Persistence:
[/O Devices

Motivation

What good is a computer without any I/O devices!

* touchscreen, display, keyboard, hard disk, ...
=2 little ;)

We would like:
 HW that will let us plug in different devices

* OS that can interact with many combinations

Hardware support for I/O

A

Why use hierarchical buses?

Persistence: [/O Devices

Canonical device

OS read/writes to these

/ \

Canonical device

OS read/writes to these

/ \
STATUS| | COMMAND | | DATA

Microcontroller (CPU+RAM)
Extra RAM

Other special-purpose chips

Some devices have a combined STATUS/COMMAND register

Canonical device

OS read/writes to these

/ \
STATUS| | COMMAND | | DATA

Microcontroller (CPU+RAM)
Extra RAM

Other special-purpose chips

Some devices have a combined STATUS/COMMAND register
—> Project 2

Example Write protocol

while (STATUS == BUSY)

Write data to DATA register
Write command to COMMAND register

while (STATUS == BUSY)

while (STATUS == BUSY) // 1
Write data to DATA register /] 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4

while (STATUS == BUSY) // 1
Write data to DATA register // 2
Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

A wants to do /O

|

while (STATUS == BUSY) // 1
Write data to DATA register // 2
Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

while (STATUS == BUSY) // 1
Write data to DATA register // 2
Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

while (STATUS == BUSY) // 1
Write data to DATA register /] 2
Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

while (STATUS == BUSY) // 1
Write data to DATA register // 2
Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

while (STATUS == BUSY) // 1
Write data to DATA register // 2
Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

while (STATUS == BUSY) // 1
Write data to DATA register // 2
Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

while (STATUS == BUSY) // 1

Write data to DATA register // 2
Write command to COMMAND register // 3
while (STATUS == BUSY) // 4

How to avoid “busy waiting” (“spinning”)? Interrupts !

while (STATUS == BUSY)
wait for interrupt;
Write data to DATA register
Write command to COMMAND register
while (STATUS == BUSY)

wait for interrupt;

// 1

/] 2
// 3
// 4

3,4
|) l

l —\
AB A B AB

while (STATUS == BUSY)

wait for interrupt;
Write data to DATA register
Write command to COMMAND register
while (STATUS == BUSY)

wait for interrupt;

// 1

/] 2
// 3
// 4

Interrupts vs. Polling

Are interrupts ever worse than polling?

Fast device: Better to spin than take interrupt overhead

— Device time unknown?
Hybrid approach (spin then use interrupts)

Flood of interrupts arrive:
— Can lead to livelock (always handling interrupts)

— Better to ignore interrupts while making some progress
handling them

¢ . »
— “Interrupt coalescing
(batch together several interrupts)

Protocol variants

STATUS| | COMMAND

polling interrupts

* Data: Programmed-IO vs. DMA

» Control: special instructions vs. memory-mapped /O

Programmed I/O wvs.
Direct Memory Access

Programmed /O (P10O):
— CPU directly tells device what the data is

Direct Memory Access (DMA):

— CPU leaves data in memory

— Device reads data directly from memory

3,4
|) l

l —\
AB A B AB

while (STATUS == BUSY)

Write data to DATA register
Write command to COMMAND register
while (STATUS == BUSY)

// 1

// 2
// 3
// 4

3,4
|) l

l —\
AB A B AB

while (STATUS == BUSY) // 1

Write datato DATA register———————————— /S D
Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

1 3,4
l |
A B B A

while (STATUS == BUSY) // 1

Write datato DATA register———————————— /S D
Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

Protocol variants

STATUS| | COMMAND

polling interrupts

Programmed- 1O DMA

» Control: special instructions vs. memory-mapped /O

1 3,4
l |
A B B A

while (STATUS == BUSY) // 1

Write datato DATA register————————————— /S D
Write command to COMMAND register // 3

while (STATUS == BUSY) // 4

How does OS read and write registers!

Special instructions vs.

Memory-Mapped I/O

Special instructions:
— each device has separate port

— in/out instructions (x86) communicate with device

Memory-Mapped 1/O:
— HW maps registers into address space

— Loads and stores are forwarded to the respective devices

Doesn’t matter much

(both are used)

Protocol variants

STATUS| | COMMAND

polling interrupts

Programmed- 1O DMA

special instructions memory-mapped /O

Variety is a challenge

Problem:

many, many devices

each has its own protocol

Example: Abstraction layers

[]

Application
........... File system fixed interface for all
Driver hard disks
Hard disk

new driver for each
new device

Summary: [/O Devices

