Performance: Memory Hierarchy,

Caches

Roadmap: Computer architecture

1. Combinatorial circuits: Boolean
Algebra/Functions/Expressions/Synthesis
2. Number representations
3. Arithmetic Circuits:
G Addition, Multiplication, Division, ALU

Branch

[ALUControl, o
3126

% [ALUSKC
22 Funct |RegDst
RegWrite

4. Sequential circuits: Flip-Flops, Registers,
SRAM, Moore and Mealy automata

5. Verilog

6. Instruction Set Architecture

7. Microarchitecture

8. Performance: RISC vs. CISC, Pipelining,
Memory Hierarchy

The perfect memory

On-chip memory that is
fast, = low access latency
large, = high capacity
cheap = low area consumption

Key insight:
A perfect memory is impossible

There are tradeoffs between capacity, cost and access latency:

1. A larger memory capacity implies
a greater area consumption (= higher cost).

2. A greater area consumption implies
greater distances between different memory cells.

3. Greater distances imply
greater propagation delays and thus higher access latencies.

= Larger memories have higher access latencies.

Differences between memory technologies

Diameter proportional to
logarithm of capacity

‘ = volatile
‘ = persistent (non-volatile)

Historical review

“Ideally, one would desire an
indefinitely large memory capacity

such that any particular [...] word would be
immediately available.

We are |[...] forced to recognize the possibility of constructing
a hierarchy of memories, each of which has greater

capacity than the preceding but which is less quickly
accessible.”

A. W. Burke, H. H. Goldstine, and J. von Neumann (1946)

100,000

10,000

Performance

Memory Hierarchy

1,000

100

Processor

Processor-Memory

Performance Gap

Memory = DRAM

System Architecture, Jan Reineke

Memory hierarchy

Goal: Illusion of a
very fast memory (access latency =1 processor cycle), with
very high capacity (several TBs).

[s achieved by a clever combination of smaller, faster, and larger,

slower memories:

Register file

Memory Hierarchy

e Which data is stored in the register file,
SRAM, DRAM, SSD/HDD?
 Who makes the decision?

Register file

SRAM to accelerate memory accesses:
Option I: Seratchpad Memory

A small part of the address space is serviced via SRAM, the rest

via DRAM:
Address space:

0 SRAM capacity 2321
> ®

@
o
L] d .

SRAM DRAM

Division of data between SRAM and DRAM determined by

software, as it decides where to place which data.

— Mostly used in embedded systems, seldom in PCs.
Was used in the Cell processor (PlayStation 3).
- Unpopular, as it requires software adaptation.

SRAM to accelerate memory accesses :

Option II: Caches

Caches store a subset of the data from main memory (DRAM):

Main memory

(DRAM)

Processor

Contents of the cache are determined dynamically by hardware,
based on the memory accesses.

- Used in PCs, but also in many embedded systems.
- Popular, as it is transparent to software.
No change of software required to use the cache.

Caches: High-level behaviour

EimiSS” / \
- - N— "
ecab
—
<e> | — Main
CPU —— Cache ———— jiemory
N e’

N @ @

Cache organization

Data(0)

Data(i)

Data(n-1)

Cache implementation questions

. Where in the cache are memory blocks located?
How are they retrieved?

> fully-associative, direct-mapped, set-associative

. Which block is replaced upon a cache miss?
> replacement policy

. How large are the memory blocks stored in cache?

Where in the cache are memory blocks located?

Fully-associative cache:
Every memory block can be stored in any locations of the
data memory of the cache

Direct-mapped cache:

Every memory block can be stored in exactly one locations
of the data memory of the cache

Set-associative cache:

Compromise between the two extreme cases: every memory
block can be stored in a fixed subset of all locations in the
data memory

Example:

Cache access for

a direct-mapped cache

Accessed address A = | Tag(A)

Index(A) | Block-

Offset(A)
€ > € >
Index(A) log; n log, B
B byte
<€
4
la. “Cache Hit”:
Tag[Index(A)] = Tag(A)
Tag memory Data memory
v

1b. “Cache Miss”: Tag[Index(A)] # Tag(A)

—> fetch data from main memory
—> insert tag and data into tag and
data memory at address Index(A)

Data[Index(A)]

2. Select the addressed part of the

memory block based on the Block-Offset(A).

Example:

Cache access for a fully-associative cache

Accessed address A =

Tag(A)

Block-
Offset(A)

Tag memory

v

<€ >
logz B

B Byte

la. “Cache Hit”:
Ji: Tagli] = Tag(A)

1b. “Cache Miss”: Vi: Tagli] # Tag(A)

—> fetch data from main memory

- insert tag und data into tag and data

memory. Where?
- Replacement policy

Data memory

v

Datali]

2. Select the addressed part of the
memory block based on the Block-Offset(A).

Direct-mapped vs fully-associative caches

fully-associative direct-mapped

Location of data freely chosen fully determined by index-mapping

Localizing the data parallel comparison single comparison with tag at Index(A)
with all tags

Replacement policy yes not necessary

—> fully-associative caches requires expensive parallel comparison of tags
(or slow serial comparison of tags)
—> as a consequence, only very small fully-associative caches exist in practice

Set-associative caches are a compromise:
The index of an address determines a small set of locations, whose tags
are then compared in parallel as in the fully-associative cache.

Memory Hierarchy System Architecture, Jan Reineke

emory Hierarchy

2. Which memory is replaced upon a
cache miss!

The replacement policy (also eviction policy)
determines which memory block to replace upon a miss.

Goal: Minimizing the number of cache misses.

Difficult, as only past memory accesses are
known to the cache.

Prediction is very difficult,

especially if it's about the future. SN\
Niels Bohr (physicist)

Gedankenexperiment:

An optimal replacement policy

Which block should be replaced upon the access to d?

- In this situation, e should be replaced,

as b and ¢ are required again earlier.

Memc

Gedankenexperiment:
An optimal replacement policy

Farthest-in-the-Future (OPT):

Replace the block whose next access is farthest in the future.

Theorem
OPT minimizes the number of cache misses.

Problem: OPT cannot be implemented, as it requires knowledge
about future memory accesses.

= OPT is a so-called offline algorithm

—> Practically realizable algorithms are online algorithms,

they can only rely on past accesses in their decision making

ory Hierarchy System Architecture, Jan Reineke

2. Which block is replaced upon a

cache miss’

Popular online replacement policies:

Least-recently-used (LRU):
Replace the block that has been used least recently.

“the best predictor of the future... is the past®

First in, first out (FIFO):
Replace the oldest block in the cache.

- Cheaper to implement in hardware than LRU.

How to evaluate replacement policies!?

* Empirical analysis:
Comparison of the number of cache misses on
benchmark programs.

e Theoretical analysis:
Comparison with OPT.

Let LRU,(s) be the number of cache misses of LRU on a fully-associative
cache of size k on the access sequence s.

Let FIFO,(s) and OPT,(s) be defined analogously.

Theorem (LRU vs OPT, FIFO vs OPT):
Let s be an arbitrary access sequence and k > 0. Then:

LRUZk(S) <2 OPTk(S) and FIFOZk(S) <2 OPTk(S)

Theorem (LRU vs OPT, FIFO vs OPT):

Let s be an arbitrary access sequence and k > 0. Then:

LRUZk(S) <2 OPTk(S) and FIFOZk(S) <2 OPTk(S)

€ XAmbe A=

. _6p0p| 006 [pO6|QR 4 | O B
28 73 78 ar3 zZ % =24

S RNYT S IR S I A L T BT Y.

o 865 -1 - - . Nt4

(M <29 | <25 \ 425{) ¢19) <lg) =14

Mgt

M g) ¢ g j <28 2 74 / S28 / <23

S 1 %E

Memory Hierarchy System Architecture, Jan Reineke

>

Why is the memory hierarchy
effective in practice!

Principle of locality

* Temporal locality:

After accessing address x, the same address x is
often accessed again soon after.

o Spatial locality:

After accessing address x, its neighboring addresses
are often accessed next.

Examples:

Instruction fetches: Loops in a program, recursive functions
Data: Divide-and-conquer algorithms

Sizes of memory blocks

Advantages of large memory blocks:
* greater exploitation of spatial locality

* less overhead due to meta data (e.g. tag memory)

Disadvantages of large memory blocks:

* higher “miss penalty”
(= cost of fetching a memory block from main
memory into the cache)

* Potentially waste of cache capacity
(internal fragmentation)

Cache-miss rate in terms of size of

m€m0ry blO CkS (for fixed cache size)

Increasing

internal
fragmentation

Low exploitation
of spatial locality

typical sizes: 32 - 128 byte

Performance: Influence of the cache

e Terminology:

— Hit rate = Share of all memory accesses that are hits

— Miss rate = 1 - Hit rate

— Miss penalty = Additional memory latency upon a miss
« Execution time = (CPU cycles + Memory stall cycles) - Cycle time

where CPU cycles = Number of instruction - CPly;;
and Memory stall cycles = Number of misses - Miss penalty

Misses

= Number of instructions - - Miss penalty

Instruction
Memory accesses

= Number of instructions - - Miss rate - Miss penalty

Instruction

Execution time
Memory accesses

= Number of instructions - (CPIm-t ot - Miss rate - Miss penalty) - Cycle time

Instruction

Performance: Influence of the cache

e Typical values:
— CPI,. =2
— Miss penalty = 100
— Memory accesses/instruction = 1.2

* Plugging those values in yields:

Execution time
= Number of instructions - (2 + 1.2 - 100 - Miss rate) - Cycle time

CPI

o Effect of different miss rates:
— Miss rate = 1 = CPI =122
— Missrate=0.1 = CPI=14
— Miss rate = 0.01 = CPI = 3,2

— Miss rate = 0 = CPI=2
=» Need very low miss rates!

Example: Matrix multiplication

Variant 1: for (int 1 = 0; i < n; i++)
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)
Cl[il[j] += Alil[k] = BIklI[jI;

Work analysis: Computations

Variant 1: for (int 1 = 0; i < n; i++)
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)
Cl[il[j] += Alil[k] = BIklI[jI;

Work analysis: Number of multiplications/additions per inner loop?

= n multiplications, n additions || = In total ®(n’) operations

Work analysis: Loads

Variant 1: for (int i = 0; 1 < n; i++)
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)
Cl[il[j] += AIlil [kl * BIkII[jI;

C A B

Work analysis: Number of loads per inner loop?

- In total 3n3 loads

Work analysis: Cache misses

Variant 1: for (int i = 0; 1 < n; i++)
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)
Cl[il[j] += AIlil [kl * BIkII[jI;

Work analysis: Total number of cache misses!

Memory layout of arrays

How are two-dimensional arrays stored in memory?

Alo]l[e] Ale][1] A[@][2] .. Alo][m-1] Al1][@] A[1]1[1] A[1]1[2] .. Al[1][m-1] ... Aln-1] [m-1]

Assuming memory blocks of size B=32 bytes, we have 8 consecutive entries per block.

Alternative: Column-major layout

Work analysis: Cache misses

Variant 1: for (int 1 = 0; i < n; i++)
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)
Cl[il[j] += Alil[k] = BIklI[jI;

C A B

Work analysis: Cache misses in the first execution of inner loop!

4n/B misses to A

Work analysis: Cache misses

Variant 1: for (int 1 = 0; i < n; i++)
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)
Cl[il[j] += Alil[k] = BIklI[jI;

C A B

Work analysis: Cache misses in total?

4n?/B misses to C | | 4n3/B misses to A | | n3 misses to B

Work analysis: Cache misses

Variant 2: for (int 1 = 0; i < n; i++)
for (int k = 0; k < n; k++)
< for (int j = 0; j < n; j++)
Clil[j] += Alil [kl * BI[kII[jI;

C A B

Work analysis: Cache misses in total?
4n3/B misses to C | | 4n%/B misses to A | | 4n3/B misses to B

Example: Matrix multiplication

e

Assumed very small cache so far
- could only exploit spatial locality

Results would be different for large cache that fits
matrices A, B, C entirely 2 3*4n2/B misses in total.

What if cache size is in between the
two extremes (realistic!)?

- Adapt algorithm to increase temporal locality

Matrix multiplication, Tiling

- Adapt algorithm to increase temporal locality

Variant 1: for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
for (int k = 0; k < n; k++)

Clil[j1 += Alil[k] % BIKI[jI;

N Tiling

for (int i@ = 0; i0® < n; i0+=s)
for (int jO = 0; jO < n; jO+=s)
for (int k@ = 0; kO < n; kO+=s)
for (int i1 = iQ; i < i0+s; i++)
for (int j = jO; j < jO+s; j++)
for (int k = k@; k < kO+s; k++)
Cl[il[j] += A[il [k] = BI[kl[j];

40

Summary

* Memory hierarchy:

Combination of smaller, faster and
larger, slower memories

* Memory hierarchies usually work well due to

spatial locality and
temporal locality.

e Cache:

managed by hardware;
transparent to the programmer
very strong influence on execution times

Memory hierarchy: Examples

* Pentium-M , Dothan® (single core), 2004
2 MB Level-2 Cache

[2 Cache

Memory Hierarch

43

Memory hierarchy: Examples

* Intel Core 15-760 (quad core), 2010
e 8 MB Level 3 Cache

. 58 : v Ay oy » -
. 3 4 s -
| 54|
o 3 3
- : ; .
- e b
I;‘ :] . \:." A a1,
Al 7 m "! i "'! i 2
‘ ! N |
i~ am :
|) 4 R MR Y. _
. g =4
~ <)

ﬁﬂ N'

Il’

L1 cache

N L2 cache s B

o L2 cache :

44

Memory hierarchy: Examples

* Intel Core i7-5960X (octa core), 2014

e 20 MB Level-3 Cache

Memory Hierarchy

s
i --.‘ ..5'

Memory hierarchy: Examples

AMD Zen 3, 2020

Naferitests brips

L1 I-Cache e

-
<
=
&
[
e
-

Image credit: @Locuza_ via Twitter https://twitter.com/Locuza_/status/1325534004855058432/photo/1

