
Persistence:
I/O Devices

OSTEP Chapter 36:
http://pages.cs.wisc.edu/~remzi/OSTEP/file-devices.pdf

Jan Reineke
Universität des Saarlandes

System Architecture, Jan Reineke 1Persistence: I/O Devices

What good is a computer without any I/O devices?

• touchscreen, display, keyboard, hard disk, ...
à little ;-)

We would like:
• HW that will let us plug in different devices

• OS that can interact with many combinations

System Architecture, Jan Reineke 2

Motivation

Persistence: I/O Devices

System Architecture, Jan Reineke 3

Hardware support for I/O

CPU RAM

Graphics

Memory Bus
General I/O Bus
(e.g. PCI-Express)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

Why use hierarchical buses?
Persistence: I/O Devices

System Architecture, Jan Reineke 4

Canonical device

COMMAND DATA

OS read/writes to these

Device register:

Hidden internals: ???

STATUS

Persistence: I/O Devices

System Architecture, Jan Reineke 5

Canonical device

COMMAND DATADevice register:

Hidden internals:
Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

STATUS

Some devices have a combined STATUS/COMMAND register

OS read/writes to these

System Architecture, Jan Reineke 6

Canonical device

COMMAND DATADevice register:

Hidden internals:
Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

STATUS

Some devices have a combined STATUS/COMMAND register
à Project 2

OS read/writes to these

System Architecture, Jan Reineke 7

Example Write protocol

STATUS COMMAND DATA

???

while (STATUS == BUSY)
;

Write data to DATA register

Write command to COMMAND register

while (STATUS == BUSY)
;

CPU:

Disk:

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

Persistence: I/O Devices System Architecture, Jan Reineke 8

ACPU:

Disk: C

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

Persistence: I/O Devices System Architecture, Jan Reineke 9

ACPU:

Disk: C

A wants to do I/O

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

Persistence: I/O Devices System Architecture, Jan Reineke 10

1

ACPU:

Disk: C

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

Persistence: I/O Devices System Architecture, Jan Reineke 11

1 2

ACPU:

Disk: AC

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

Persistence: I/O Devices System Architecture, Jan Reineke 12

1 2

ACPU:

Disk: AC

3

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

Persistence: I/O Devices System Architecture, Jan Reineke 13

1 2 4
3

ACPU:

Disk: C A

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

Persistence: I/O Devices System Architecture, Jan Reineke 14

1 2 4
3

ACPU:

Disk: C A

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

Persistence: I/O Devices System Architecture, Jan Reineke 15

1 2 4
3

A BCPU:

Disk: C A

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

How to avoid “busy waiting” (“spinning”)? Interrupts!

1 2 4
3

A BCPU:

Disk: C A

while (STATUS == BUSY) // 1

wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

wait for interrupt;

Persistence: I/O Devices System Architecture, Jan Reineke 17

2
3,4

A BCPU:

Disk: C A

B B AA

1

while (STATUS == BUSY) // 1

wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

wait for interrupt;

Overlap CPU computations and I/O via interrupts!

Persistence: I/O Devices System Architecture, Jan Reineke 18

Fast device: Better to spin than take interrupt overhead
– Device time unknown?

Hybrid approach (spin then use interrupts)

Flood of interrupts arrive:
– Can lead to livelock (always handling interrupts)

– Better to ignore interrupts while making some progress
handling them

– “Interrupt coalescing”
(batch together several interrupts)

Interrupts vs. Polling

Are interrupts ever worse than polling?

Persistence: I/O Devices System Architecture, Jan Reineke 19

• Status checks: polling vs. interrupts

• Data: Programmed-IO vs. DMA

• Control: special instructions vs. memory-mapped I/O

Protocol variants

STATUS COMMAND DATA

???

Persistence: I/O Devices System Architecture, Jan Reineke 20

Programmed I/O (PIO):
– CPU directly tells device what the data is

Direct Memory Access (DMA):
– CPU leaves data in memory

– Device reads data directly from memory

Programmed I/O vs.
Direct Memory Access

Persistence: I/O Devices System Architecture, Jan Reineke 21

2
3,4

A BCPU:

Disk: C A

B B AA

1

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

Persistence: I/O Devices System Architecture, Jan Reineke 22

2
3,4

A BCPU:

Disk: C A

B B AA

1

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

Persistence: I/O Devices System Architecture, Jan Reineke 23

ACPU:

Disk: C A

B B A

1 3,4

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

Persistence: I/O Devices System Architecture, Jan Reineke 24

• Status checks: polling vs. interrupts

• Data: Programmed-IO vs. DMA

• Control: special instructions vs. memory-mapped I/O

Protocol variants

STATUS COMMAND DATA

???

Persistence: I/O Devices System Architecture, Jan Reineke 25

ACPU:

Disk: C A

B B A

1 3,4

while (STATUS == BUSY) // 1

;

Write data to DATA register // 2

Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

;

How does OS read and write registers?
26

Special instructions:
– each device has separate port
– in/out instructions (x86) communicate with device

Memory-Mapped I/O:
– HW maps registers into address space
– Loads and stores are forwarded to the respective devices

Doesn’t matter much
(both are used)

Special instructions vs.
Memory-Mapped I/O

Persistence: I/O Devices System Architecture, Jan Reineke 27

• Status checks: polling vs. interrupts

• Data: Programmed-IO vs. DMA

• Control: special instructions vs. memory-mapped I/O

Protocol variants

STATUS COMMAND DATA

???

Persistence: I/O Devices System Architecture, Jan Reineke 28

Better: new driver for each new device, but
standardized interfaces

System Architecture, Jan Reineke 29

Variety is a challenge

Problem:
many, many devices
each has its own protocol

New OS variant for each new device?

Drivers are 70% of Linux source code

Persistence: I/O Devices

System Architecture, Jan Reineke 30

Example: Abstraction layers

Application

File system

Driver

Hard disk

fixed interface for all
hard disks

new driver for each
new device

Persistence: I/O Devices

Overlap I/O and computations whenever possible:
– Interrupts

– Direct Memory Access

System Architecture, Jan Reineke 31

Summary: I/O Devices

Persistence: I/O Devices

