
ISA, µArchitecture, and
Bad News from the Real World

Jan Reineke
Universität des Saarlandes

System Architecture, Jan ReinekeMemory Hierarchy 1

Roadmap: Computer architecture

1. Combinatorial circuits: Boolean
Algebra/Functions/Expressions/Synthesis

2. Number representations
3. Arithmetic Circuits:

Addition, Multiplication, Division, ALU

4. Sequential circuits: Flip-Flops, Registers,
SRAM, Moore and Mealy automata

5. Verilog

6. Instruction Set Architecture
7. Microarchitecture

8. Performance: RISC vs. CISC, Pipelining,
Memory Hierarchy

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

Abstraction layers in computer systems

Applications

Operating system

Instruction set architecture (ISA)

Microarchitecture

Logic gates

Transistors

Machine programs

Assembly programs

Compiler

Assembler

implements

implements

implements

“What” a computer computes
For example: x86, ARM

“How” a computer works
For example: Intel Skylake, AMD Zen 3
(both x86), Apple M1 (ARM)

Memory Hierarchy System Architecture, Jan Reineke 4

What does it mean to
“correctly implement” an ISA?

Applications

Operating system

Instruction set architecture (ISA)

Microarchitecture

Logic gates

Transistors

Machine programs

Assembly programs

Compiler

Assembler

implements

implements

implements

Correctly?

How to formalize ISA?

Memory Hierarchy System Architecture, Jan Reineke 5

What does it mean to
“correctly implement” an ISA?

Applications

Operating system

Instruction set architecture (ISA)

Microarchitecture

Logic gates

Transistors

Machine programs

Assembly programs

Compiler

Assembler

implements

implements

implements

Correctly?

What does “correct implementation” mean?

For single-cycle processors?

Memory Hierarchy System Architecture, Jan Reineke 6

What does it mean to
“correctly implement” an ISA?

Applications

Operating system

Instruction set architecture (ISA)

Microarchitecture

Logic gates

Transistors

Machine programs

Assembly programs

Compiler

Assembler

implements

implements

implements

Correctly?

What does “correct implementation” mean?

For a pipelined processors?

Memory Hierarchy System Architecture, Jan Reineke 7

Memory Hierarchy System Architecture, Jan Reineke 8

Back to formalization…

How to formalize ISA?

A weird instruction:
 rdtsc:“read time-stamp counter”

“count number of CPU cycles since its reset”

Applications

Operating system

Instruction set architecture (ISA)

Microarchitecture

Logic gates

Transistors

Machine programs

Assembly programs

Compiler

Assembler

implements

implements

implements

leaks µarchitectural
effect into ISA state!

Memory Hierarchy System Architecture, Jan Reineke 9

Leaky abstractions

Microarchitecture
ISA

Data
Cache

Instruction
Cache

Pipeline
BPU

TLB

MMU

DRAM Interconnect

LLC

leaks µarchitectural
effect into ISA state!

Based on slides kindly provided by
Yuval Yarom, The University of Adelaide

Memory Hierarchy System Architecture, Jan Reineke 10

Excursion: Microarchitectural Attacks

Memory Hierarchy System Architecture, Jan Reineke 11

Leaky abstractions – How to fix it?

Microarchitecture
ISA

Data
Cache

Instruction
Cache

Pipeline
BPU

TLB

MMU

DRAM Interconnect

LLC

Can we
capture the

leakage at the
ISA level?

Memory Hierarchy System Architecture, Jan Reineke 12

How to capture “microarchitectural leakage”
at ISA level?

Applications

Operating system

Instruction set architecture (ISA)

Microarchitecture

Logic gates

Transistors

Machine programs

Assembly programs

Compiler

Assembler

implements

implements

implements

Idea:
• Associate observations with instruction executions
• Two program executions are indistinguishable if

they generate the same sequence of observations

Memory Hierarchy System Architecture, Jan Reineke 13

Example: Capturing Memory Hierarchy

Applications

Operating system

Instruction set architecture (ISA)

Microarchitecture

Logic gates

Transistors

Machine programs

Assembly programs

Compiler

Assembler

implements

implements

implements

Introduce two types of observations:
• Addresses of executed instructions
• Addresses accessed by memory instructions

Captures leakage via
data cache

Captures leakage via
instruction cache

Memory Hierarchy System Architecture, Jan Reineke 14

Revisiting the GnuPG example

x ⟵1
for i ⟵|d|-1 downto 0 do

x ⟵x2 mod n
if (di = 1) then

x = xC mod n
endif

done
return x

Operation x i di
1 2 101

Square 1 2 101

reduce 1 2 101

Multiply 11 2 101

reduce 11 2 101

Square 121 1 101

reduce 21 1 101

Square 441 0 101

reduce 41 0 101

Multiply 451 0 101

reduce 51 0 101

Pipelining and dependencies:
Control dependencies

beqz x, y
add w, x, y
...
load w, [x]

Fetch Decode Execute Memory

beqz x, y

Fetch Decode Execute Memory

add w, x, y
If Reg[x] ≠ 0:

Fetch Decode Execute Memory

load w, [x]
If Reg[x] = 0:

What to do?
à Speculative Execution

?

Pipelining and dependencies:
Speculative execution

beqz x, y
add w, x, y
...
load w, [x]

Fetch Decode Execute Memory

beqz x, y

Fetch Decode Execute Memory

add w, x, y
If Reg[x] ≠ 0:

1. Guess branch target (via branch predictor)
2. Execute the following instructions speculatively
3. Throw away intermediate results in case of mis-speculation

?

High-level structure of modern
microarchitectures

Fr
on

tE
nd

E
xe

cu
tio

n
E

ng
in

e
M

em
or

y

Instruction Cache

Instruction Fetch & Decode

Reorder Buffer

Scheduler
Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

A
LU

,V
-M

U
L,

..
.

A
LU

,V
-A

D
D

,.
..

Lo
ad

,A
G

U

Lo
ad

,A
G

U

S
to

re
D

at
a

A
LU

,J
M

P,
..

.

L1 Data Cache

L2 Cache

4–6 µops

µops

µop µop µop µop µop µop

Figure 1: Pipeline of Intel Core CPUs (simplified).

have 6 or 8 of them) is connected to a set of different functional
units, such as an ALU, an address-generation unit (AGU), or
a unit for vector multiplications. Each port can accept at most
one µop in every cycle. However, as most functional units are
fully pipelined, a port can typically accept a new µop in every
cycle, even though the corresponding functional unit might
not have finished executing a previous µop. An exception to
this are the divider units, which are not fully pipelined.

3.2. Assembler Instructions

Throughout this paper, we will user assembler instructions in
Intel syntax. They have the following form:

mnemonic op1, op2, ...

The mnemonic identifies the operation, e.g., ADD or XOR. The
first operand op1 is typically the destination operand, and the
other operands are the source operands (an operand can also
be both a source and destination operand). Operands can be
registers, memory locations, or immediates. Memory operands
use the syntax [Rbase+Rindex*scale+disp], where Rbase and
Rindex are general-purpose registers, disp is an integer, and
scale is 1, 2, 4, or 8. All of these components are optional
and can be omitted. In addition to these explicit operands, an
instruction can also have implicit operands.

As an example, consider the following instruction:

ADD RAX, [RBX]

This instruction computes the sum of the general-purpose
register RAX and the memory at the address of register RBX,
and stores the result in RAX. We refer to RAX and [RBX] as
explicit operands. In addition to that, the instruction updates

the status flags (e.g., the carry flag) according to the result.
The status flags are implicit operands of the ADD instruction.

There are often multiple variants of an instruction with
different operand types and/or widths.

Note that there is not always a one-to-one correspondence
between assembler code and machine code. Sometimes, there
are multiple possible encodings for the same assembler in-
struction. It is, in general, not possible to control which of
these encodings the assembler selects. Thus, some machine
instructions cannot be generated using assembler code.

3.3. Hardware Performance Counters

Hardware performance counters are special registers that store
the count of various hardware-related events. All recent Intel
processors have counters for the number elapsed core cycles,
and for the number of µops that are executed on each port.

4. Definitions
In this section, we define the microarchitectural properties we
want to infer, i.e., latency, throughput, and port usage.

4.1. Latency

The latency of an instruction is commonly [23] defined as the
“number of clock cycles that are required for the execution
core to complete the execution of all of the µops that form
an instruction” (assuming that there are no other instructions
that compete for execution resources). Thus, it denotes the
time from when the operands of the instruction are ready and
the instruction can begin execution to when the results of the
instruction are ready.

This definition ignores the fact that different operands of an
instruction may be read and/or written by different µops. Thus,
a µop of an instruction I might already begin execution before
all source operands of I are ready, and a subsequent instruc-
tion I0 that depends on some (but not all results) of I might
begin execution before all results of I have been produced.
To take this into account, we propose the following defini-
tion for latency instead. Let S = {s1, ...,sm} be the source
operands, and D = {d1, ...,dm} be the destination operands of
an instruction. We define the latency of the instruction to be
the mapping lat : S⇥D ! N such that lat(si,d j) denotes the
time from when source operand si becomes ready until the
result d j is ready (assuming all other dependencies are not on
the critical path). Thus, if tsi denotes the time at which source
operand si becomes ready, then destination operand d j is ready
at time

td j = max{tsi + lat(si,d j) | si 2 S}.

With the usual approach of using a single value lat as the
latency of an instruction, this value would be

td j = max{tsi | si 2 S}+ lat,

which might be significantly greater than what would be ob-
served in practice.

3

Caches

Pipelining

Parallel
execution

units

Out-of-order
execution +
Speculation

2. Spectre attack

Goal: Access to data of other processes or the operating system,
(which should not be accessible)

Approach:

1. Perform illegal memory access speculatively
2. Extract data via „covert channel“

Spectre Attacks: Exploiting Speculative Execution
Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, Yuval Yarom

https://arxiv.org/search/cs?searchtype=author&query=Kocher,+P
https://arxiv.org/search/cs?searchtype=author&query=Genkin,+D
https://arxiv.org/search/cs?searchtype=author&query=Gruss,+D
https://arxiv.org/search/cs?searchtype=author&query=Haas,+W
https://arxiv.org/search/cs?searchtype=author&query=Hamburg,+M
https://arxiv.org/search/cs?searchtype=author&query=Lipp,+M
https://arxiv.org/search/cs?searchtype=author&query=Lipp,+M
https://arxiv.org/search/cs?searchtype=author&query=Mangard,+S
https://arxiv.org/search/cs?searchtype=author&query=Prescher,+T
https://arxiv.org/search/cs?searchtype=author&query=Schwarz,+M
https://arxiv.org/search/cs?searchtype=author&query=Yarom,+Y

Variants of Spectre attacks

1. Meltdown: User process attacks OS

2. User process attacks other user process

3. JavaScript attacks browser

4. ...

Requires “Gadget code“ in attacked process.

Overcomes "browser sandboxing" protection mechanisms.

Spectre:
1. Speculative access

if (offset < bound) {
value = some_array[offset];
tmp = other_data[(value>>bit)&1];

}

„JavaScript“-
Code:

Added by browser:
Supposed to prevent illegal accesses.

1. Is executed speculatively anyway.
Accessing arbitrary address.

Spectre:
2. Secret-dependent memory access

if (offset < bound) {
value = some_array[offset];
tmp = other_data[(value>>bit)&1];

}

„JavaScript“-
Code:

Extracts a bit of “value”

2. Secret-dependent memory access

Spectre:
3. Reading out the transmitted data

time = rdtsc();
memory_access(&other_data[0]);
delta0 = rdtsc() - time;

time = rdtsc();
memory_access(&other_data[1]);
delta1 = rdtsc() - time;

“read time stamp counter”

Cache hit if extracted bit
was 0.

Cache hit if extracted bit
was 1.

• How to capture speculative execution
effects at ISA-level?

• How to prove ISA-level specification is
correctly implemented?

• How to test an ISA-level specification?

Memory Hierarchy System Architecture, Jan Reineke 23

Challenges

Further reading:

Marco Guarnieri, Boris Köpf, Jan Reineke, Pepe Vila:
Hardware-Software Contracts for Secure Speculation
IEEE Symposium on Security and Privacy, 2021 (best paper)
Preprint: https://arxiv.org/abs/2006.03841

Zilong Wang, Gideon Mohr, Klaus von Gleissenthall,
Jan Reineke, Marco Guarnieri:
Specification and Verification of Side-channel Security for
Open-source Processors via Leakage Contracts
Under submission
Preprint: https://arxiv.org/abs/2305.06979

