
Performance: Pipelining

Jan Reineke
Universität des Saarlandes

System Architecture, Jan ReinekePipelining 1

Roadmap: Computer architecture

1. Combinatorial circuits: Boolean
Algebra/Functions/Expressions/Synthesis

2. Number representations
3. Arithmetic Circuits:

Addition, Multiplication, Division, ALU

4. Sequential circuits: Flip-Flops, Registers,
SRAM, Moore and Mealy automata

5. Verilog

6. Instruction Set Architecture
7. Microarchitecture

8. Performance: RISC vs. CISC, Pipelining,
Memory Hierarchy

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

Pipelining: An example from daily life

• Persons A, B, C, D are returning from vacation;
there is a lot of dirty laundry to wash!

• At our disposal:
– A washing machine (1/2 hour runtime)
– A dryer (1/2 hour runtime)
– An ironing machine (1/2 hour of work to iron)
– A linen closet (1/2 hour of work to put away)

• Every person washes their own laundry by themselves!

There are two options to perform the work!

Pipelining System Architecture, Jan Reineke 3

Pipelining: An example from daily life

Duration of work:
8 hours

Analogously to the single-cycle implementation:

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Ta s k
order

A

B

C

D

With pipelining:
18 19 20 21 22 23 0 1 2 Uhr

18 19 20 21 22 23 0 1 2 Uhr

Duration of work:
3 1/2 hours

Pipelining System Architecture, Jan Reineke 4

o’clock

o’clock

Observations
• Latency of each individual operation is unchanged
• Number of completed operations per hour (throughput) increased

System Architecture, Jan Reineke 5

A

B

C

D

n operations

k pipeline stages

Speedup = Time without optimization/Time with optimization
= n*k / (k+n-1)

Efficiency = Used resources/Available resources
= k*n / k*(k+n-1) = n/(k+n-1)

18 19 20 21 22 23 0 1 2 Uhr

Pipelining

• Homogeneous partial operations
– The operation can be split into partial operations

of equal length.

• Repetition of identical operations
– The same operation is repeatedly performed on

different “inputs”.

• Repetition of independent operations
– All operations are pairwise independent

Idealizing assumptions in the example

Pipelining System Architecture, Jan Reineke 6

• Divide execution of machine instruction into several
phases of ideally equal length.

• A sensible division depends on the instruction set and the
employed technology.

• In the MIPS datapath the following division is sensible:
– IF (Instruction Fetch): Reading the instruction.
– ID (Instruction Decode) or RF (Register Fetch):

Decoding the instruction and reading the register contents.
– EX (Execute): Execute the instruction or compute an address.
– MEM (Memory): Access to data memory.
– WB (Write Back): Storing the result in the register file.

Transfer to the MIPS processor:
Division of instruction execution into phases

Pipelining System Architecture, Jan Reineke 7

Illustration of division into phases

Pipelining System Architecture, Jan Reineke 8

C
ha

ng
e

of
 p

ro
gr

am
 c

ou
nt

er

Speedup and efficiency:
Homogeneous partial operations

Speedup =
n ⋅k

k+ n−1
n→∞⎯ →⎯⎯ k

Effizienz =
n ⋅k

(k+ n−1) ⋅k
=

Speedup
k

n→∞⎯ →⎯⎯ 1

Pipelining System Architecture, Jan Reineke 9

k pipeline stages

n instructions

Efficiency

Speedup and efficiency:
Inhomogeneous partial operations

...

Speedup =
n ⋅ τ

i
1≤i≤k

∑
(k+ n−1) ⋅maxτ

i
1≤i≤k

n→∞⎯ →⎯⎯
τ

i
1≤i≤k

∑
maxτ

i
1≤i≤k

Assumption: Phases may
have different lengths:

Effizienz =
n ⋅ τ

i
1≤i≤k

∑
(k+ n−1) ⋅k ⋅maxτ

i
1≤i≤k

=
Speedup

k
n→∞⎯ →⎯⎯

τ
i

1≤i≤k

∑
k ⋅maxτ

i
1≤i≤k

Pipelining System Architecture, Jan Reineke 10

Efficiency

Example: MIPS datapath

Assumption about the delays in the datapath:
• 100 ps = 100 * 10-12 seconds for reading from and writing to registers
• 200 ps for all other components (ALU, main memory)

• Efficiency = 800 ps / (5 * 200 ps) = 80%

• Single cycle: 1 / 800 ps = 1,25 * 109 Instructions/s
Pipelining: 1 / 200 ps = 5 * 109 Instructions/s
à Speedup (for lw) = 4

Instruction IF ID/RF EXE MEM WB Total time

lw 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

sw 200 ps 100 ps 200 ps 200 ps 700 ps

R-typ 200 ps 100 ps 200 ps 100 ps 600 ps

beq 200 ps 100 ps 200 ps 500 ps

Pipelining System Architecture, Jan Reineke 11

Time (ps)
Instr

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read / Write

Write
Reg1

2

0 100 200 300 400 500 600 700 800 900 1100 1200 1300 1400 1500 1600 1700 1800 19001000

Instr

1

2

3

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read / Write

Write
Reg

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read/Write

Write
Reg

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read/Write

Write
Reg

Fetch
Instruction

Decode
Read Reg

Execute
ALU

Memory
Read/Write

Write
Reg

Single-Cycle

Pipelined

Single-cycle vs Pipelined implementation

Internal fragmentation
(due to inhomogeneous latencies)

Pipelining 12

Time (cycles)

lw $s2, 40($0) RF 40

$0
RF

$s2
+ DM

RF $t2

$t1
RF

$s3
+ DM

RF $s5

$s1
RF

$s4
- DM

RF $t6

$t5
RF

$s5
& DM

RF 20

$s1
RF

$s6
+ DM

RF $t4

$t3
RF

$s7
| DM

add $s3, $t1, $t2

sub $s4, $s1, $s5

and $s5, $t5, $t6

sw $s6, 20($s1)

or $s7, $t3, $t4

1 2 3 4 5 6 7 8 9 10

add

IM

IM

IM

IM

IM

IM lw

sub

and

sw

or

Pipelining

External fragmentation
(due to “superfluous” pipeline stages)

Pipelining 13

• Overlap the 5 phases (IF, DE, EX, MEM, WB) of
the instruction execution

• Requires additional registers to remember
multiple active instructions

• These registers conceptually lie between the
pipeline stages

MIPS processor with pipelining

Pipelining System Architecture, Jan Reineke 15

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PCF0
1

PC' InstrD 25:21

20:16

15:0

SrcBE

20:16

15:11

RtE

RdE

<<2
+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

ResultW

PCPlus4EPCPlus4F

ZeroM

CLK CLK

AL
U

WriteRegE4:0

CLK
CLK

CLK

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

Zero

CLK

AL
U

Fetch Decode Execute Memory Writeback

Single-cycle vs pipeline datapath

Pipelining System Architecture, Jan Reineke 16

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PCF0
1

PC' InstrD 25:21

20:16

15:0

SrcBE

20:16

15:11

RtE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4EPCPlus4F

ZeroM

CLK CLK

WriteRegW4:0

AL
U

WriteRegE4:0

CLK
CLK

CLK

Fetch Decode Execute Memory Writeback

Pipelining: Control unit

Is it really that simple???

• Decoder of the single-cycle implementation can be reused
• Control is delayed to the right pipeline stage

Pipelining 18

Remember: Idealizing assumptions in the
pipelining example

• Repetition of independent operations
All operations are pairwise independent
à Does not always hold in MIPS. When?

Pipelining System Architecture, Jan Reineke 19

• Homogeneous partial operations
– The operation can be split into partial operations

of equal length. à otherwise internal fragmentation

• Repetition of identical operations
– The same operation is repeatedly performed on

different “inputs”. à otherwise external fragmentation

• When an instruction depends on the result of
another instruction

• Two types of dependencies:
– Control dependence:

The result of an instruction is required to determine which
instructions are executed next

– Data dependence, 3 types:
• Read-after-Write (RAW, “true dependency”):

Instruction reads from register that is written to by prior instruction
• Write-after-Read (WAR, “anti-dependency”):

Instruction overwrites register that prior instruction reads
• Write-after-Write (WAW, “output dependency”):

Instruction overwrites register written to by prior instruction

Dependencies

Pipelining System Architecture, Jan Reineke 20

Example: Dependencies

Pipelining System Architecture, Jan Reineke 21

Example: Dependencies (Resolution)

Control
dependencies

RAW
dependencies

WAW
dependencies

WAR
dependency

Pipelining 22

• A hazard is a situation in which an operation
cannot be executed immediately, as this would violate a dependency

• Two types of hazards in in-order processor:

– Control hazard:
The result of a branch instruction is not yet available

– Data hazard:
• Read-after-Write (RAW):

Instruction reads from register that is written to by other instruction
 and that has not yet been performed

• Write-after-Read (WAR):
Instruktion überschreibt Register welches frühere Instruktion liest

• Write-after-Write (WAW):
Instruktion überschreibt Register welches auch frühere Instruktion
überschreibt

Pipeline hazards

Pipelining System Architecture, Jan Reineke 23

Example: Data hazards

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub

Pipelining System Architecture, Jan Reineke 24

Compiler may try to reorder instructions to avoid hazards.
• Example:

• If the compiler is unable to insert a sensible instruction,
it may insert a nop (“no operation”, “no op”).
It has no effect, but traverses the pipeline like all other
instructions.

Avoiding data hazards: Compiler

Pipelining System Architecture, Jan Reineke 25

The missing data is “forwarded” to the consuming
instruction before storing the result in the register file.

Principle:

Avoiding data hazards: Forwarding

Pipelining 26

Principle:

Avoiding data hazards: Forwarding

Why not write back to the register file right after the
execute phase?

àWAW dependency on loads (lw)
àRegister file cannot handle multiple writes simultaneously

Pipelining 27

Forwarding: Datapath and control

Pipelining System Architecture, Jan Reineke 28

Avoiding data hazards via stalls

• “Forwarding” cannot avoid all hazards.

• Repair by inserting “bubble”. This corresponds to the
insertion of a nop instruction.

• This “bubble” is not inserted in the IF phase, but only
in a later phase.

• Instructions in later stages traverse the pipeline as usual.
Instructions in earlier stages are stalled.

Avoiding data hazards: Stalls

Pipelining System Architecture, Jan Reineke 29

Time (cycles)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

Trouble!

Avoiding data hazards: Stalls

Pipelining System Architecture, Jan Reineke 30

Avoiding data hazards: Stalls

Time (cycles)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

9

RF $s1

$s0

IM or

Stall

Pipelining System Architecture, Jan Reineke 31

Stalling and forwarding unit

Stall signals Flush signals
32

Time (cycles)

beq $t1, $t2, 40 RF $t2

$t1
RF- DM

RF $s1

$s0
RF& DM

RF $s0

$s4
RF| DM

RF $s5

$s0
RF- DM

and $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

20

24

28

2C

30

...

...

9

Flush
these

instructions

64 slt $t3, $s2, $s3 RF $s3

$s2
RF

$t3s
l
t DMIM slt

Example: Control hazards

Pipelining System Architecture, Jan Reineke 33

• Insertion of “bubbles” as with data hazards
– Example: Branching decision known after the MEM phase.

Every branch leads to 3 stall cycles:

Avoiding control hazards: Stalls

Computation of the average cycles per instruction (CPI):
• Assumptions: five-stages pipeline, 1 cycle per stage, only stalls due to

branches, 30% of all instructions are branches.
• CPI = 0.7 + 0.3*4 = 1.9

à slowed down almost by a factor of 2!

Pipelining System Architecture, Jan Reineke 34

Branch

• Processor predicts that branches are not taken.
– If this prediction comes true, execution continues.

– Otherwise the instructions are aborted and the
execution continues with the correct instructions.

• Example of an incorrect prediction, branching
decision is known after the MEM phase:

Avoiding control hazards: Static prediction

Pipelining 35

Branch

Avoiding control hazards: Static prediction

Computation of the average cycles per instruction (CPI):
• Assumptions: five-stages pipeline, 1 cycle per stage, only stalls

due to branches, 30% of all instructions are branches.
One half of all branches is executed.

• CPI = 0.7 + 0.3*0.5*4 + 0.3*0.5 = 1.45

Pipelining 36

The processor makes the prediction based on the history of prior
branching decisions.

Simplest approach:
– If this branch was taken last time, predict it is also taken this time.

Otherwise predict the branch is not taken.

– This scheme can be enhanced to take into account “older”
branching decisions.
E.g. some AMD processors employ neural networks for branch prediction.

Avoiding control hazards: Dynamic prediction

Pipelining 37

Problem with simple dynamic prediction:

In case of loops, branching probabilities are very non-uniform (e.g. 99% taken,
1% not taken). At an incorrect prediction, the next prediction is also wrong:

Avoiding control hazards: Dynamic prediction

Pipelining System Architecture, Jan Reineke 38

Action

Prediction

not taken

taken

not taken

taken

not taken

taken
2-bit
Prediction

• Solution via 2-Bit prediction:
The prediction is only changed upon two successive incorrect
predictions.

• Modeled via Moore automaton:

Pipelining System Architecture, Jan Reineke 39

Avoiding control hazards: Dynamic prediction

Reducing the stall cycles by resolving the branching
decision earlier.

Avoiding control hazards:
Early branch resolution

Pipelining System Architecture, Jan Reineke 40

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchM

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0
ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcM

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Hazard Unit

Fl
us
hE

PCPlus4E

BranchE BranchM

ZeroM

EN

EN

C
LR

Avoiding control hazards:
Original processor

What can be changed?
Pipelining 41

Avoiding control hazards:
Modification for early branch resolution

Additional data hazard in decode phase!

Pipelining System Architecture, Jan Reineke 42

EqualD

SignImmE

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE

1
0

PCF0
1

PC' InstrD 25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0
ALUSrcD

RegWriteD

Op

Funct

Control
Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

AL
U

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

0
1
0
1

=

SignImmD

St
al
lF

St
al
lD

Fo
rw
ar
dA
E

Fo
rw
ar
dB
E

Fo
rw
ar
dA
D

Fo
rw
ar
dB
D

20:16 RtE

RsD

RdD

RtD

R
eg
W
rit
eE

R
eg
W
rit
eM

R
eg
W
rit
eW

M
em
to
R
eg
E

Br
an
ch
D

Hazard Unit

Fl
us
hE

EN

EN

C
LR

C
LR

Avoiding control hazards:
Modification for early branch resolution

Pipelining System Architecture, Jan Reineke 43

Time (cycles)

beq $t1, $t2, 40 RF $t2

$t1
RF- DM

RF $s1

$s0
RF& DMand $t0, $s0, $s1

or $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

andIM

IM lw20

24

28

2C

30

...

...

9

Flush
this

instruction

64 slt $t3, $s2, $s3 RF $s3

$s2
RF

$t3s
l
t DMIM slt

Effect of early branch resolution

lw

Pipelining System Architecture, Jan Reineke 44

Avoiding control hazards:
Branch delay slots

• The semantics of the branch
instruction is modified:
The instruction following the branch
instruction is executed in any case.

• The compiler needs to find
instructions to fill this “branch delay
slot” without violating the program’s
semantics.

Pipelining System Architecture, Jan Reineke 45

Avoiding control hazards

Pipelining System Architecture, Jan Reineke 46

Computation of the average cycles per instruction (CPI):
• Assumptions: five-stages pipeline, 1 cycle per stage, only stalls

due to branches, 30% of all instructions are branches.
The compiler can fill the branch delay slot in 60% of cases.

• CPI = 0.7 + 0.3*2 – 0.3*0.6 = 1.12

• Overlap consecutive instructions
• Three idealizing assumptions:
– Homogeneous partial operations
à otherwise: internal fragmentation

– Repetition of identical operations
à otherwise: external fragmentation

– Repetition of independent operations
à otherwise: hazards
• Stalling
• Forwarding
• Branch Delay Slot

Summary: Pipelining

Pipelining System Architecture, Jan Reineke 47

