
Virtualization: The CPU
Mechanism: Limited direct execution

OSTEP Chapter 4+6:
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-intro.pdf
http://pages.cs.wisc.edu/~remzi/OSTEP/cpu-
mechanisms.pdf

Jan Reineke
Universität des Saarlandes

System Architecture, Jan Reineke 1Limited direct execution

Process = running program

Process state =
Everything that may influence the execution of

the process:
– PC (program counter) and other registers

– Address space: data + code

– Open files

System Architecture, Jan Reineke 2

What is a process?

Limited direct execution

Process ≠ Program:

• Program: static code and static data

• Process: dynamic instance of code and data

Can have multiple process instances
of the same program.

System Architecture, Jan Reineke 3

Processes versus Programs

Limited direct execution

System Architecture, Jan Reineke 4

code
static data

Program

CPU Memory

Process creation

Limited direct execution

System Architecture, Jan Reineke 5

Process creation

code
static data

Program

CPU Memory

code
static data
heap

stack

Process

Limited direct execution

Goal:
Give each process impression it alone is actively using
the CPU

System Architecture, Jan Reineke 6

Virtualizing the CPU

Approach:
Partition resources in time and space:
• Processor: partitioned in time
• Memory, Disk: partitioned in space (later)

Limited direct execution

Direct execution:

• User processes are run directly on hardware

• OS creates process and transfers control to starting
point (i.e., main())

System Architecture, Jan Reineke 7

How to provide good CPU performance?

Operating System

User processes

Hardware

Naive view:

Hardware

Operating System
User processes

More realistic:

Limited direct execution

Problems with direct execution?
1. Process wants to perform restricted operation

à Could read/write other process data (disk or memory)
2. Process could run forever (slow, buggy, or malicious)

à OS needs to be able to switch between processes
3. Process could do something slow (like I/O)

à OS wants to use resources efficiently
and switch CPU to other process

Solution: Limited direct execution
– OS and hardware maintain some control

System Architecture, Jan Reineke 8

How to provide good CPU performance?

Limited direct execution

How can processes be executed in a safe manner
and perform restricted operations?

Solution: two (or more) execution modes

• User process run in user mode = restricted mode
à no execution of restricted operations

• OS runs in kernel mode = unrestricted mode

System Architecture, Jan Reineke 9

Problem 1: Restricted operations

Limited direct execution

How can user process still perform restricted operations?

System Architecture, Jan Reineke 10

User
mode

Kernel
mode

system call

system call
completed

System calls = Function call into OS
+ change of privilege level

Limited direct execution

Problem 1: Restricted operations

System Architecture, Jan Reineke 11

Example: System call

Memory

Process P

K
ey

bo
ar

d

P would like to access I/O device via memory-mapped I/O
(more on this later).

Limited direct execution

System Architecture, Jan Reineke 12

Example: System call

Memory

Process P

sy
s_

re
ad

In user mode P can only see its own address space
(Address space of OS and other processes is hidden)

Limited direct execution

System Architecture, Jan Reineke 13

Example: System call

Memory

Process P

sy
s_

re
ad

P can ask the operating system via a system call to access the
I/O device:

MIPS code: 100: li $a0, 1234
104: li $v0, 1
108: syscall

MIPS convention:
Number of system call is
written into $v0,
parameter values in $a0.

Limited direct execution

System Architecture, Jan Reineke 14

Example: System call

Memory

Process P

Ta
st

at
ur

MIPS code:

100: li $a0, 1234
104: li $v0, 1
108: syscall

General flow upon system calls:
1. Switch to kernel mode
2. PC (and possibly other registers) saved by HW
3. PC is set to address in OS
4. System call is detected and processed
5. Switch back into user mode
6. Old PC+4 is reestablished and P resumes.

Limited direct execution

15

Example: System call

Memory

Process P

K
ey

bo
ar

d

MIPS code:

100: li $a0, 1234
104: li $v0, 1
108: syscall

General flow upon system calls:
1. Switch to kernel mode
2. PC (and possibly other registers) saved by HW
3. PC is set to address in OS
4. System call is detected and processed
5. Switch back into user mode
6. Old PC+4 is reestablished and P resumes.

buf
Exception
handlingO

ld
 P

C

Limited direct execution

User processes are not allowed to perform

• General memory accesses

• Directly interact with I/O devices
(e.g. hard disks or SSDs)

System calls check whether requested access is
permitted or not.

System Architecture, Jan Reineke 16

Which operations should be restricted?

Limited direct execution

• Processor starts OS in kernel mode
– OS initializes exception handling

– Only then the first user process is started

System Architecture, Jan Reineke 17

How is exception handling initialized?

Limited direct execution

System Architecture, Jan Reineke 18

Problem 2: How to take CPU away?

OS requirements for multitasking:

• Mechanism
to switch between processes

• Policy
to decide which process to schedule when

Limited direct execution

General principle:
Separation of mechanism and policy

• Policy:
Makes decisions to optimize performance metrics

• Mechanism:
Low-level code that implements the decision

System Architecture, Jan Reineke 19

Mechanisms versus policies

Limited direct execution

Question 2A: How does the OS gain control?

System Architecture, Jan Reineke 20

Mechanism for context switch

Question 2B: What execution context must be saved
restored upon context switch?

Limited direct execution

Option 1: Cooperative multitasking

• Trust user processes to relinquish CPU to OS
– E.g. via system calls (or page faults (later))
– Special system call yield():

offers OS to take over

System Architecture, Jan Reineke 21

Question 2A: How does the OS gain control?

Limited direct execution

System Architecture, Jan Reineke 22

Cooperative approach

P1

yield() call

Limited direct execution

System Architecture, Jan Reineke 23

Cooperative approach

yield() call

OS

Limited direct execution

System Architecture, Jan Reineke 24

Cooperative approach

yield() return

OS

Limited direct execution

System Architecture, Jan Reineke 25

Cooperative approach

yield() return

P2

Limited direct execution

• Disadvantage: Process can “misbehave” and
never relinquish control
– only solution: reboot!

• Not performed in modern operating systems
– Earlier in Windows 3.x, Mac OS 5 to 9, Atari ST

System Architecture, Jan Reineke 26

Cooperative approach

Limited direct execution

Option 2: Preemptive (true) multitasking

Periodic execution of OS code via hardware support:
– Hardware generates timer interrupt
– User processes cannot prevent these interrupts

System Architecture, Jan Reineke 27

Question 2A: How does the OS gain control?

User
mode

Kernel
mode

timer interrupt

Limited direct execution

Save context in process control block (PCB).

What information is stored in PCB?
• Process ID (PID)
• Process state (i.e., running, ready, or blocked)
• Registers, PC
• Pointers to open files
• Memory contents?

System Architecture, Jan Reineke 28

Question 2B: What context must be saved?

Limited direct execution

Operating system Hardware Program

Flow on MIPS system

Process A
…

Timer interrupt:
1. Move to kernel mode
2. Save current PC in epc register
3. Set cause register
4. Write address of exception
handling code into PC

Operating system Hardware Program

Process the exception:
1. Detect timer interrupt via cause register
2. Save registers of Process A

in its process control block
3. Decide which process to execute next
4. Copy data from process control block

of Process B into registers
and set epc register

5. Call eret (“exception return”)

Process B
…

On x86 systems hardware (not the OS)
saves the registers in memory

1. Switch to user mode
2. Copy epc into PC

30

When running process performs op that does not use
CPU, OS switches to process that needs CPU.

System Architecture, Jan Reineke 31

Problem 3:
Slow operations such as I/O

Running

Blocked

Ready

OS tracks mode of each process:

• Running: on the CPU

• Ready: waiting for the CPU

• Blocked: Waiting for I/O or
synchronization

Limited direct execution

OS maintains several queues:
• Ready queue:

contains all processes in mode “ready”
• Event queue: one queue per event:
– e.g. disk I/O and locks
– Contains all processes waiting for that event to complete

Policy determines which ready process to run
(later lecture)

System Architecture, Jan Reineke 32

Problem 3:
Slow operations such as I/O

Limited direct execution

• Direct execution makes processes fast

• Problem 1: Restricted operations
Solution: User and kernel mode + System calls

• Problem 2: Multitasking
Solution: Non-cooperative via timer interrupts

• Problem 3: Slow operations such as I/O
Solution: OS runs those processes that are

currently not waiting for I/O

System Architecture, Jan Reineke 33

Summary:
Limited direct execution

Limited direct execution

