
Instruction Set Architecture 
at the Example of MIPS

Becker/Molitor, Chapter 10 treats a similar but not identical system.
We follow the American book "Digital design and computer architecture" 
by Harris and Harris, 2013. 
Here, Chapters 6 and 7 are particularly relevant.
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• Instruction set architecture (also simply: architecture)
= set of instructions, their encoding and semantics
= „What“ a computer computes

For example: x86, ARM

• Microarchitecture
= concrete implementation of an instruction set in hardware
= „How“ a computer works
For example: Intel Skylake, AMD Zen 3 (both x86), Apple M1 (ARM)

Overview: Architecture vs Microarchitecture

Instruction Set Architecture System Architecture, Jan Reineke 3



An instruction set architecture can be implemented by many 
different microarchitectures:

à e.g. AMD and Intel processors implement x86 
instruction sets

à new microarchitectures do not require new compiler, 
nor a new operating system

Overview: Architecture vs Microarchitecture
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Assembly and machine language

Assembly language = textual representation of instructions

Machine language = binary representation executed by a computer

Assembler + Linker
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In the following:
A brief overview of the MIPS instruction set.

MIPS instruction set
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State is completely determined by:
• Program counter (PC)

• Register file consists of 32 registers, (Reg)
•Memory (Mem)

Logical state of MIPS instruction set
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Logical execution of a machine program

PC := 0
while (true) {

instruction = Mem[PC]
(PC, Reg, Mem) :=

execute(instruction, PC, Reg, Mem)
}

Three types of instructions:
1. Arithmetic and logic instructions
2. Memory instructions
3. Jump and branch instructions
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Arithmetic and logic instructions 
(immediate)

Arithmetic instructions perform arithmetic and
logic operations on registers

Immediate instructions employ immediate addressing.

Examples:

slti $t1, $s2, 100 # if ($s2 < 100) then $t1 = 1
else $t1 = 0

addi $t1, $s2, 100 # $t1 = $s2 + 100

Register $t1 contains the value of $s2+100 in 
two‘s complement.

Comment

„immediate“
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Arithmetic and logic instructions 
(register)

add $s1, $s2, $s3 # $s1 = $s2 + $s3
slt $s1, $s2, $s3   # if ($s2 < $s3) then $s1 = 1

else $s1 = 0
and $s1, $s2, $s3 # $s1 = $s2 & $s3

Bitwise logical AND
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Arithmetic instructions perform arithmetic and
logic operations on registers

Register instructions employ register addressing. 
All operands are register contents.

Examples:



MIPS registers
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Name Register number Usage
$0 0 the constant value 0
$at 1 assembler temporary
$v0-$v1 2-3 Function return values
$a0-$a3 4-7 Function arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved variables
$t8-$t9 24-25 more temporaries
$k0-$k1 26-27 OS temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 Function return address



Memory instructions

Memory instructions move data between memory 
and registers. They employ base addressing.

Examples:
lw $t0, 100($s2) # $t0 = Mem[100+$s2]
sw $t0, 100($s2)  # Mem[100+$s2] = $t0
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Memory organization

Memory is byte-addressable, i.e., 
each byte can be addressed separately
Registers store words:
– 1 byte = 8 bit
– 1 word = 4 byte = 32 bit

Word access must be correctly aligned.
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Processor registers Memory           

1 word = 32 bits



Jump and branch instructions

... alter the control flow of a program.

Two types:

• Jump instructions
• Branch instructions
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Jump instructions

Jumps modify the program counter in any case.

Jump instructions employ either
– pseudodirect addressing (j, jal) or 
– register addressing (jr, jalr).
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Jump instructions

Examples:
jr $ra # PC = $ra (next instruction

is at Mem[$ra])
j Label1 # go to Label1
jal Label2 # $ra = PC+4 ; go to Label2

The instructions modify the program counter.
As instructions in MIPS always occupy an entire word, 
but memory is byte-addressed,
the two least significant bits of the register with the jump address
always have to be 0.
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Branch instructions

Branch instructions modify the program counter
only if a condition is satisfied.

Branch instructions (beq, bne) employ
PC-relative addressing. 
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Branch instructions

Examples:
beq $s1, $s2, Label3 # if ($s1=$s2) then go to Label3
bne $s1, $s2, Label4 # if ($s1!=$s2) then go to Label4
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Summary: MIPS assembler
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Arithmetic and 
logic instructions

Memory 
instructions

Jump and branch 
instructions



Instruction encoding

• Instruction encoding refers to the encoding of 
instructions in machine words.

• MIPS uses a fixed-length 32-bit encoding of all 
instructions (this is unlike, e.g. x86)

• We distinguish three types I, J and R:

“immediate”

“jump”

“register”
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Type I

Type J

Type R



Instruction encoding
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Abbreviation Meaning

I immediate

J jump

R register

op 6-bit encoding of the operation

rs 5-bit encoding of a source register

rt 5-bit encoding of a source or target register

immediate 16-bit immediate value

target 26-bit jump target

rd 5-bit encoding of the target register

shamt 5-bit encoding of “shift amount”

funct 6-bit encoding of the function



Converting 00af8020hex into an assembly instruction:
• Binary represent.: 0000 0000 1010 1111 1000 0000 0010 0000

• Decoding the instruction type: Type R, because op=000000
• Division of the binary representation

• Result:   add $s0, $a1, $t7

Example of instruction 
encoding
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Type I

Type J

Type R



Addressing modes are used to determine required data 
in an instruction:

• as operands of, e.g., arithmetic operations,

• as jump or branch targets.

Addressing modes
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• Immediate addressing: The operand is a constant in the instruction.
• Register addressing: The operand is the value of a register.

• Base addressing: The operand is a memory value whose address is 
determined by the sum of a register value and a constant in the 
instruction.

• PC-relative addressing: The new program counter is the sum of the 
program counter (PC+4) and a constant in the instruction.

• Pseudodirect addressing: The new program counter is determined 
from a constant (26 bit) and the 4 most-significant bits of the old 
program counter (PC+4).

MIPS addressing modes 
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Addressing modes

2. Binary numbers are interpreted as
unsigned (e.g. multu) or signed (e.g. mult).

3. Binary numbers of different bit widths
are added up
à need sign extension

1. In which order are words stored in the 
bytes of memory?
à “little endian” vs “big endian”
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The following data formats are defined:
• Byte (8 bit)
• Half-word (16 bit)
• Word (32 bit)

MIPS uses both “little endian” and “big endian”.

Data formats

MIPS allows to switch between
little and big endian.
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Following “big endian” we have:
The most significant byte of a word is at its smallest address. 
A word is addressed with the byte address of its
smallest address (i.e. with its most significant byte).



The following data formats are defined:
• Byte (8 bit)
• Half-word (16 bit)
• Word (32 bit)

MIPS uses both “little endian” and “big endian”.

Data formats
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Following “little endian” we have:
The least significant byte of a word is at its smallest address. 
A word is addressed with the byte address of its
smallest address byte (i.e. with its least significant byte).

x86 uses little-endian



Data:
10. Juni 2021

Time of day:
8:30 o’clock

Numbers:
235 (read from left to right)
235 (read from right to left,         

in Arabic)
zweihundertfünfunddreißig
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Little vs big endian in daily life

→ little endian

 
→ big endian

 
→ big endian
→ little endian      
 
→ mixed endian

2   …            5        …          3



Data formats

Example “big endian”:

•Program:

•Program memory:
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Address of the instruction

Address of the instruction



Numbers in MIPS are either interpreted as unsigned
or signed in two’s complement:
• An n-bit unsigned binary number has the value:

• The extension into an unsigned binary is achieved 
by padding with zeroes:

Data formats: Sign extension
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Data formats: Sign extension

An signed n-bit binary number is represented in two’s 
complement and has the following value:
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Brainstorming:
How can a signed n-bit binary number be extended into an 
m-bit binary number?
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Data formats: Sign extension

An signed n-bit binary number is represented in two’s complement 
and has the following value:

The extension into an m-bit binary number is achieved by padding 
with the most-significant bit:
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Example: register contents:

Assembler instructions:

Data formats

Quiz:
Which values do r4, r5, r6, and r7 take?

“set less than” “unsigned”
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