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What good is a computer without any I/O devices?

• touchscreen, display, keyboard, hard disk, ... 
à little ;-)

We would like:
• HW that will let us plug in different devices

• OS that can interact with many combinations
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Motivation
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Hardware support for I/O

CPU RAM

Graphics

Memory Bus
General I/O Bus
(e.g. PCI-Express)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

Why use hierarchical buses?
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Canonical device

COMMAND DATA

OS read/writes to these

Device register:

Hidden internals: ???

STATUS
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Canonical device

COMMAND DATADevice register:

Hidden internals:
Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

STATUS

Some devices have a combined STATUS/COMMAND register

OS read/writes to these
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Canonical device

COMMAND DATADevice register:

Hidden internals:
Microcontroller (CPU+RAM)
Extra RAM
Other special-purpose chips

STATUS

Some devices have a combined STATUS/COMMAND register
à Project 2

OS read/writes to these
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Example Write protocol

STATUS COMMAND DATA

???

while (STATUS == BUSY)
;

Write data to DATA register       

Write command to COMMAND register 

while (STATUS == BUSY) 
;



CPU:

Disk:

while (STATUS == BUSY)             // 1

;

Write data to DATA register // 2

Write command to COMMAND register      // 3

while (STATUS == BUSY)                 // 4

;
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ACPU:

Disk: C

while (STATUS == BUSY)             // 1

;

Write data to DATA register // 2

Write command to COMMAND register      // 3

while (STATUS == BUSY)                 // 4

;
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ACPU:

Disk: C

A wants to do I/O

while (STATUS == BUSY)             // 1

;

Write data to DATA register // 2

Write command to COMMAND register      // 3

while (STATUS == BUSY)                 // 4

;
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1

ACPU:

Disk: C

while (STATUS == BUSY)             // 1

;

Write data to DATA register // 2

Write command to COMMAND register      // 3

while (STATUS == BUSY)                 // 4

;
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1 2

ACPU:

Disk: AC

while (STATUS == BUSY)             // 1

;

Write data to DATA register // 2

Write command to COMMAND register      // 3

while (STATUS == BUSY)                 // 4

;
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1 2

ACPU:

Disk: AC

3

while (STATUS == BUSY)             // 1

;

Write data to DATA register // 2

Write command to COMMAND register      // 3

while (STATUS == BUSY)                 // 4

;
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1 2 4
3

ACPU:

Disk: C A

while (STATUS == BUSY)             // 1

;

Write data to DATA register // 2

Write command to COMMAND register      // 3

while (STATUS == BUSY)                 // 4

;
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1 2 4
3

ACPU:

Disk: C A

while (STATUS == BUSY)             // 1

;

Write data to DATA register // 2

Write command to COMMAND register      // 3

while (STATUS == BUSY)                 // 4

;
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1 2 4
3

A BCPU:

Disk: C A

while (STATUS == BUSY)             // 1

;

Write data to DATA register // 2

Write command to COMMAND register      // 3

while (STATUS == BUSY)                 // 4

;

How to avoid “busy waiting” (“spinning”)? Interrupts!



1 2 4
3

A BCPU:

Disk: C A

while (STATUS == BUSY)             // 1

wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register      // 3

while (STATUS == BUSY)                 // 4

wait for interrupt;
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2
3,4

A BCPU:

Disk: C A

B B AA

1

while (STATUS == BUSY)             // 1

wait for interrupt;

Write data to DATA register // 2

Write command to COMMAND register      // 3

while (STATUS == BUSY)                 // 4

wait for interrupt;

Overlap CPU computations and I/O via interrupts!
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Fast device: Better to spin than take interrupt overhead
– Device time unknown? 

Hybrid approach (spin then use interrupts)

Flood of interrupts arrive:
– Can lead to livelock (always handling interrupts)

– Better to ignore interrupts while making some progress 
handling them

– “Interrupt coalescing” 
(batch together several interrupts)

Interrupts vs. Polling

Are interrupts ever worse than polling?
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• Status checks: polling vs. interrupts

• Data: Programmed-IO vs. DMA

• Control: special instructions vs. memory-mapped I/O

Protocol variants

STATUS COMMAND DATA

???
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Programmed I/O (PIO):
– CPU directly tells device what the data is

Direct Memory Access (DMA):
– CPU leaves data in memory

– Device reads data directly from memory

Programmed I/O vs. 
Direct Memory Access
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2
3,4

A BCPU:

Disk: C A

B B AA

1

while (STATUS == BUSY)             // 1

;

Write data to DATA register // 2

Write command to COMMAND register      // 3

while (STATUS == BUSY)                 // 4

;
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2
3,4

A BCPU:

Disk: C A

B B AA

1

while (STATUS == BUSY)             // 1

;

Write data to DATA register // 2

Write command to COMMAND register      // 3

while (STATUS == BUSY)                 // 4

;
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ACPU:

Disk: C A

B B A

1 3,4

while (STATUS == BUSY)             // 1

;

Write data to DATA register // 2

Write command to COMMAND register      // 3

while (STATUS == BUSY)                 // 4

;
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• Status checks: polling vs. interrupts

• Data: Programmed-IO vs. DMA

• Control: special instructions vs. memory-mapped I/O

Protocol variants

STATUS COMMAND DATA

???
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ACPU:

Disk: C A

B B A

1 3,4

while (STATUS == BUSY)             // 1

;

Write data to DATA register // 2

Write command to COMMAND register      // 3

while (STATUS == BUSY)                 // 4

;

How does OS read and write registers?
26



Special instructions:
–  each device has separate port
–  in/out instructions (x86) communicate with device

Memory-Mapped I/O:
–  HW maps registers into address space
–  Loads and stores are forwarded to the respective devices

Doesn’t matter much
(both are used)

Special instructions vs. 
Memory-Mapped I/O
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• Status checks: polling vs. interrupts

• Data: Programmed-IO vs. DMA

• Control: special instructions vs. memory-mapped I/O

Protocol variants

STATUS COMMAND DATA

???
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Better: new driver for each new device, but
standardized interfaces
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Variety is a challenge

Problem:
many, many devices
each has its own protocol

New OS variant for each new device?

Drivers are 70% of Linux source code
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Example: Abstraction layers

Application

File system

Driver

Hard disk

fixed interface for all 
hard disks

new driver for each 
new device
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Overlap I/O and computations whenever possible:
– Interrupts

– Direct Memory Access
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Summary: I/O Devices
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