ISA, pArchitecture, and
Bad News from the Real World

Roadmap: Computer architecture

1. Combinatorial circuits: Boolean
Algebra/Functions/Expressions/Synthesis
2. Number representations
3. Arithmetic Circuits:
G Addition, Multiplication, Division, ALU

Branch

[ALUControl, o
H0p [aLUSIC
22 Funct |RegDst
RegWrite

4. Sequential circuits: Flip-Flops, Registers,
SRAM, Moore and Mealy automata

5. Verilog

6. Instruction Set Architecture
7. Microarchitecture

8. Performance: RISC vs. CISC, Pipelining,
Memory Hierarchy

Abstraction layers in computer systems

Applications

Assembly programs

Assembler

Machine programs

Operating system

“What” a computer computes

For example: x86, ARM

implements

> Instruction set architecture (ISA)

i . “How” a computer works
icroarchitecture
mplements For example: Intel Skylake, AMD Zen 3
(both x86), Apple M1 (ARM)

Logic gates

implements

Transistors

What does it mean to

“correctly implement” an ISA?

Instruction set architecture (ISA)

L |

Microarchitecture

VS

How to formalize ISA?

What does it mean to

“correctly implement” an ISA?

Instruction set architecture (ISA)

1§

Microarchitecture

& H

What does “correct implementation” mean?!

For single-cycle processors!?

What does it mean to

“correctly implement” an ISA?

Instruction set architecture (ISA)

1§

Microarchitecture

& H

What does “correct implementation” mean?!

For a pipelined processors!

Back to formalization...

How to formalize ISA?

A weird instruction:
rdtsc:“read time-stamp counter”

“count number of CPU cycles since its reset”

\ 4 <

Instruction set architecture (ISA)

implements

Microarchitecture
[N R R

Memory Hierarchy System Architecture, Jan Reineke

Leaky abstractions

ISA

Pipeline

Instruction

Cache

Interconnect

Memory Hierarchy

Excursion: Microarchitectural Attacks

Leaky abstractions

ISA

Pipeline

Instruction

Cache

Interconnect

- How to fix it!

11

How to capture “microarchitectural leakage”

at ISA level?

Instruction set architecture (ISA)

1

Microarchitecture

o

Idea:

e Associate observations with instruction executions
* Two program executions are indistinguishable if
they generate the same sequence of observations

Example: Capturing Memory Hierarchy

Instruction set architecture (ISA)

1 Captures leakage via

Microarchitecture

S instruction cache

Introduce two types of observations: /
* Addresses of executed instructions

* Addresses accessed by memor\iilstructions

Captures leakage via
data cache

Revisiting the GnuPG example

X —1 Operation
for i <|d|-1 downto 0 do
Square
x «—x?mod n educe
if (d; = 1) then Multiply
x=xCmodn reduce

: S
endif e

reduce

done Square
return x reduce

Multiply

O O O O ||| N || -

reduce

beqgz x, vy
add w, X,

*

load w, [X]

beqz x, y

Fetch Decode | Execute,| Memory

What to do?

= Speculative Execution

I[f Reg[x] # O:

If Reg[x]

add w, X, vy
Fetch Decode | Execute | Memory
load w, [X]
0: t
Fetch Decode | Execute | Memory

beqz x,
add w,

load w,

*

y
Xy

[X]

beqz x, y

Fetch Decode Execute

Memory

add w, X,

y

I[fReg[x] # O:

Fetch

Decode

Execute

Memory

1. Guess branch target (via branch predictor)
2. Execute the following instructions speculatively
3. Throw away intermediate results in case of mis-speculation

Pipelining |

Parallel

execution
units

Front End

S——

4-6 pops

Reorder Buffer

Execution Engine

Caches

Out-of-order
execution +
Speculation

Goal: Access to data of other processes or the operating system,
(which should not be accessible)

Approach:
1. Perform illegal memory access speculatively

2. Extract data via ,covert channel® &

Spectre Attacks: Exploiting Speculative Execution
Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, Yuval Yarom

https://arxiv.org/search/cs?searchtype=author&query=Kocher,+P
https://arxiv.org/search/cs?searchtype=author&query=Genkin,+D
https://arxiv.org/search/cs?searchtype=author&query=Gruss,+D
https://arxiv.org/search/cs?searchtype=author&query=Haas,+W
https://arxiv.org/search/cs?searchtype=author&query=Hamburg,+M
https://arxiv.org/search/cs?searchtype=author&query=Lipp,+M
https://arxiv.org/search/cs?searchtype=author&query=Lipp,+M
https://arxiv.org/search/cs?searchtype=author&query=Mangard,+S
https://arxiv.org/search/cs?searchtype=author&query=Prescher,+T
https://arxiv.org/search/cs?searchtype=author&query=Schwarz,+M
https://arxiv.org/search/cs?searchtype=author&query=Yarom,+Y

1. Meltdown: User process attacks OS @

2. User process attacks other user process

Requires “Gadget code® in attacked process.

3. JavaScript attacks browser

Overcomes "browser sandboxing" protection mechanisms.

»JavaScript®

Code:

Added by browser:

Supposed to prevent illegal accesses.

—

if

(offset < bound) {

value = some array[offset];

tmp =

other data[(value>%bit)&l];

1. Is executed speculatively anyway.
Accessing arbitrary address.

Extracts a bit of “value”

JavaScript™ | if (offset < bound) {

Code: value = some array[offset

tmp =|other data[[(value>>bit)&Ll[l]

2. Secret-dependent memory access

“read time stamp counter”

time = rdtsc(); "’ﬂ"“msQ

Cache hit if extracted bit

memory access(&other data[0]);

delta0 = rdtsc() - time;

time = rdtsc();

Cache hit if extracted bit
was 1.

memory access(&other data[l]);

deltal = rdtsc() - time;

Challenges

* How to capture speculative execution

effects at [SA-level?

* How to prove ISA-level specification is
correctly implemented?

* How to test an ISA-level specification?

Further reading:

Marco Guarnieri, Boris Kopf, Jan Reineke, Pepe Vila:
Hardware-Software Contracts for Secure Speculation

IEEE Symposium on Security and Privacy, 2021 (best paper)
Preprint: https://arxiv.org/abs/2006.03841

Zilong Wang, Gideon Mohr, Klaus von Gleissenthall,

Jan Reineke, Marco Guarnieri:

Specification and Verification of Side-channel Security for
Open-source Processors via Leakage Contracts

Under submission
Preprint: https://arxiv.org/abs/2305.06979

