
Performance: Basic Concepts

Jan Reineke
Universität des Saarlandes

System Architecture, Jan ReinekePerformance: Basic concepts 1

Roadmap: Computer architecture

1. Combinatorial circuits: Boolean
Algebra/Functions/Expressions/Synthesis

2. Number representations
3. Arithmetic Circuits:

Addition, Multiplication, Division, ALU

4. Sequential circuits: Flip-Flops, Registers,
SRAM, Moore and Mealy automata

5. Verilog

6. Instruction Set Architecture
7. Microarchitecture

8. Performance: RISC vs. CISC, Pipelining,
Memory Hierarchy

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

Performance: Possible definitions

Possible definitions for the performance of a computer:

• User with a single program:
1/execution time

• Data center with a set of users that each execute a set of
programs:
|programs|/time

• Search engine: set of search queries:
• |processed queries|/time à throughput
• 1/average response time à latency

à Basis for the comparison of different computers/systems
3

Latency = time required to perform a single task

Throughput = number of tasks performed in one time unit

Performance: Latency versus Throughput

Example: Assembly line in the automobile industry
An assembly line used to produce cars.

The production of a single car requires 8 hours.
Each day, 960 cars can be produced.

àLatency = 8 hours
àThroughput = 960 cars / day or 40 cars / hour

System Architecture, Jan Reineke 4
Depending on the situation: optimize latency or throughput.

Execution time of a program

Different execution time concepts:

Time that the processor actually spent executing the program:
• Processor time (also CPU time)

à depends primarily on the microarchitecture (now)

Execution from start to finish:
• Response time
• Includes waiting time for input/output and

preemption by other programs
à also depends on scheduling (more about this later)

Performance: Basic concepts System Architecture, Jan Reineke 5

Processor time

Processor time
= Number of processor cycles / clock speed
= Number of processor cycles * cycle time

Processor time = Number of executed instructions
* Cycles per instruction
* Cycle time

Number of processor cycles
= Number of executed instructions * Cycles per instruction

Assumption: number of cycles per instruction is constant

Thus:

Performance: Basic concepts System Architecture, Jan Reineke 6

How to increase performance?

Processor time = Number of executed instructions
* Cycles per instruction
* Cycle time

1. Reduce cycle time/increase clock speed

2. Reduce number of executed instructions

3. Reduce cycles per instruction

Technological improvements, microarchitecture

Compiler optimizations

Microarchitecture (e.g. pipelining, memory hierarchy)

Instruction set influences all 3 factors (but 2. in particular)
Performance: Basic concepts System Architecture, Jan Reineke 7

1. Technological developments:
Moore’s Law

Observation by Gordon Moore 1965:

“Number of transistors per area doubles
 every year”

Revision 1975:

“Number of transistors per area doubles
 every two years”

No law of nature, but rather empirical observation.

Gordon Moore (1929-)
Intel co-founder

Performance: Basic concepts System Architecture, Jan Reineke 8

1. Technological developments

Increasing power consumption limits increase of clock speed.

à Explains transition towards multicores 9

1. Technological developments: Excursion
Energy efficiency of different technologies

Performance: Basic concepts System Architecture, Jan Reineke 10

2. Number of executed instructions:
Instruction Set Architecture
• Loop bounds and recursion depth are fixed

(independently of ISA)
• Reduced Instruction Set Computer (RISC), e.g.

MIPS, SPARC, PowerPC, ARM
– few instructions, few addressing modes, fixed instruction

length, load/store architecture
– a lot of space for registers (in instruction encoding)

• Complex Instruction Set Computer (CISC), e.g.
Motorola 68000, Intel x86
– complex instructions, many addressing modes, variable

instruction length
– little space for registers (in instruction encoding)

Performance: Basic concepts 11

• Immediate addressing
• Register addressing

• Base addressing
• PC-relative addressing

• Pseudodirect addressing

Example: MIPS addressing modes

Performance: Basic concepts System Architecture, Jan Reineke 12

Example: Motorola 68000 addressing modes

1. Data register direct

2. Address register direct

3. Register indirect

4. Register indirect with post-increment

5. Register indirect with pre-decrement

6. Register indirect with displacement

7. Register indirect with index

8. Absolute short

9. Absolute long

10. PC relative with displacement

11. PC relative with index

12. Immediate

13. Quick Immediate

14. Implied register

Performance: Basic concepts System Architecture, Jan Reineke 13

2. Number of executed instructions:
Instruction Set Architecture
• Reduced Instruction Set Computer (RISC)

– more executed instructions per program
– but shorter cycle time

• Complex Instruction Set Computer (CISC)
– fewer executed instructions per program
– but longer cycle time if implemented natively
– Today: implementation via microcode:

RISC instruction

Instruction execution

CISC instruction

μop execution

Micro-operations (μops)

Microcode translation

Hennessy and Patterson
Turing Award 2017 for RISC

Performance: Basic concepts System Architecture, Jan Reineke 14

Details for x86: https://uops.info/

3. Cycles per instruction and cycle time

Single-cycle datapath

§ executes each instruction in a single cycle

§ Cycle time can be very long

Multi-cycle datapath

§ has much shorter cycle time (higher clock speed)

§ every instruction requires multiple cycles

Performance: Basic concepts 15

3. Cycles per instruction and cycle time

critical path:
the path that determines
the maximum delay

16

Single-cycle datapath

§ executes each instruction in a single cycle

§ Cycle time can be very long

Multi-cycle datapath

§ has much shorter cycle time (higher clock speed)

§ every instruction requires multiple cycles

Pipelining

Pipelining aims for the “best of both worlds”:
• Cycle time is kept short à high clock speed
• An instruction is executed in each clock cycle

Attention: The transition from the single-cycle datapath to the multi-
cycle datapath
• … increases the CPI!
• … but it shortens the cycle time!
• But: the product of the two, i.e., the latency of an instruction, is

usually slightly higher. Why?

CPI = cycles per instruction

Performance: Basic concepts System Architecture, Jan Reineke 17

