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Roadmap: Computer architecture

1. Combinatorial circuits: Boolean 
Algebra/Functions/Expressions/Synthesis

2. Number representations
3. Arithmetic Circuits: 

Addition, Multiplication, Division, ALU

4. Sequential circuits: Flip-Flops, Registers, 
SRAM, Moore and Mealy automata

5. Verilog

6. Instruction Set Architecture
7. Microarchitecture

8. Performance: RISC vs. CISC, Pipelining, 
Memory Hierarchy
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Pipelining: An example from daily life

• Persons A, B, C, D are returning from vacation; 
there is a lot of dirty laundry to wash!

• At our disposal:
– A washing machine (1/2 hour runtime)
– A dryer (1/2 hour runtime)
– An ironing machine (1/2 hour of work to iron)
– A linen closet (1/2 hour of work to put away)

• Every person washes their own laundry by themselves!

There are two options to perform the work!
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Pipelining: An example from daily life

Duration of work:
8 hours

Analogously to the single-cycle implementation:

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Ta s k
order

A

B

C 

D

With pipelining:
18 19 20          21 22           23           0            1            2    Uhr

18 19 20          21 22           23           0            1            2    Uhr

Duration of work:
3 1/2 hours
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Observations
• Latency of each individual operation is unchanged
• Number of completed operations per hour (throughput) increased
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A

B

C

D

n operations

k pipeline stages

Speedup = Time without optimization/Time with optimization
=  n*k / (k+n-1)

Efficiency = Used resources/Available resources
=  k*n / k*(k+n-1) = n/(k+n-1)

18 19 20          21 22           23           0            1            2    Uhr

Pipelining



• Homogeneous partial operations
– The operation can be split into partial operations 

of equal length.

• Repetition of identical operations
– The same operation is repeatedly performed on 

different “inputs”.

• Repetition of independent operations
– All operations are pairwise independent

Idealizing assumptions in the example
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• Divide execution of machine instruction into several 
phases of ideally equal length.

• A sensible division depends on the instruction set and the 
employed technology.

• In the MIPS datapath the following division is sensible:
– IF (Instruction Fetch): Reading the instruction.
– ID (Instruction Decode) or RF (Register Fetch): 

Decoding the instruction and reading the register contents.
– EX (Execute): Execute the instruction or compute an address.
– MEM (Memory): Access to data memory.
– WB (Write Back): Storing the result in the register file.

Transfer to the MIPS processor:
Division of instruction execution into phases
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Illustration of division into phases
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Speedup and efficiency:
Homogeneous partial operations

Speedup =
n ⋅k

k+ n−1
n→∞⎯ →⎯⎯ k

Effizienz =
n ⋅k

(k+ n−1) ⋅k
=

Speedup
k

n→∞⎯ →⎯⎯ 1
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Speedup and efficiency:
Inhomogeneous partial operations

...

Speedup =
n ⋅ τ

i
1≤i≤k

∑
(k+ n−1) ⋅maxτ

i
1≤i≤k

n→∞⎯ →⎯⎯
τ

i
1≤i≤k

∑
maxτ

i
1≤i≤k

Assumption: Phases may
have different lengths:

Effizienz =
n ⋅ τ

i
1≤i≤k

∑
(k+ n−1) ⋅k ⋅maxτ

i
1≤i≤k

=
Speedup

k
n→∞⎯ →⎯⎯

τ
i

1≤i≤k

∑
k ⋅maxτ

i
1≤i≤k
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Example: MIPS datapath

Assumption about the delays in the datapath:
• 100 ps = 100 * 10-12 seconds for reading from and writing to registers
• 200 ps for all other components (ALU, main memory)

• Efficiency = 800 ps / (5 * 200 ps) = 80%

• Single cycle: 1 / 800 ps = 1,25 * 109 Instructions/s
Pipelining: 1 / 200 ps = 5 * 109 Instructions/s
à Speedup (for lw) = 4

Instruction IF ID/RF EXE MEM WB Total time

lw 200 ps 100 ps 200 ps 200 ps 100 ps 800 ps

sw 200 ps 100 ps 200 ps 200 ps 700 ps

R-typ 200 ps 100 ps 200 ps 100 ps 600 ps

beq 200 ps 100 ps 200 ps 500 ps
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Time (ps)
Instr
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Instruction

Decode
Read Reg

Execute
ALU

Memory
Read / Write
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Memory
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Memory
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Single-Cycle

Pipelined

Single-cycle vs Pipelined implementation

Internal fragmentation
(due to inhomogeneous latencies)
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Time (cycles)

lw  $s2, 40($0) RF 40

$0
RF

$s2
+ DM

RF $t2

$t1
RF

$s3
+ DM

RF $s5

$s1
RF

$s4
- DM

RF $t6

$t5
RF

$s5
& DM

RF 20

$s1
RF

$s6
+ DM

RF $t4

$t3
RF

$s7
| DM

add $s3, $t1, $t2

sub $s4, $s1, $s5

and $s5, $t5, $t6

sw  $s6, 20($s1)

or  $s7, $t3, $t4

1 2 3 4 5 6 7 8 9 10

add

IM

IM

IM

IM

IM

IM lw

sub

and

sw

or

Pipelining

External fragmentation
(due to “superfluous” pipeline stages)
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• Overlap the 5 phases (IF, DE, EX, MEM, WB) of 
the instruction execution

• Requires additional registers to remember 
multiple active instructions

• These registers conceptually lie between the 
pipeline stages

MIPS processor with pipelining
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Single-cycle vs pipeline datapath
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Pipelining: Control unit

Is it really that simple???

• Decoder of the single-cycle implementation can be reused
• Control is delayed to the right pipeline stage
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Remember: Idealizing assumptions in the 
pipelining example

• Repetition of independent operations
All operations are pairwise independent
à Does not always hold in MIPS. When?
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• Homogeneous partial operations
– The operation can be split into partial operations 

of equal length. à otherwise internal fragmentation

• Repetition of identical operations
– The same operation is repeatedly performed on 

different “inputs”. à otherwise external fragmentation



• When an instruction depends on the result of 
another instruction

• Two types of dependencies:
– Control dependence:

The result of an instruction is required to determine which 
instructions are executed next

– Data dependence, 3 types:
• Read-after-Write (RAW, “true dependency”):

Instruction reads from register that is written to by prior instruction
• Write-after-Read (WAR, “anti-dependency”):

Instruction overwrites register that prior instruction reads
• Write-after-Write (WAW, “output dependency”):

Instruction overwrites register written to by prior instruction

Dependencies
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Example: Dependencies
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Example: Dependencies (Resolution)

Control 
dependencies

RAW
dependencies

WAW
dependencies

WAR 
dependency
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• A hazard is a situation in which an operation 
cannot be executed immediately, as this would violate a dependency

• Two types of hazards in in-order processor:

– Control hazard:
The result of a branch instruction is not yet available

– Data hazard:
• Read-after-Write (RAW):

Instruction reads from register that is written to by other instruction
  and that has not yet been performed

• Write-after-Read (WAR):
Instruktion überschreibt Register welches frühere Instruktion liest

• Write-after-Write (WAW):
Instruktion überschreibt Register welches auch frühere Instruktion 
überschreibt

Pipeline hazards
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Example: Data hazards

Time (cycles)

add $s0, $s2, $s3 RF $s3

$s2
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM add

or

sub
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Compiler may try to reorder instructions to avoid hazards.
• Example:

• If the compiler is unable to insert a sensible instruction, 
it may insert a nop (“no operation”, “no op”). 
It has no effect, but traverses the pipeline like all other 
instructions.

Avoiding data hazards: Compiler

Pipelining System Architecture, Jan Reineke 25



The missing data is “forwarded” to the consuming 
instruction before storing the result in the register file.

Principle:

Avoiding data hazards: Forwarding
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Principle:

Avoiding data hazards: Forwarding

Why not write back to the register file right after the
execute phase?

àWAW dependency on loads (lw)
àRegister file cannot handle multiple writes simultaneously

Pipelining 27



Forwarding: Datapath and control
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Avoiding data hazards via stalls

• “Forwarding” cannot avoid all hazards.

• Repair by inserting “bubble”. This corresponds to the 
insertion of a nop instruction.

• This “bubble” is not inserted in the IF phase, but only 
in a later phase.

• Instructions in later stages traverse the pipeline as usual. 
Instructions in earlier stages are stalled.

Avoiding data hazards: Stalls
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Time (cycles)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

Trouble!

Avoiding data hazards: Stalls
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Avoiding data hazards: Stalls

Time (cycles)

lw $s0, 40($0) RF 40

$0
RF

$s0
+ DM

RF $s1

$s0
RF

$t0
& DM

RF $s0

$s4
RF

$t1
| DM

RF $s5

$s0
RF

$t2
- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

9

RF $s1

$s0

IM or

Stall
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Stalling and forwarding unit

Stall signals Flush signals
32



Time (cycles)

beq $t1, $t2, 40 RF $t2

$t1
RF- DM

RF $s1

$s0
RF& DM

RF $s0

$s4
RF| DM

RF $s5

$s0
RF- DM

and $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

and

IM

IM

IM

IM lw

or

sub

20

24

28

2C

30

...

...

9

Flush
these

instructions

64 slt $t3, $s2, $s3 RF $s3

$s2
RF

$t3s
l
t DMIM slt

Example: Control hazards
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• Insertion of “bubbles” as with data hazards
– Example: Branching decision known after the MEM phase. 

Every branch leads to 3 stall cycles:

Avoiding control hazards: Stalls

Computation of the average cycles per instruction (CPI):
• Assumptions: five-stages pipeline, 1 cycle per stage, only stalls due to

branches, 30% of all instructions are branches.
• CPI = 0.7 + 0.3*4 = 1.9

à slowed down almost by a factor of 2!
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• Processor predicts that branches are not taken. 
– If this prediction comes true, execution continues. 

– Otherwise the instructions are aborted and the 
execution continues with the correct instructions.

• Example of an incorrect prediction, branching 
decision is known after the MEM phase:

Avoiding control hazards: Static prediction
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Avoiding control hazards: Static prediction

Computation of the average cycles per instruction (CPI):
• Assumptions: five-stages pipeline, 1 cycle per stage, only stalls

due to branches, 30% of all instructions are branches. 
One half of all branches is executed.

• CPI = 0.7 + 0.3*0.5*4 + 0.3*0.5 = 1.45

Pipelining 36



The processor makes the prediction based on the history of prior 
branching decisions.

Simplest approach:
– If this branch was taken last time, predict it is also taken this time.

Otherwise predict the branch is not taken.

– This scheme can be enhanced to take into account “older” 
branching decisions.
E.g. some AMD processors employ neural networks for branch prediction.

Avoiding control hazards: Dynamic prediction
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Problem with simple dynamic prediction: 

In case of loops, branching probabilities are very non-uniform (e.g. 99% taken, 
1% not taken). At an incorrect prediction, the next prediction is also wrong:

Avoiding control hazards: Dynamic prediction
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not taken 

taken        

not taken 

taken        
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2-bit 
Prediction



• Solution via 2-Bit prediction:
The prediction is only changed upon two successive incorrect 
predictions.

• Modeled via Moore automaton:
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Reducing the stall cycles by resolving the branching 
decision earlier.

Avoiding control hazards: 
Early branch resolution
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Avoiding control hazards:
Original processor

What can be changed?
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Avoiding control hazards:
Modification for early branch resolution

Additional data hazard in decode phase!
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Avoiding control hazards:
Modification for early branch resolution
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Time (cycles)

beq $t1, $t2, 40 RF $t2

$t1
RF- DM

RF $s1

$s0
RF& DMand $t0, $s0, $s1

or  $t1, $s4, $s0

sub $t2, $s0, $s5

1 2 3 4 5 6 7 8

andIM

IM lw20

24

28

2C

30

...

...

9

Flush
this

instruction

64 slt $t3, $s2, $s3 RF $s3

$s2
RF

$t3s
l
t DMIM slt

Effect of early branch resolution

lw
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Avoiding control hazards:
Branch delay slots

• The semantics of the branch 
instruction is modified: 
The instruction following the branch 
instruction is executed in any case.

• The compiler needs to find 
instructions to fill this “branch delay 
slot” without violating the program’s 
semantics.
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Avoiding control hazards
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Computation of the average cycles per instruction (CPI):
• Assumptions: five-stages pipeline, 1 cycle per stage, only stalls

due to branches, 30% of all instructions are branches. 
The compiler can fill the branch delay slot in 60% of cases.

• CPI = 0.7 + 0.3*2 – 0.3*0.6 = 1.12



• Overlap consecutive instructions
• Three idealizing assumptions:
– Homogeneous partial operations
à otherwise: internal fragmentation

– Repetition of identical operations
à otherwise: external fragmentation

– Repetition of independent operations
à otherwise: hazards
• Stalling
• Forwarding
• Branch Delay Slot

Summary: Pipelining
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