
Instruction Set Architecture
at the Example of MIPS

Becker/Molitor, Chapter 10 treats a similar but not identical system.
We follow the American book "Digital design and computer architecture"
by Harris and Harris, 2013.
Here, Chapters 6 and 7 are particularly relevant.

Jan Reineke
Universität des Saarlandes

System Architecture, Jan ReinekeInstruction Set Architecture 1

Abstraction layers in computer systems

Applications

Operating system

Instruction set architecture (ISA)

Microarchitecture

Logic gates

Transistors

Machine programs

Assembly programs

Compiler

Assembler

implements

implements

implements

• Instruction set architecture (also simply: architecture)
= set of instructions, their encoding and semantics
= „What“ a computer computes

For example: x86, ARM

• Microarchitecture
= concrete implementation of an instruction set in hardware
= „How“ a computer works
For example: Intel Skylake, AMD Zen 3 (both x86), Apple M1 (ARM)

Overview: Architecture vs Microarchitecture

Instruction Set Architecture System Architecture, Jan Reineke 3

An instruction set architecture can be implemented by many
different microarchitectures:

à e.g. AMD and Intel processors implement x86
instruction sets

à new microarchitectures do not require new compiler,
nor a new operating system

Overview: Architecture vs Microarchitecture

Instruction Set Architecture System Architecture, Jan Reineke 4

Assembly and machine language

Assembly language = textual representation of instructions

Machine language = binary representation executed by a computer

Assembler + Linker

Instruction Set Architecture System Architecture, Jan Reineke 5

In the following:
A brief overview of the MIPS instruction set.

MIPS instruction set

Instruction Set Architecture System Architecture, Jan Reineke 6

State is completely determined by:
• Program counter (PC)

• Register file consists of 32 registers, (Reg)
•Memory (Mem)

Logical state of MIPS instruction set

Instruction Set Architecture System Architecture, Jan Reineke 7

Logical execution of a machine program

PC := 0
while (true) {

instruction = Mem[PC]
(PC, Reg, Mem) :=

execute(instruction, PC, Reg, Mem)
}

Three types of instructions:
1. Arithmetic and logic instructions
2. Memory instructions
3. Jump and branch instructions

Instruction Set Architecture System Architecture, Jan Reineke 8

Arithmetic and logic instructions
(immediate)

Arithmetic instructions perform arithmetic and
logic operations on registers

Immediate instructions employ immediate addressing.

Examples:

slti $t1, $s2, 100 # if ($s2 < 100) then $t1 = 1
else $t1 = 0

addi $t1, $s2, 100 # $t1 = $s2 + 100

Register $t1 contains the value of $s2+100 in
two‘s complement.

Comment

„immediate“
Instruction Set Architecture 9

Arithmetic and logic instructions
(register)

add $s1, $s2, $s3 # $s1 = $s2 + $s3
slt $s1, $s2, $s3 # if ($s2 < $s3) then $s1 = 1

else $s1 = 0
and $s1, $s2, $s3 # $s1 = $s2 & $s3

Bitwise logical AND
Instruction Set Architecture 10

Arithmetic instructions perform arithmetic and
logic operations on registers

Register instructions employ register addressing.
All operands are register contents.

Examples:

MIPS registers

Instruction Set Architecture 11

Name Register number Usage
$0 0 the constant value 0
$at 1 assembler temporary
$v0-$v1 2-3 Function return values
$a0-$a3 4-7 Function arguments
$t0-$t7 8-15 temporaries
$s0-$s7 16-23 saved variables
$t8-$t9 24-25 more temporaries
$k0-$k1 26-27 OS temporaries
$gp 28 global pointer
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 Function return address

Memory instructions

Memory instructions move data between memory
and registers. They employ base addressing.

Examples:
lw $t0, 100($s2) # $t0 = Mem[100+$s2]
sw $t0, 100($s2) # Mem[100+$s2] = $t0

Instruction Set Architecture System Architecture, Jan Reineke 12

Memory organization

Memory is byte-addressable, i.e.,
each byte can be addressed separately
Registers store words:
– 1 byte = 8 bit
– 1 word = 4 byte = 32 bit

Word access must be correctly aligned.
Instruction Set Architecture 13

Processor registers Memory

1 word = 32 bits

Jump and branch instructions

... alter the control flow of a program.

Two types:

• Jump instructions
• Branch instructions

Instruction Set Architecture System Architecture, Jan Reineke 14

Jump instructions

Jumps modify the program counter in any case.

Jump instructions employ either
– pseudodirect addressing (j, jal) or
– register addressing (jr, jalr).

Instruction Set Architecture System Architecture, Jan Reineke 15

Jump instructions

Examples:
jr $ra # PC = $ra (next instruction

is at Mem[$ra])
j Label1 # go to Label1
jal Label2 # $ra = PC+4 ; go to Label2

The instructions modify the program counter.
As instructions in MIPS always occupy an entire word,
but memory is byte-addressed,
the two least significant bits of the register with the jump address
always have to be 0.

Instruction Set Architecture System Architecture, Jan Reineke 16

Branch instructions

Branch instructions modify the program counter
only if a condition is satisfied.

Branch instructions (beq, bne) employ
PC-relative addressing.

Instruction Set Architecture System Architecture, Jan Reineke 17

Branch instructions

Examples:
beq $s1, $s2, Label3 # if ($s1=$s2) then go to Label3
bne $s1, $s2, Label4 # if ($s1!=$s2) then go to Label4

Instruction Set Architecture System Architecture, Jan Reineke 18

Summary: MIPS assembler

Instruction Set Architecture System Architecture, Jan Reineke 19

Arithmetic and
logic instructions

Memory
instructions

Jump and branch
instructions

Instruction encoding

• Instruction encoding refers to the encoding of
instructions in machine words.

• MIPS uses a fixed-length 32-bit encoding of all
instructions (this is unlike, e.g. x86)

• We distinguish three types I, J and R:

“immediate”

“jump”

“register”

Instruction Set Architecture System Architecture, Jan Reineke 20

Type I

Type J

Type R

Instruction encoding

Microarchitecture System Architecture, Jan Reineke 21

Abbreviation Meaning

I immediate

J jump

R register

op 6-bit encoding of the operation

rs 5-bit encoding of a source register

rt 5-bit encoding of a source or target register

immediate 16-bit immediate value

target 26-bit jump target

rd 5-bit encoding of the target register

shamt 5-bit encoding of “shift amount”

funct 6-bit encoding of the function

Converting 00af8020hex into an assembly instruction:
• Binary represent.: 0000 0000 1010 1111 1000 0000 0010 0000

• Decoding the instruction type: Type R, because op=000000
• Division of the binary representation

• Result: add $s0, $a1, $t7

Example of instruction
encoding

Instruction Set Architecture System Architecture, Jan Reineke 22

Type I

Type J

Type R

Addressing modes are used to determine required data
in an instruction:

• as operands of, e.g., arithmetic operations,

• as jump or branch targets.

Addressing modes

Instruction Set Architecture System Architecture, Jan Reineke 23

• Immediate addressing: The operand is a constant in the instruction.
• Register addressing: The operand is the value of a register.

• Base addressing: The operand is a memory value whose address is
determined by the sum of a register value and a constant in the
instruction.

• PC-relative addressing: The new program counter is the sum of the
program counter (PC+4) and a constant in the instruction.

• Pseudodirect addressing: The new program counter is determined
from a constant (26 bit) and the 4 most-significant bits of the old
program counter (PC+4).

MIPS addressing modes

Instruction Set Architecture System Architecture, Jan Reineke 24

Addressing modes

2. Binary numbers are interpreted as
unsigned (e.g. multu) or signed (e.g. mult).

3. Binary numbers of different bit widths
are added up
à need sign extension

1. In which order are words stored in the
bytes of memory?
à “little endian” vs “big endian”

Instruction Set Architecture System Architecture, Jan Reineke 25

The following data formats are defined:
• Byte (8 bit)
• Half-word (16 bit)
• Word (32 bit)

MIPS uses both “little endian” and “big endian”.

Data formats

MIPS allows to switch between
little and big endian.

Instruction Set Architecture System Architecture, Jan Reineke 26

Following “big endian” we have:
The most significant byte of a word is at its smallest address.
A word is addressed with the byte address of its
smallest address (i.e. with its most significant byte).

The following data formats are defined:
• Byte (8 bit)
• Half-word (16 bit)
• Word (32 bit)

MIPS uses both “little endian” and “big endian”.

Data formats

Instruction Set Architecture System Architecture, Jan Reineke 27

Following “little endian” we have:
The least significant byte of a word is at its smallest address.
A word is addressed with the byte address of its
smallest address byte (i.e. with its least significant byte).

x86 uses little-endian

Data:
10. Juni 2021

Time of day:
8:30 o’clock

Numbers:
235 (read from left to right)
235 (read from right to left,

in Arabic)
zweihundertfünfunddreißig

Instruction Set Architecture System Architecture, Jan Reineke 28

Little vs big endian in daily life

→ little endian

→ big endian

→ big endian
→ little endian

→ mixed endian

2 … 5 … 3

Data formats

Example “big endian”:

•Program:

•Program memory:

Instruction Set Architecture System Architecture, Jan Reineke 29

Address of the instruction

Address of the instruction

Numbers in MIPS are either interpreted as unsigned
or signed in two’s complement:
• An n-bit unsigned binary number has the value:

• The extension into an unsigned binary is achieved
by padding with zeroes:

Data formats: Sign extension

å
-

=
- ×==

1

0
01 2

n

i

i
in dddB !

Bdddd
n

i

i
i

m

ni

i
m

i

i
in =×+×=×= ååå

-

=

-

=

-

=
-

1

0

11

0
01 220200 !!

Instruction Set Architecture System Architecture, Jan Reineke 30

Data formats: Sign extension

An signed n-bit binary number is represented in two’s
complement and has the following value:

[] å
-

=

-
-- ×+×-==

2

0

1
1201 22

n

i

i
i

n
nn ddddB !

Brainstorming:
How can a signed n-bit binary number be extended into an
m-bit binary number?

Instruction Set Architecture System Architecture, Jan Reineke 31

Data formats: Sign extension

An signed n-bit binary number is represented in two’s complement
and has the following value:

The extension into an m-bit binary number is achieved by padding
with the most-significant bit:

[] Bddddddd
n

i

i
i

m

ni

i
n

m
nnnn =×+×+×-= åå

-

=

-

-=
-

-

2

0

2

1
1

1
120111 222!!

[] å
-

=

-
-- ×+×-==

2

0

1
1201 22

n

i

i
i

n
nn ddddB !

Instruction Set Architecture System Architecture, Jan Reineke 32

Example: register contents:

Assembler instructions:

Data formats

Quiz:
Which values do r4, r5, r6, and r7 take?

“set less than” “unsigned”

33

