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Roadmap: Computer architecture

1. Combinatorial circuits: Boolean 
Algebra/Functions/Expressions/Synthesis

2. Number representations
3. Arithmetic Circuits: 

Addition, Multiplication, Division, ALU

4. Sequential circuits: Flip-Flops, Registers, 
SRAM, Moore and Mealy automata

5. Verilog

6. Instruction Set Architecture
7. Microarchitecture

8. Performance: RISC vs. CISC, Pipelining, 
Memory Hierarchy
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The perfect memory

On-chip memory that is
fast,
large,
cheap

= low access latency
= high capacity
= low area consumption
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Key insight:
A perfect memory is impossible

There are tradeoffs between capacity, cost and access latency:

1. A larger memory capacity implies
a greater area consumption (= higher cost).

2. A greater area consumption implies
greater distances between different memory cells.

3. Greater distances imply
greater propagation delays and thus higher access latencies.

à Larger memories have higher access latencies.
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Differences between memory technologies

Cost per 
byte

(logarithmic
scale)

Access latency
(logarithmic scale)

CPU register

SRAM

DRAM

SSD

HDD

Diameter proportional to
logarithm of capacity

= volatile

= persistent (non-volatile)
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“Ideally, one would desire an 
 indefinitely large memory capacity 
such that any particular [...] word would be 
 immediately available. 
We are [...] forced to recognize the possibility of constructing 
a hierarchy of memories, each of which has greater 
capacity than the preceding but which is less quickly 
accessible.” 

A. W. Burke, H. H. Goldstine, and J. von Neumann (1946) 

Historical review
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Processor vs DRAM:
Memory Gap

Memory = DRAM
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Memory hierarchy

Is achieved by a clever combination of smaller, faster, and larger, 
slower memories:

Register file SRAM DRAM SSD and/or HDD+ + +
Capacity ≈ 1 KB 32 KB (L1 Cache) –

16384 KB (L3 Cache)
≈ 16 GB ≈ 1 TB

Access latency < 1 cycle 1-3 cycles (L1 Cache) –
≈ 40 cycles (L3 Cache)

100 – 400 cycles 3 – 12 ms (HDD)
≈ 10^7  cycles
< 0.1 ms (SSD)
≈ 10^5 cycles

Throughput no bottleneck no bottleneck ≈ 51 GB/s (DDR5)
≈ 665 GB/s (HBM3)

≈ 250 MB/s (HDD)
≈ 7000 MB/s (SSD)

Goal: Illusion of a 
very fast memory (access latency ≈1 processor cycle), with
very high capacity (several TBs).
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Memory Hierarchy

• Which data is stored in the register file, 
SRAM, DRAM, SSD/HDD?

• Who makes the decision?
Register file SRAM DRAM SSD and/or HDD+ + +

Data 
(primary use)

Data for program
execution

Data and instructions
for program execution

Data and instructions
for program execution

Files:
Programs + Data

Manager Compiler Hardware (Cache) or
Compiler (Scratchpad 
memory)

SW+Operating System SW+Operating System

Will be treated in the operating
systems part of the course

Register 
allocation: 
Compiler 

construction
course

Topic of this
lecture
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SRAM to accelerate memory accesses: 
Option I: Scratchpad Memory

A small part of the address space is serviced via SRAM, the rest
via DRAM:

Division of data between SRAM and DRAM determined by
software, as it decides where to place which data.

Address space:

0 232-1

SRAM DRAM

SRAM capacity

à Mostly used in embedded systems, seldom in PCs. 
Was used in the Cell processor (PlayStation 3).

à Unpopular, as it requires software adaptation.
10



SRAM to accelerate memory accesses : 
Option II: Caches

àUsed in PCs, but also in many embedded systems.
àPopular, as it is transparent to software. 

No change of software required to use the cache.

Caches store a subset of the data from main memory (DRAM):

Contents of the cache are determined dynamically by hardware, 
based on the memory accesses.

Processor
Cache 

(SRAM)
Main memory

(DRAM)
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Caches: High-level behaviour

computer science

saarland
universityCaches

CPU Cache Hauptspeicher

“hit”
[abcd ]

[ecab]
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It is not sufficient, to simply store data in the cache: 
 the cache needs to remember which addresses are cached.

à Cache is divided into tag and data memory:

Wo werden Speicherblöcke im Cache 
gespeichert?

Tag memory: Data memory:

Tag(0)

...

Tag(i)

...

Tag(n-1)

Data(0)

...

Data(i)

...

Data(n-1)

n
entries

B bytes = size of a memory block

Cache organization
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1. Where in the cache are memory blocks located?
How are they retrieved?
 à fully-associative, direct-mapped, set-associative

2. Which block is replaced upon a cache miss?
à replacement policy

3. How large are the memory blocks stored in cache?

Cache implementation questions
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Fully-associative cache:
Every memory block can be stored in any locations of the 
data memory of the cache

Direct-mapped cache:
Every memory block can be stored in exactly one locations 
of the data memory of the cache

Set-associative cache:
Compromise between the two extreme cases: every memory 
block can be stored in a fixed subset of all locations in the 
data memory

Where in the cache are memory blocks located?
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Example: 
Cache access for a direct-mapped cache

Accessed address A     

Tag memory Data memory

1a. “Cache Hit”:
Tag[Index(A)] = Tag(A)

Data[Index(A)]

1b. “Cache Miss”: Tag[Index(A)] ≠ Tag(A)
à fetch data from main memory
à insert tag and data into tag and 

data memory at address Index(A)

Index(A)

n

B byte

2. Select the addressed part of the
memory block based on the Block-Offset(A).

Tag(A) Index(A) Block-
Offset(A)

log2 n log2 B

=



Example: 
Cache access for a fully-associative cache

Accessed address A     

Tag memory Data memory

1a. “Cache Hit”:
∃i: Tag[i] = Tag(A)

Data[i]

1b. “Cache Miss”: ∀i: Tag[i] ≠ Tag(A)
à fetch data from main memory
à insert tag und data into tag and data 

memory. Where?
à Replacement policy

n

B Byte

2. Select the addressed part of the
memory block based on the Block-Offset(A).

Tag(A) Block-
Offset(A)

log2 B

=



Direct-mapped vs fully-associative caches

fully-associative direct-mapped

Location of data freely chosen fully determined by index-mapping

Localizing the data parallel comparison
with all tags

single comparison with tag at Index(A)

Replacement policy yes not necessary

à fully-associative caches requires expensive parallel comparison of tags
(or slow serial comparison of tags)

à as a consequence, only very small fully-associative caches exist in practice

Set-associative caches are a compromise:
The index of an address determines a small set of locations, whose tags
are then compared in parallel as in the fully-associative cache.
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The replacement policy (also eviction policy) 
determines which memory block to replace upon a miss.

2. Which memory is replaced upon a 
cache miss?

Goal: Minimizing the number of cache misses.

Difficult, as only past memory accesses are
known to the cache.
Prediction is very difficult,
especially if it‘s about the future.

Niels Bohr (physicist)
Memory Hierarchy 19



...  c  b  c  e  d  b  c  d  a ...

Gedankenexperiment: 
An optimal replacement policy

A memory-access sequence:

Cache contents: {b,c,e}

Which block should be replaced upon the access to d?

à In this situation, e should be replaced,
as b and c are required again earlier.

Memory Hierarchy System Architecture, Jan Reineke 20
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Gedankenexperiment: 
An optimal replacement policy

Farthest-in-the-Future (OPT):
Replace the block whose next access is farthest in the future.

Theorem
OPT minimizes the number of cache misses.

Problem: OPT cannot be implemented, as it requires knowledge
about future memory accesses.
àOPT is a so-called offline algorithm
àPractically realizable algorithms are online algorithms,

they can only rely on past accesses in their decision making
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Popular online replacement policies:

2. Which block is replaced upon a 
cache miss?

Least-recently-used (LRU): 
Replace the block that has been used least recently.

First in, first out (FIFO):
Replace the oldest block in the cache.

à Cheaper to implement in hardware than LRU.

“the best predictor of the future... is the past“
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• Empirical analysis:
Comparison of the number of cache misses on 
benchmark programs.

• Theoretical analysis: 
Comparison with OPT.

How to evaluate replacement policies?

Theorem (LRU vs OPT, FIFO vs OPT):
Let s be an arbitrary access sequence and k > 0. Then:

LRU2k(s) ≤ 2 · OPTk(s)   and FIFO2k(s) ≤ 2 · OPTk(s) 

Let LRUk(s) be the number of cache misses of LRU on a fully-associative
cache of size k on the access sequence s. 
Let FIFOk(s) and OPTk(s) be defined analogously.
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Theorem (LRU vs OPT, FIFO vs OPT):
Let s be an arbitrary access sequence and k > 0. Then:

LRU2k(s) ≤ 2 · OPTk(s)   and FIFO2k(s) ≤ 2 · OPTk(s) 



Principle of locality
• Temporal locality:

After accessing address x, the same address x is 
often accessed again soon after.

• Spatial locality:
After accessing address x, its neighboring addresses 
are often accessed next.

Why is the memory hierarchy 
effective in practice?

Examples:
Instruction fetches: Loops in a program, recursive functions
Data: Divide-and-conquer algorithms
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Advantages of large memory blocks:
• greater exploitation of spatial locality
• less overhead due to meta data (e.g. tag memory)

Disadvantages of large memory blocks:
• higher “miss penalty” 

(= cost of fetching a memory block from main 
memory into the cache)

• Potentially waste of cache capacity
(internal fragmentation)

Sizes of memory blocks

Memory Hierarchy System Architecture, Jan Reineke 26



Cache-miss rate in terms of size of 
memory blocks (for fixed cache size)

Size

Cache-
miss 
rate

Increasing
internal 
fragmentation

Low exploitation
of spatial locality

typical sizes: 32 – 128 byte
Memory Hierarchy 27



• Terminology:
– Hit rate = Share of all memory accesses that are hits

– Miss rate = 1 – Hit rate

– Miss penalty = Additional memory latency upon a miss

• 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒 = 𝐶𝑃𝑈	𝑐𝑦𝑐𝑙𝑒𝑠 + 𝑀𝑒𝑚𝑜𝑟𝑦	𝑠𝑡𝑎𝑙𝑙	𝑐𝑦𝑐𝑙𝑒𝑠 7 𝐶𝑦𝑐𝑙𝑒	𝑡𝑖𝑚𝑒
   where 𝐶𝑃𝑈	𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 7 𝐶𝑃𝐼!"#
      and 𝑀𝑒𝑚𝑜𝑟𝑦	𝑠𝑡𝑎𝑙𝑙	𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑖𝑠𝑠𝑒𝑠 7 𝑀𝑖𝑠𝑠	𝑝𝑒𝑛𝑎𝑙𝑡𝑦

Performance: Influence of the cache
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= 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 2 !"##$#
%&#'()*'"+&

2 𝑀𝑖𝑠𝑠	𝑝𝑒𝑛𝑎𝑙𝑡𝑦  

= 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 2 !$,+(-	/**$##$#
%&#'()*'"+&

2 𝑀𝑖𝑠𝑠	𝑟𝑎𝑡𝑒 2 𝑀𝑖𝑠𝑠	𝑝𝑒𝑛𝑎𝑙𝑡𝑦  

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒

= 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 2 𝐶𝑃𝐼!"# +
𝑀𝑒𝑚𝑜𝑟𝑦	𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 2 𝑀𝑖𝑠𝑠	𝑟𝑎𝑡𝑒 2 𝑀𝑖𝑠𝑠	𝑝𝑒𝑛𝑎𝑙𝑡𝑦 2 𝐶𝑦𝑐𝑙𝑒	𝑡𝑖𝑚𝑒



• Typical values:
– CPIhit = 2
– Miss penalty = 100
– Memory accesses/instruction = 1.2

• Plugging those values in yields:
𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒
= 𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 2 2 + 1.2 2 100 2 𝑀𝑖𝑠𝑠	𝑟𝑎𝑡𝑒 2 𝐶𝑦𝑐𝑙𝑒	𝑡𝑖𝑚𝑒

• Effect of different miss rates:
– Miss rate = 1  è CPI = 122
– Miss rate = 0.1 è CPI = 14
– Miss rate = 0.01 è CPI = 3,2
– Miss rate = 0  è CPI = 2

Performance: Influence of the cache

CPI

29

è Need very low miss rates!
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Example: Matrix multiplication

AC B*=
…

Variant 1: for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
     for (int k = 0; k < n; k++)
       C[i][j] += A[i][k] * B[k][j];
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Work analysis: Computations

Work analysis: Number of multiplications/additions per inner loop? 

à n multiplications, n additions à In total Θ(n3) operations

Variant 1: for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
     for (int k = 0; k < n; k++)
       C[i][j] += A[i][k] * B[k][j];

AC B*=
i

j j

i
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Work analysis: Loads

Work analysis: Number of loads per inner loop? 

à 3n loads à In total 3n3 loads

Variant 1: for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
     for (int k = 0; k < n; k++)
       C[i][j] += A[i][k] * B[k][j];

AC B*=
i

j j

i
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Work analysis: Cache misses

Work analysis: Total number of cache misses?

Variant 1: for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
     for (int k = 0; k < n; k++)
       C[i][j] += A[i][k] * B[k][j];

AC B*=
i

j j

i
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Memory layout of arrays

How are two-dimensional arrays stored in memory?

à typically row-major layout (alternative: column-major layout)

int matrixA[n][m]Example:

An

m

A[0][0] A[0][1] A[0][2] … A[0][m-1] A[1][0] A[1][1] A[1][2] … A[1][m-1] ….         A[n-1][m-1]

A A+4 A+8 A+4mAddress: A+4nm-4… … 

Memory:

Assuming memory blocks of size B=32 bytes, we have 8 consecutive entries per block.
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Alternative: Column-major layout

int matrixA[n][m]Example:

An

m
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Work analysis: Cache misses

Variant 1: for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
     for (int k = 0; k < n; k++)
       C[i][j] += A[i][k] * B[k][j];

AC B*=
i

j j

i

Work analysis: Cache misses in the first execution of inner loop?

1 miss to C 4n/B misses to A n misses to B
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Work analysis: Cache misses

Variant 1: for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
     for (int k = 0; k < n; k++)
       C[i][j] += A[i][k] * B[k][j];

AC B*=
i

j j

i

Work analysis: Cache misses in total?

4n2/B misses to C 4n3/B misses to A n3 misses to B

Assuming fully-associative cache 
of size 3 memory blocks << n. 



Memory Hierarchy System Architecture, Jan Reineke 38

Work analysis: Cache misses

Variant 2: for (int i = 0; i < n; i++)
   for (int k = 0; k < n; k++)
    for (int j = 0; j < n; j++)
       C[i][j] += A[i][k] * B[k][j];

AC B*=
i i

Work analysis: Cache misses in total?

4n3/B misses to C 4n2/B misses to A 4n3/B misses to B

Assuming fully-associative cache 
of size 3 memory blocks << n. 

k

k
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Example: Matrix multiplication

Assumed very small cache so far 
                    à could only exploit spatial locality

Results would be different for large cache that fits
  matrices A, B, C entirely à 3*4n2/B misses in total.

What if cache size is in between the 
two extremes (realistic!)?

à Adapt algorithm to increase temporal locality
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Matrix multiplication, Tiling

à Adapt algorithm to increase temporal locality

Variant 1: for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
     for (int k = 0; k < n; k++)
       C[i][j] += A[i][k] * B[k][j];

for (int i0 = 0; i0 < n; i0+=s)
 for (int j0 = 0; j0 < n; j0+=s)
   for (int k0 = 0; k0 < n; k0+=s)

   for (int i = i0; i < i0+s; i++)
    for (int j = j0; j < j0+s; j++)
      for (int k = k0; k < k0+s; k++)

      C[i][j] += A[i][k] * B[k][j];

Tiling



• Memory hierarchy:
Combination of smaller, faster and 
      larger, slower memories

Summary
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• Memory hierarchies usually work well due to 
spatial locality and
temporal locality.

• Cache: 
managed by hardware; 
transparent to the programmer
very strong influence on execution times



• Pentium-M „Dothan“ (single core), 2004

• 2 MB Level-2 Cache

Memory hierarchy: Examples

L2 Cache
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• Intel Core i5-760 (quad core), 2010

• 8 MB Level-3 Cache

Memory hierarchy: Examples

44



• Intel Core i7-5960X (octa core), 2014

• 20 MB Level-3 Cache

Memory hierarchy: Examples

Memory Hierarchy 45
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Memory hierarchy: Examples

AMD Zen 3, 2020

L3 Cache

Image credit: @Locuza_ via Twitter https://twitter.com/Locuza_/status/1325534004855058432/photo/1

L2 
Cache

L1 D-Cache

L1 I-Cache


