preemptive, and quite willing to stop one process from run-
ning in order to run another. This implies that the scheduler employs the
mechanisms we learned about previously; in particular, the scheduler can
perform a context switch, stopping one running process temporarily and
resuming (or starting) another.

ever, you are in a systems class, not theory or operations research; no
proofs are allowed.

Thus we arrive upon a good approach to scheduling with SJF, but our
assumptions are still fairly unrealistic. Let’s relax another. In particular,
we can target assumption 2, and now assume that jobs can arrive at any
time instead of all at once. What problems does this lead to?

(Another pause to think ... are you thinking? Come on, you can do it)
Here we can illustrate the problem again with an example. This time,

assume A arrives at t = 0 and needs to run for 100 seconds, whereas B
and C arrive at t = 10 and each need to run for 10 seconds. With pure
SJF, we’d get the schedule seen in Figure 7.4.

0 20 40 60 80 100 120

Time

A B C
[B,C arrive]

Figure 7.4: SJF With Late Arrivals From B and C

As you can see from the figure, even though B and C arrived shortly
after A, they still are forced to wait until A has completed, and thus suffer
the same convoy problem. Average turnaround time for these three jobs

is 103.33 seconds (100+(110−10)+(120−10)
3). What can a scheduler do?

7.5 Shortest Time-to-Completion First (STCF)

As you might have guessed, given our previous discussion about mech-
anisms such as timer interrupts and context switching, the scheduler can
certainly do something else when B and C arrive: it can preempt job A
and decide to run another job, perhaps continuing A later. SJF by our defi-
nition is a non-preemptive scheduler, and thus suffers from the problems
described above.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Ideas?

Scheduling System Architecture, Jan Reineke 15

Previous schedulers:

• FIFO and SJF are non-preemptive

–Only schedule new job when previous job
voluntarily relinquishes CPU (performs I/O or exits)

New scheduler:

• Preemptive: Potentially schedule different job at any
point by taking CPU away from job

• STCF (Shortest Time-to-Completion First)

Preemptive scheduling

Scheduling System Architecture, Jan Reineke 16

Preemptive variant of Shortest Job First.

Optimal w.r.t. average turnaround time!

à used e.g. in webservers: handle short pages first

Shortest Time-to-Completion First
(STCF)

6 SCHEDULING: INTRODUCTION

0 20 40 60 80 100 120

Time

A B C A
[B,C arrive]

Figure 7.5: STCF Simple Example

Fortunately, there is a scheduler which does exactly that: add preemp-
tion to SJF, known as the Shortest Time-to-Completion First (STCF) or
Preemptive Shortest Job First (PSJF) scheduler [CK68]. Any time a new
job enters the system, it determines of the remaining jobs and new job,
which has the least time left, and then schedules that one. Thus, in our
example, STCF would preempt A and run B and C to completion; only
when they are finished would A’s remaining time be scheduled. Figure
7.5 shows an example.

The result is a much-improved average turnaround time: 50 seconds

((120−0)+(20−10)+(30−10)
3). And as before, given our new assumptions,

STCF is provably optimal; given that SJF is optimal if all jobs arrive at
the same time, you should probably be able to see the intuition behind
the optimality of STCF.

Thus, if we knew that job lengths, and jobs only used the CPU, and our
only metric was turnaround time, STCF would be a great policy. In fact,
for a number of early batch computing systems, these types of scheduling
algorithms made some sense. However, the introduction of time-shared
machines changed all that. Now users would sit at a terminal and de-
mand interactive performance from the system as well. And thus, a new
metric was born: response time.

Response time is defined as the time from when the job arrives in a
system to the first time it is scheduled. More formally:

Tresponse = Tfirstrun − Tarrival (7.2)

For example, if we had the schedule above (with A arriving at time 0,
and B and C at time 10), the response time of each job is as follows: 0 for
job A, 0 for B, and 10 for C (average: 3.33).

As you might be thinking, STCF and related disciplines are not par-
ticularly good for response time. If three jobs arrive at the same time,
for example, the third job has to wait for the previous two jobs to run in
their entirety before being scheduled just once. While great for turnaround
time, this approach is quite bad for response time and interactivity. In-
deed, imagine sitting at a terminal, typing, and having to wait 10 seconds
to see a response from the system just because some other job got sched-
uled in front of yours: not too pleasant.

Thus, we are left with another problem: how can we build a scheduler
that is sensitive to response time?

OPERATING

SYSTEMS

[VERSION 0.80] WWW.OSTEP.ORG

Disadvantages:
1. Response time for interactive processes?
2. Very long jobs may starve (“starvation”)

Scheduling 17

Alternate between ready processes every fixed-
length time time slice.

Round Robin

SCHEDULING: INTRODUCTION 7

0 5 10 15 20 25 30

Time

A B C

Figure 7.6: SJF Again (Bad for Response Time)

0 5 10 15 20 25 30

Time

ABCABCABCABCABC

Figure 7.7: Round Robin (Good for Response Time)

7.6 Round Robin

To solve this problem, we will introduce a new scheduling algorithm.
This approach is classically known as Round-Robin (RR) scheduling [K64].
The basic idea is simple: instead of running jobs to completion, RR runs
a job for a time slice (sometimes called a scheduling quantum) and then
switches to the next job in the run queue. It repeatedly does so un-
til the jobs are finished. For this reason, RR is sometimes called time-
slicing. Note that the length of a time slice must be a multiple of the
timer-interrupt period; thus if the timer interrupts every 10 milliseconds,
the time slice could be 10, 20, or any other multiple of 10 ms.

To understand RR in more detail, let’s look at an example. Assume
three jobs A, B, and C arrive at the same time in the system, and that
they each wish to run for 5 seconds. An SJF scheduler runs each job to
completion before running another (Figure 7.6). In contrast, RR with a
time-slice of 1 second would cycle through the jobs quickly (Figure 7.7).

The average response time of RR is: 0+1+2
3 = 1; for SJF, average re-

sponse time is: 0+5+10
3 = 5.

As you can see, the length of the time slice is critical for RR. The shorter
it is, the better the performance of RR under the response-time metric.
However, making the time slice too short is problematic: suddenly the
cost of context switching will dominate overall performance. Thus, de-
ciding on the length of the time slice presents a trade-off to a system de-
signer, making it long enough to amortize the cost of switching without
making it so long that the system is no longer responsive.

Note that the cost of context switching does not arise solely from the
OS actions of saving and restoring a few registers. When programs run,

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

SCHEDULING: INTRODUCTION 7

0 5 10 15 20 25 30

Time

A B C

Figure 7.6: SJF Again (Bad for Response Time)

0 5 10 15 20 25 30

Time

ABCABCABCABCABC

Figure 7.7: Round Robin (Good for Response Time)

7.6 Round Robin

To solve this problem, we will introduce a new scheduling algorithm.
This approach is classically known as Round-Robin (RR) scheduling [K64].
The basic idea is simple: instead of running jobs to completion, RR runs
a job for a time slice (sometimes called a scheduling quantum) and then
switches to the next job in the run queue. It repeatedly does so un-
til the jobs are finished. For this reason, RR is sometimes called time-
slicing. Note that the length of a time slice must be a multiple of the
timer-interrupt period; thus if the timer interrupts every 10 milliseconds,
the time slice could be 10, 20, or any other multiple of 10 ms.

To understand RR in more detail, let’s look at an example. Assume
three jobs A, B, and C arrive at the same time in the system, and that
they each wish to run for 5 seconds. An SJF scheduler runs each job to
completion before running another (Figure 7.6). In contrast, RR with a
time-slice of 1 second would cycle through the jobs quickly (Figure 7.7).

The average response time of RR is: 0+1+2
3 = 1; for SJF, average re-

sponse time is: 0+5+10
3 = 5.

As you can see, the length of the time slice is critical for RR. The shorter
it is, the better the performance of RR under the response-time metric.
However, making the time slice too short is problematic: suddenly the
cost of context switching will dominate overall performance. Thus, de-
ciding on the length of the time slice presents a trade-off to a system de-
signer, making it long enough to amortize the cost of switching without
making it so long that the system is no longer responsive.

Note that the cost of context switching does not arise solely from the
OS actions of saving and restoring a few registers. When programs run,

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Round Robin:

Shortest Job First:

à Fair, no starvation, good in terms of response times
à Horrible turnaround times with equal job lengths

How long should
time slices be?

Context switches take time:
- Saving and restoring

register contents
- Cache and TLB contents

Scheduling 18

1. Each job runs for the same amount of time

2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)

4. Run-time of each job is known

Are there any sensible programs without I/O?

Workload assumptions

Scheduling System Architecture, Jan Reineke 19

Handling I/O

SCHEDULING: INTRODUCTION 9

falling in the forest, with no one to see it; it doesn’t matter that it ran.
A scheduler clearly has a decision to make when a job initiates an I/O

request, because the currently-running job won’t be using the CPU dur-
ing the I/O; it is blocked waiting for I/O completion. If the I/O is sent to
a hard disk drive, the process might be blocked for a few milliseconds or
longer, depending on the current I/O load of the drive. Thus, the sched-
uler should probably schedule another job on the CPU at that time.

The scheduler also has to make a decision when the I/O completes.
When that occurs, an interrupt is raised, and the OS runs and moves
the process that issued the I/O from blocked back to the ready state. Of
course, it could even decide to run the job at that point. How should the
OS treat each job?

To understand this issue better, let us assume we have two jobs, A and
B, which each need 50 ms of CPU time. However, there is one obvious
difference: A runs for 10 ms and then issues an I/O request (assume here
that I/Os each take 10 ms), whereas B simply uses the CPU for 50 ms and
performs no I/O. The scheduler runs A first, then B after (Figure 7.8).

0 20 40 60 80 100 120 140

Time

A A A A A B B B B B

CPU

Disk

Figure 7.8: Poor Use of Resources

Assume we are trying to build a STCF scheduler. How should such a
scheduler account for the fact that A is broken up into 5 10-ms sub-jobs,
whereas B is just a single 50-ms CPU demand? Clearly, just running one
job and then the other without considering how to take I/O into account
makes little sense.

0 20 40 60 80 100 120 140

Time

A A A A AB B B B B

CPU

Disk

Figure 7.9: Overlap Allows Better Use of Resources

A common approach is to treat each 10-ms sub-job of A as an indepen-
dent job. Thus, when the system starts, its choice is whether to schedule
a 10-ms A or a 50-ms B. With STCF, the choice is clear: choose the shorter
one, in this case A. Then, when the first sub-job of A has completed, only
B is left, and it begins running. Then a new sub-job of A is submitted,
and it preempts B and runs for 10 ms. Doing so allows for overlap, with

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Poor resource utilization:

SCHEDULING: INTRODUCTION 9

falling in the forest, with no one to see it; it doesn’t matter that it ran.
A scheduler clearly has a decision to make when a job initiates an I/O

request, because the currently-running job won’t be using the CPU dur-
ing the I/O; it is blocked waiting for I/O completion. If the I/O is sent to
a hard disk drive, the process might be blocked for a few milliseconds or
longer, depending on the current I/O load of the drive. Thus, the sched-
uler should probably schedule another job on the CPU at that time.

The scheduler also has to make a decision when the I/O completes.
When that occurs, an interrupt is raised, and the OS runs and moves
the process that issued the I/O from blocked back to the ready state. Of
course, it could even decide to run the job at that point. How should the
OS treat each job?

To understand this issue better, let us assume we have two jobs, A and
B, which each need 50 ms of CPU time. However, there is one obvious
difference: A runs for 10 ms and then issues an I/O request (assume here
that I/Os each take 10 ms), whereas B simply uses the CPU for 50 ms and
performs no I/O. The scheduler runs A first, then B after (Figure 7.8).

0 20 40 60 80 100 120 140

Time

A A A A A B B B B B

CPU

Disk

Figure 7.8: Poor Use of Resources

Assume we are trying to build a STCF scheduler. How should such a
scheduler account for the fact that A is broken up into 5 10-ms sub-jobs,
whereas B is just a single 50-ms CPU demand? Clearly, just running one
job and then the other without considering how to take I/O into account
makes little sense.

0 20 40 60 80 100 120 140

Time

A A A A AB B B B B

CPU

Disk

Figure 7.9: Overlap Allows Better Use of Resources

A common approach is to treat each 10-ms sub-job of A as an indepen-
dent job. Thus, when the system starts, its choice is whether to schedule
a 10-ms A or a 50-ms B. With STCF, the choice is clear: choose the shorter
one, in this case A. Then, when the first sub-job of A has completed, only
B is left, and it begins running. Then a new sub-job of A is submitted,
and it preempts B and runs for 10 ms. Doing so allows for overlap, with

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Goal: Overlap CPU
and disk utilization:

E.g. Bittorrent in combination with CPU-intensive jobs

Scheduling System Architecture, Jan Reineke 20

• How to combine the advantages of
Shortest-Time-to-Completion First and Round Robin?
– Short turnaround time (STCF)

– Short response time (Round Robin)

– Fairness (Round Robin)

• How to lift the final assumption?
(“Run-time of each job is known”)

Open questions

Scheduling System Architecture, Jan Reineke 21

1. Each job runs for the same amount of time

2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)

4. Run-time of each job is known

Workload assumptions

Scheduling System Architecture, Jan Reineke 22

Introduced in 1962 as part of the
Compatible Time-Sharing Systems.

Turing Award 1990 for Fernando Corbato (USA).

Variants of MLFQ found in
Windows, MacOS, and Linux.

Multi-Level Feedback Queue (MLFQ)

Scheduling System Architecture, Jan Reineke 23

Make the impossible possible:

• Short response times for interactive processes

• Short average turnaround time

… with a priori unknown run-times.

Multi-Level Feedback Queue: Goals

Basic idea:
Learn from history, as e.g. with caches.

Scheduling System Architecture, Jan Reineke 24

Rule 1: Priority(A) > Priority(B)
à A runs

Rule 2: Priority(A) = Priority(B)
à Round Robin between A and B

Multi-Level Feedback Queue: Basic rules
SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 3

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

[Low Priority]

[High Priority]

D

C

A B

Figure 8.1: MLFQ Example

stand how job priority changes over time. And that, in a surprise only
to those who are reading a chapter from this book for the first time, is
exactly what we will do next.

8.2 Attempt #1: How to Change Priority

We now must decide how MLFQ is going to change the priority level
of a job (and thus which queue it is on) over the lifetime of a job. To do
this, we must keep in mind our workload: a mix of interactive jobs that
are short-running (and may frequently relinquish the CPU), and some
longer-running “CPU-bound” jobs that need a lot of CPU time but where
response time isn’t important. Here is our first attempt at a priority-
adjustment algorithm:

• Rule 3: When a job enters the system, it is placed at the highest
priority (the topmost queue).

• Rule 4a: If a job uses up an entire time slice while running, its pri-
ority is reduced (i.e., it moves down one queue).

• Rule 4b: If a job gives up the CPU before the time slice is up, it stays
at the same priority level.

Example 1: A Single Long-Running Job

Let’s look at some examples. First, we’ll look at what happens when there
has been a long running job in the system. Figure 8.2 shows what happens
to this job over time in a three-queue scheduler.

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

ß
M

ul
ti-

le
ve

l à
But: How are priorities set?

Scheduling System Architecture, Jan Reineke 25

• Processes alternate between I/O and CPU work

• Assumption:
Run-time of the next CPU burst (job) will be similar
to run-time of previous CPU burst of the same process

Learning from history

Scheduling System Architecture, Jan Reineke 26

• Rule 3: Processes start at top priority

• Rule 4a: Priority of processes that use their entire
time slice is reduced

• Rule 4b: Priority of processes that do not use their
entire time slice is not reduced

Multi-Level Feedback Queue:
Determination of priorities

à Probably interactive processes

à Probably high run-time

Scheduling System Architecture, Jan Reineke 27

Example 1: One long job
4

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE

Q2

Q1

Q0

0 50 100 150 200

Figure 8.2: Long-running Job Over Time

As you can see in the example, the job enters at the highest priority
(Q2). After a single time-slice of 10 ms, the scheduler reduces the job’s
priority by one, and thus the job is on Q1. After running at Q1 for a time
slice, the job is finally lowered to the lowest priority in the system (Q0),
where it remains. Pretty simple, no?

Example 2: Along Came A Short Job

Now let’s look at a more complicated example, and hopefully see how
MLFQ tries to approximate SJF. In this example, there are two jobs: A,
which is a long-running CPU-intensive job, and B, which is a short-running
interactive job. Assume A has been running for some time, and then B ar-
rives. What will happen? Will MLFQ approximate SJF for B?

Figure 8.3 plots the results of this scenario. A (shown in black) is run-
ning along in the lowest-priority queue (as would any long-running CPU-
intensive jobs); B (shown in gray) arrives at time T = 100, and thus is

Q2

Q1

Q0

0 50 100 150 200

Figure 8.3: Along Came An Interactive Job

OPERATING

SYSTEMS

[VERSION 0.81] WWW.OSTEP.ORG

High priority

Low priority

Scheduling System Architecture, Jan Reineke 28

Example 2: A short job joins

4
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q2

Q1

Q0

0 50 100 150 200

Figure 8.2: Long-running Job Over Time

As you can see in the example, the job enters at the highest priority
(Q2). After a single time-slice of 10 ms, the scheduler reduces the job’s
priority by one, and thus the job is on Q1. After running at Q1 for a time
slice, the job is finally lowered to the lowest priority in the system (Q0),
where it remains. Pretty simple, no?

Example 2: Along Came A Short Job

Now let’s look at a more complicated example, and hopefully see how
MLFQ tries to approximate SJF. In this example, there are two jobs: A,
which is a long-running CPU-intensive job, and B, which is a short-running
interactive job. Assume A has been running for some time, and then B ar-
rives. What will happen? Will MLFQ approximate SJF for B?

Figure 8.3 plots the results of this scenario. A (shown in black) is run-
ning along in the lowest-priority queue (as would any long-running CPU-
intensive jobs); B (shown in gray) arrives at time T = 100, and thus is

Q2

Q1

Q0

0 50 100 150 200

Figure 8.3: Along Came An Interactive Job

OPERATING

SYSTEMS

[VERSION 0.81] WWW.OSTEP.ORG

à Approximates Shortest Time-to-Completion First
Scheduling

System Architecture, Jan Reineke 29

High priority

Low priority

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 5

Q2

Q1

Q0

0 50 100 150 200

Figure 8.4: A Mixed I/O-intensive and CPU-intensive Workload

inserted into the highest queue; as its run-time is short (only 20 ms), B
completes before reaching the bottom queue, in two time slices; then A
resumes running (at low priority).

From this example, you can hopefully understand one of the major
goals of the algorithm: because it doesn’t know whether a job will be a
short job or a long-running job, it first assumes it might be a short job, thus
giving the job high priority. If it actually is a short job, it will run quickly
and complete; if it is not a short job, it will slowly move down the queues,
and thus soon prove itself to be a long-running more batch-like process.
In this manner, MLFQ approximates SJF.

Example 3: What About I/O?

Let’s now look at an example with some I/O. As Rule 4b states above, if a
process gives up the processor before using up its time slice, we keep it at
the same priority level. The intent of this rule is simple: if an interactive
job, for example, is doing a lot of I/O (say by waiting for user input from
the keyboard or mouse), it will relinquish the CPU before its time slice is
complete; in such case, we don’t wish to penalize the job and thus simply
keep it at the same level.

Figure 8.4 shows an example of how this works, with an interactive job
B (shown in gray) that needs the CPU only for 1 ms before performing an
I/O competing for the CPU with a long-running batch job A (shown in
black). The MLFQ approach keeps B at the highest priority because B
keeps releasing the CPU; if B is an interactive job, MLFQ further achieves
its goal of running interactive jobs quickly.

Problems With Our Current MLFQ

We thus have a basic MLFQ. It seems to do a fairly good job, sharing the
CPU fairly between long-running jobs, and letting short or I/O-intensive
interactive jobs run quickly. Unfortunately, the approach we have devel-
oped thus far contains serious flaws. Can you think of any?

(This is where you pause and think as deviously as you can)

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Example 3:
I/O-intensive + CPU-intensive processes

àLow response time for
interactive process

àAdvantage over pure
Round Robin?!

Scheduling
System Architecture, Jan Reineke 30

High priority

Low priority

Problem 1: “starvation”: long-running jobs may
never get to run

So all is good?

6
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q2

Q1

Q0

0 50 100 150 200

Q2

Q1

Q0

0 50 100 150 200

Figure 8.5: Without (Left) and With (Right) Priority Boost

First, there is the problem of starvation: if there are “too many” in-
teractive jobs in the system, they will combine to consume all CPU time,
and thus long-running jobs will never receive any CPU time (they starve).
We’d like to make some progress on these jobs even in this scenario.

Second, a smart user could rewrite their program to game the sched-
uler. Gaming the scheduler generally refers to the idea of doing some-
thing sneaky to trick the scheduler into giving you more than your fair
share of the resource. The algorithm we have described is susceptible to
the following attack: before the time slice is over, issue an I/O operation
(to some file you don’t care about) and thus relinquish the CPU; doing so
allows you to remain in the same queue, and thus gain a higher percent-
age of CPU time. When done right (e.g., by running for 99% of a time slice
before relinquishing the CPU), a job could nearly monopolize the CPU.

Finally, a program may change its behavior over time; what was CPU-
bound may transition to a phase of interactivity. With our current ap-
proach, such a job would be out of luck and not be treated like the other
interactive jobs in the system.

8.3 Attempt #2: The Priority Boost

Let’s try to change the rules and see if we can avoid the problem of
starvation. What could we do in order to guarantee that CPU-bound jobs
will make some progress (even if it is not much?).

The simple idea here is to periodically boost the priority of all the jobs
in system. There are many ways to achieve this, but let’s just do some-
thing simple: throw them all in the topmost queue; hence, a new rule:

• Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

Our new rule solves two problems at once. First, processes are guar-
anteed not to starve: by sitting in the top queue, a job will share the CPU

OPERATING

SYSTEMS

[VERSION 0.81] WWW.OSTEP.ORG

Scheduling
System Architecture, Jan Reineke 31

Rule 5: Every S time units boost the priority of
all jobs

Priority boost

à How should S be chosen? à “Voodoo” constant

6
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q0

Q1

Q2

0 50 100 150 200

Q0

Q1

Q2

0 50 100 150 200

B
o

o
st

B
o

o
st

B
o

o
st

B
o

o
st

Figure 8.5: Without (Left) and With (Right) Priority Boost

First, there is the problem of starvation: if there are “too many” in-
teractive jobs in the system, they will combine to consume all CPU time,
and thus long-running jobs will never receive any CPU time (they starve).
We’d like to make some progress on these jobs even in this scenario.

Second, a smart user could rewrite their program to game the sched-
uler. Gaming the scheduler generally refers to the idea of doing some-
thing sneaky to trick the scheduler into giving you more than your fair
share of the resource. The algorithm we have described is susceptible to
the following attack: before the time slice is over, issue an I/O operation
(to some file you don’t care about) and thus relinquish the CPU; doing so
allows you to remain in the same queue, and thus gain a higher percent-
age of CPU time. When done right (e.g., by running for 99% of a time slice
before relinquishing the CPU), a job could nearly monopolize the CPU.

Finally, a program may change its behavior over time; what was CPU-
bound may transition to a phase of interactivity. With our current ap-
proach, such a job would be out of luck and not be treated like the other
interactive jobs in the system.

8.3 Attempt #2: The Priority Boost

Let’s try to change the rules and see if we can avoid the problem of
starvation. What could we do in order to guarantee that CPU-bound jobs
will make some progress (even if it is not much?).

The simple idea here is to periodically boost the priority of all the jobs
in system. There are many ways to achieve this, but let’s just do some-
thing simple: throw them all in the topmost queue; hence, a new rule:

• Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

Our new rule solves two problems at once. First, processes are guar-
anteed not to starve: by sitting in the top queue, a job will share the CPU

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

6
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q0

Q1

Q2

0 50 100 150 200

Q0

Q1

Q2

0 50 100 150 200

B
o
o
st

B
o
o
st

B
o
o
st

B
o
o
st

Figure 8.5: Without (Left) and With (Right) Priority Boost

First, there is the problem of starvation: if there are “too many” in-
teractive jobs in the system, they will combine to consume all CPU time,
and thus long-running jobs will never receive any CPU time (they starve).
We’d like to make some progress on these jobs even in this scenario.

Second, a smart user could rewrite their program to game the sched-
uler. Gaming the scheduler generally refers to the idea of doing some-
thing sneaky to trick the scheduler into giving you more than your fair
share of the resource. The algorithm we have described is susceptible to
the following attack: before the time slice is over, issue an I/O operation
(to some file you don’t care about) and thus relinquish the CPU; doing so
allows you to remain in the same queue, and thus gain a higher percent-
age of CPU time. When done right (e.g., by running for 99% of a time slice
before relinquishing the CPU), a job could nearly monopolize the CPU.

Finally, a program may change its behavior over time; what was CPU-
bound may transition to a phase of interactivity. With our current ap-
proach, such a job would be out of luck and not be treated like the other
interactive jobs in the system.

8.3 Attempt #2: The Priority Boost

Let’s try to change the rules and see if we can avoid the problem of
starvation. What could we do in order to guarantee that CPU-bound jobs
will make some progress (even if it is not much?).

The simple idea here is to periodically boost the priority of all the jobs
in system. There are many ways to achieve this, but let’s just do some-
thing simple: throw them all in the topmost queue; hence, a new rule:

• Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

Our new rule solves two problems at once. First, processes are guar-
anteed not to starve: by sitting in the top queue, a job will share the CPU

OPERATING

SYSTEMS

[VERSION 0.90] WWW.OSTEP.ORG

Scheduling 32

Problem 2: “Gaming” the system
à Initiate short I/O shortly before end of time slice

Solution?

So all is good?

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 7

Q2

Q1

Q0

0 50 100 150 200

Q2

Q1

Q0

0 50 100 150 200

Figure 8.6: Without (Left) and With (Right) Gaming Tolerance

with other high-priority jobs in a round-robin fashion, and thus eventu-
ally receive service. Second, if a CPU-bound job has become interactive,
the scheduler treats it properly once it has received the priority boost.

Let’s see an example. In this scenario, we just show the behavior of
a long-running job when competing for the CPU with two short-running
interactive jobs. Two graphs are shown in Figure 8.5. On the left, there is
no priority boost, and thus the long-running job gets starved once the two
short jobs arrive; on the right, there is a priority boost every 50 ms (which
is likely too small of a value, but used here for the example), and thus
we at least guarantee that the long-running job will make some progress,
getting boosted to the highest priority every 50 ms and thus getting to
run periodically.

Of course, the addition of the time period S leads to the obvious ques-
tion: what should S be set to? John Ousterhout, a well-regarded systems
researcher [O11], used to call such values in systems voo-doo constants,
because they seemed to require some form of black magic to set them cor-
rectly. Unfortunately, S has that flavor. If it is set too high, long-running
jobs could starve; too low, and interactive jobs may not get a proper share
of the CPU.

8.4 Attempt #3: Better Accounting

We now have one more problem to solve: how to prevent gaming of
our scheduler? The real culprit here, as you might have guessed, are
Rules 4a and 4b, which let a job retain its priority by relinquishing the
CPU before the time slice expires. So what should we do?

The solution here is to perform better accounting of CPU time at each
level of the MLFQ. Instead of forgetting how much of a time slice a pro-
cess used at a given level, the scheduler should keep track; once a process
has used its allotment, it is demoted to the next priority queue. Whether

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Scheduling System Architecture, Jan Reineke 33

(New) Rule 4: Reduce priority of a job when it has
exhausted its budget at a priority level

Better bookkeeping

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 7

Q2

Q1

Q0

0 50 100 150 200

Q2

Q1

Q0

0 50 100 150 200

Figure 8.6: Without (Left) and With (Right) Gaming Tolerance

with other high-priority jobs in a round-robin fashion, and thus eventu-
ally receive service. Second, if a CPU-bound job has become interactive,
the scheduler treats it properly once it has received the priority boost.

Let’s see an example. In this scenario, we just show the behavior of
a long-running job when competing for the CPU with two short-running
interactive jobs. Two graphs are shown in Figure 8.5. On the left, there is
no priority boost, and thus the long-running job gets starved once the two
short jobs arrive; on the right, there is a priority boost every 50 ms (which
is likely too small of a value, but used here for the example), and thus
we at least guarantee that the long-running job will make some progress,
getting boosted to the highest priority every 50 ms and thus getting to
run periodically.

Of course, the addition of the time period S leads to the obvious ques-
tion: what should S be set to? John Ousterhout, a well-regarded systems
researcher [O11], used to call such values in systems voo-doo constants,
because they seemed to require some form of black magic to set them cor-
rectly. Unfortunately, S has that flavor. If it is set too high, long-running
jobs could starve; too low, and interactive jobs may not get a proper share
of the CPU.

8.4 Attempt #3: Better Accounting

We now have one more problem to solve: how to prevent gaming of
our scheduler? The real culprit here, as you might have guessed, are
Rules 4a and 4b, which let a job retain its priority by relinquishing the
CPU before the time slice expires. So what should we do?

The solution here is to perform better accounting of CPU time at each
level of the MLFQ. Instead of forgetting how much of a time slice a pro-
cess used at a given level, the scheduler should keep track; once a process
has used its allotment, it is demoted to the next priority queue. Whether

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

SCHEDULING:
THE MULTI-LEVEL FEEDBACK QUEUE 7

Q2

Q1

Q0

0 50 100 150 200

Q2

Q1

Q0

0 50 100 150 200

Figure 8.6: Without (Left) and With (Right) Gaming Tolerance

with other high-priority jobs in a round-robin fashion, and thus eventu-
ally receive service. Second, if a CPU-bound job has become interactive,
the scheduler treats it properly once it has received the priority boost.

Let’s see an example. In this scenario, we just show the behavior of
a long-running job when competing for the CPU with two short-running
interactive jobs. Two graphs are shown in Figure 8.5 (page 6). On the left,
there is no priority boost, and thus the long-running job gets starved once
the two short jobs arrive; on the right, there is a priority boost every 50
ms (which is likely too small of a value, but used here for the example),
and thus we at least guarantee that the long-running job will make some
progress, getting boosted to the highest priority every 50 ms and thus
getting to run periodically.

Of course, the addition of the time period S leads to the obvious ques-
tion: what should S be set to? John Ousterhout, a well-regarded systems
researcher [O11], used to call such values in systems voo-doo constants,
because they seemed to require some form of black magic to set them cor-
rectly. Unfortunately, S has that flavor. If it is set too high, long-running
jobs could starve; too low, and interactive jobs may not get a proper share
of the CPU.

8.4 Attempt #3: Better Accounting

We now have one more problem to solve: how to prevent gaming of
our scheduler? The real culprit here, as you might have guessed, are
Rules 4a and 4b, which let a job retain its priority by relinquishing the
CPU before the time slice expires. So what should we do?

The solution here is to perform better accounting of CPU time at each
level of the MLFQ. Instead of forgetting how much of a time slice a pro-
cess used at a given level, the scheduler should keep track; once a process
has used its allotment, it is demoted to the next priority queue. Whether

c© 2014, ARPACI-DUSSEAU

THREE

EASY

PIECES

Scheduling System Architecture, Jan Reineke 34

Rule 1: Priority(A) > Priority(B)
à A runs

Rule 2: Priority(A) = Priority(B)
à Round Robin between A and B

Rule 3: Processes start at top priority
Rule 4: Reduce priority of a job when it has
exhausted its budget at a priority level
Rule 5: Every S time units boost the
priority of all jobs (that haven’t been
scheduled)

MLFQ: Summary

à Against
starvation

àPrefers
short jobs

à “Learning”

Scheduling System Architecture, Jan Reineke 35

Lower priority à longer time slices

MLFQ: Fine tuning

8
SCHEDULING:

THE MULTI-LEVEL FEEDBACK QUEUE

Q2

Q1

Q0

0 50 100 150 200

Figure 8.7: Lower Priority, Longer Quanta

it uses the time slice in one long burst or many small ones does not matter.
We thus rewrite Rules 4a and 4b to the following single rule:

• Rule 4: Once a job uses up its time allotment at a given level (re-
gardless of how many times it has given up the CPU), its priority is
reduced (i.e., it moves down one queue).

Let’s look at an example. Figure 8.6 shows what happens when a
workload tries to game the scheduler with the old Rules 4a and 4b (on
the left) as well the new anti-gaming Rule 4. Without any protection from
gaming, a process can issue an I/O just before a time slice ends and thus
dominate CPU time. With such protections in place, regardless of the
I/O behavior of the process, it slowly moves down the queues, and thus
cannot gain an unfair share of the CPU.

8.5 Tuning MLFQ And Other Issues

A few other issues arise with MLFQ scheduling. One big question is
how to parameterize such a scheduler. For example, how many queues
should there be? How big should the time slice be per queue? How often
should priority be boosted in order to avoid starvation and account for
changes in behavior? There are no easy answers to these questions, and
thus only some experience with workloads and subsequent tuning of the
scheduler will lead to a satisfactory balance.

For example, most MLFQ variants allow for varying time-slice length
across different queues. The high-priority queues are usually given short
time slices; they are comprised of interactive jobs, after all, and thus
quickly alternating between them makes sense (e.g., 10 or fewer millisec-
onds). The low-priority queues, in contrast, contain long-running jobs
that are CPU-bound; hence, longer time slices work well (e.g., 100s of
ms). Figure 8.7 shows an example in which two long-running jobs run
for 10 ms at the highest queue, 20 in the middle, and 40 at the lowest.

OPERATING

SYSTEMS

[VERSION 0.81] WWW.OSTEP.ORG

Minimizes
overhead

Scheduling
System Architecture, Jan Reineke 36

Optimization goals:
– Maximizing throughput
– Minimizing turnaround time
– Minimizing response time
– Fairness:

No process should have to wait forever

Quiz: Optimization goals

Which scheduling algorithms are optimal?

à Round
Robin

à STCF

Scheduling System Architecture, Jan Reineke 37

• Schedulers must support different types of processes
with different goals:
– interactive vs non-interactive processes

• Properties of processes are a priori unknown
– Can be learned over time

Summary

Scheduling System Architecture, Jan Reineke 38

• Shortest Time-to-Completion First (STCF):
– Optimal w.r.t. average turnaround time
– Starvation possible

• Round Robin:
– No starvation, good in terms of reponse time
– Poor average turnaround time

• Multi-level Feedback Queue (MLFQ):
– Gives preference to interactive, short jobs like STCF
– No starvation
– Critical: “Voodoo” constants:

• Length of time slices?
• Number of priority levels?
• Time budget at each priority level?

Summary

Scheduling System Architecture, Jan Reineke 39

