Sequential Circuits: Memory, Finite State Machines

Becker/Molitor, Chapter 11.3.1 Harris/Harris, Chapters 3.3, 3.4, 5.5

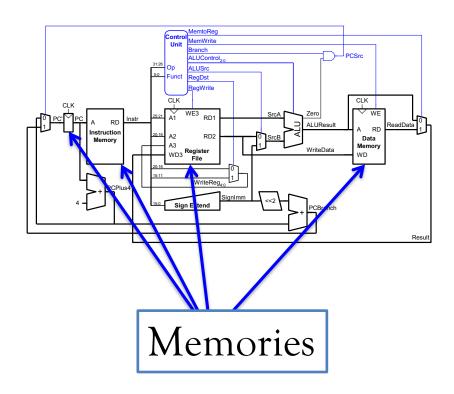
Jan Reineke Universität des Saarlandes

Motivation: Sequential circuits

So far: combinatorial circuits = acyclic circuits

- Compute the same fixed Boolean function
- Not powerful enough to compute all computable functions
- → Computers process programs step-by-step:
 - Fetch-decode-execute cycle
 - Need memory to:
 - store programs and data
 - store intermediate results

Roadmap: Computer architecture



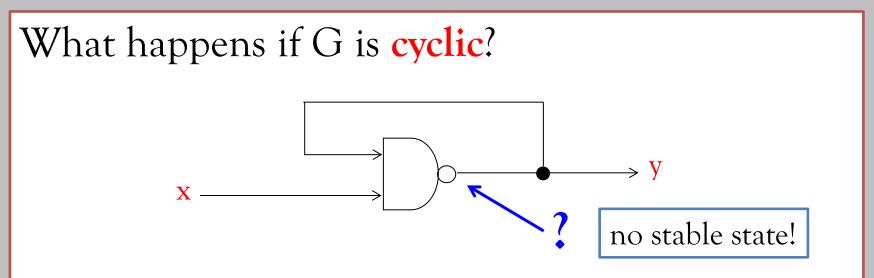
- 1. Combinatorial circuits: Boolean Algebra/Functions/Expressions/Synthesis
- 2. Number representations
- 3. Arithmetic Circuits: Addition, Multiplication, Division, ALU
- 4. Sequential circuits: Flip-Flops, Registers, SRAM, Moore and Mealy automata
- 5. Verilog
- 6. Instruction Set Architecture
- 7. Microarchitecture
- 8. Performance: RISC vs. CISC, Pipelining, Memory Hierarchy

From combinatorial to sequential circuits

So far only combinatorial circuits:

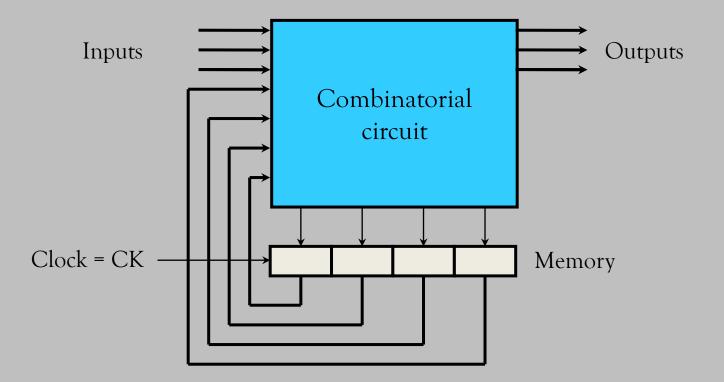
$$C = (X_n, G, typ, IN, Y_m),$$

i.e., G was acyclic.



Circuits like this one are required to build storage elements!

Sequential circuits = (combinatorial) circuits + memory

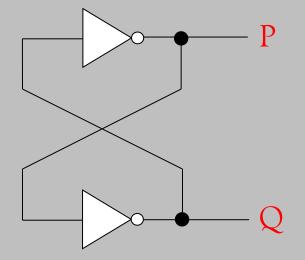


Properties:

- Every cycle contains storage element
- Separation between circuits and storage elements
- Implement finite state automata (Moore or Mealy, more on these later)

MEMORY CELLS

Example: Cyclic circuit

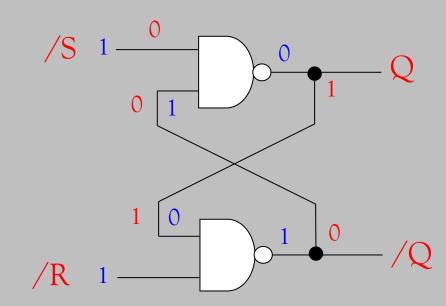


Which values can P and Q take?

How can the values of **P** and **Q** be changed?

(NAND) SR latch

Transition: Stable state $Q = 0 \rightarrow$ stable state Q = 1:



"active low" terminology: /S and /R activated at low input voltage

Circuit with two stable states,

adequate to store $\log_2 2 = 1$ bit.

 At time t₀ lower /S and at t₀ + x raise it again (we call this a pulse)

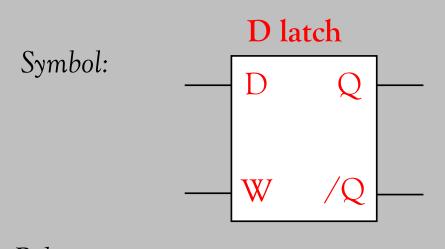
2. After propagation delay $t_{P/SQ}$ we have Q = 1.

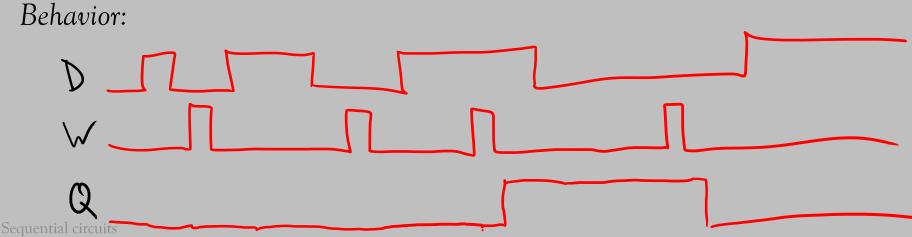
3. After propagation delay $t_{P/S/Q}$ we have /Q = 0.

Sequential circuits

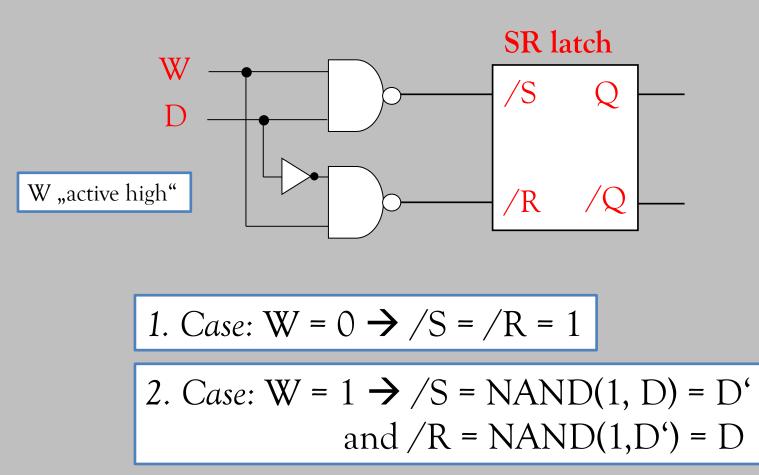
D latch: Behavior

To store an incoming data value D via a pulse (interval between raising and lowering) at W.



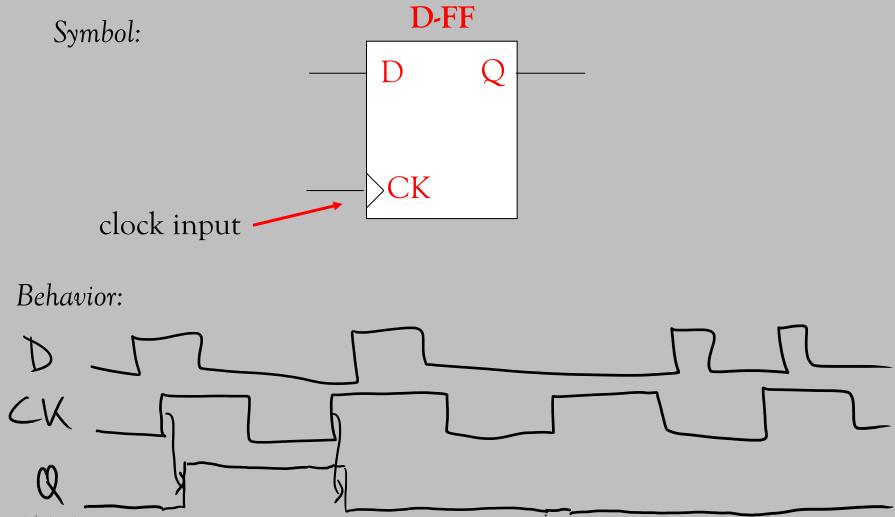


D latch: Implementation



D flip-flop: Edge-triggered

Controlled via a **rising edge** of a signal (usually of a clock):



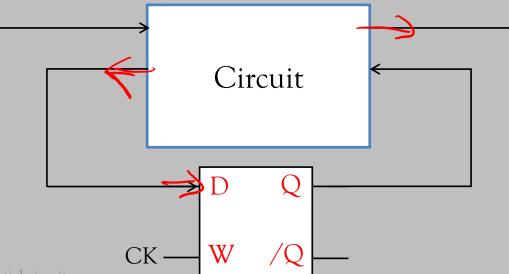
D flip-flop: Implementation



Latch vs Flip-flop

- Latch = level-triggered
- Flip-flop = edge-triggered
 - Advantage:

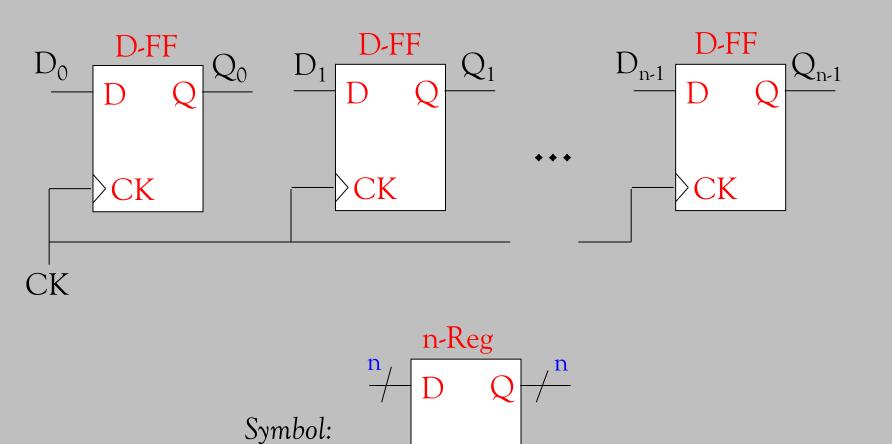
More predictable in circuits with feedback



With a **latch** the behavior depends on the precise timing of the circuit!

With a **flip-flop** the circuit just has to be "fast enough".

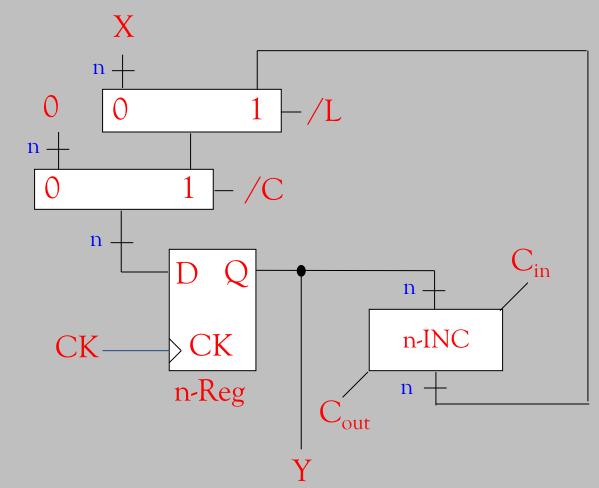
Derived circuit: n-bit register



System Architecture, Jan Reineke

A simple sequential circuit: An n-bit counter

/C clear, /L load, X input, Y output

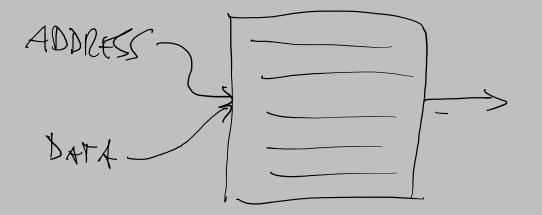


STATIC RAM AND DYNAMIC RAM

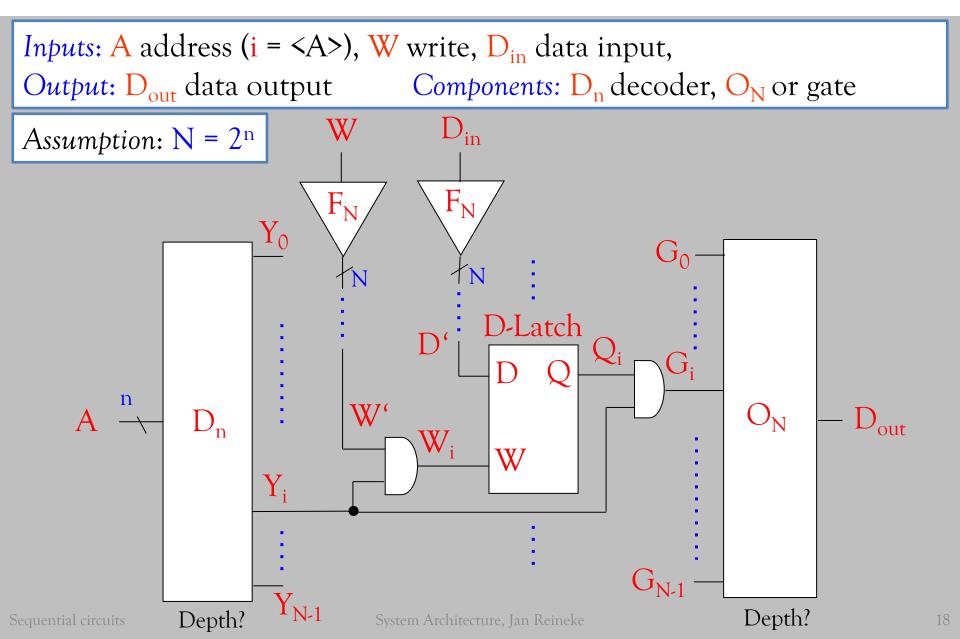
Derived circuit: Random access memory (RAM)

Characteristics:

- linear array of storage cells
- single storage cell selected by adress
- Reading and writing possible
- **volatile =** not persistent = loses its state if power is off.



Schematic of an SRAM (a single addressed bit)



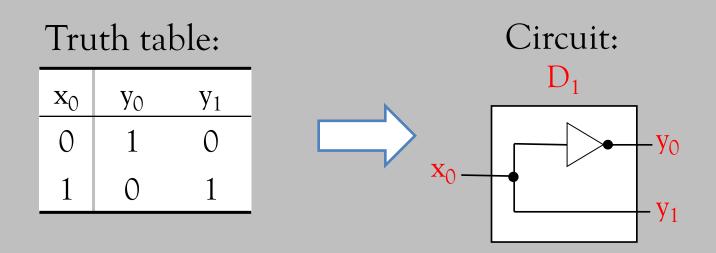
Decoder

Definition:

An **n-bit decoder** is a circuit that computes the following Boolean function $f : B^n \rightarrow B^N$, with N = 2ⁿ:

$$y_{i} = f(x_{n-1}...x_{0})_{i} \Leftrightarrow \left(\left\langle x_{n-1}...x_{0}\right\rangle = i\right)$$

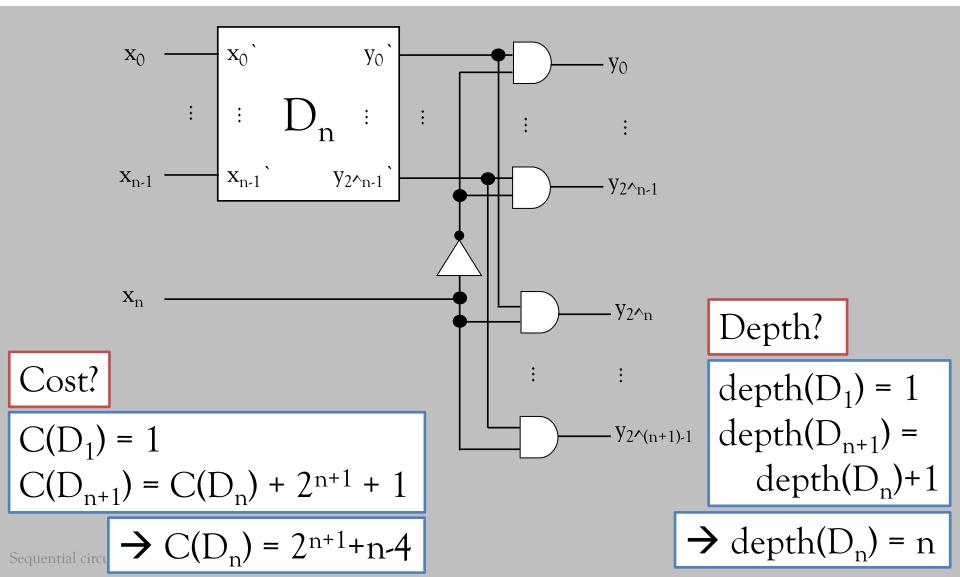
Base case: 1-bit decoder



Properties:

- 1 input, $2^1 = 2$ outputs
- Depth: depth $(D_1) = 1$
- Cost: $C(D_1) = 1$

n-Bit decoder: Recursive construction (from D_n to D_{n+1})



Correctness of an n-bit decoder

- Proof by induction over *n*:
- Base case (n=1): \checkmark
- Induction step (n \rightarrow n+1):
 - Need to show for all $0 \le i \le 2^{n+1}$:
 - Case distinction:

$$y_i \Longleftrightarrow \left(\left\langle x_n x_{n-1} \dots x_0 \right\rangle = i \right)$$

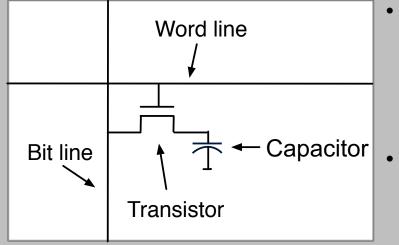
1. $0 \le i \le 2^n$: by construction we have:

$$y_{i} \Leftrightarrow y'_{i} \wedge \overline{x}_{n} \stackrel{\text{I.H.}}{\Leftrightarrow} \left(\left\langle x_{n-1} \dots x_{0} \right\rangle = i \right) \wedge \overline{x}_{n} \Leftrightarrow \left(\left\langle x_{n} x_{n-1} \dots x_{0} \right\rangle = i \right)$$

2. $2^n \le i \le 2^{n+1}$: by construction we have:

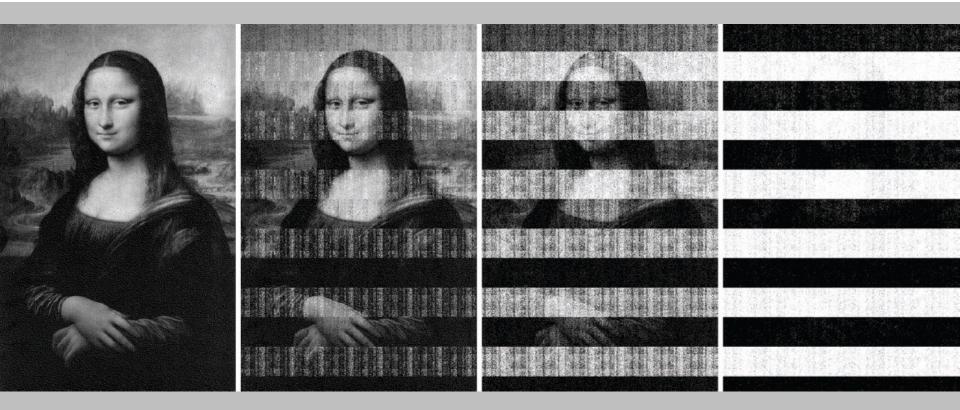
$$y_{i-2^{n}} \Leftrightarrow y'_{i-2^{n}} \land x_{n} \stackrel{\text{I.H.}}{\Leftrightarrow} \left(\left\langle x_{n-1} \dots x_{0} \right\rangle = i - 2^{n} \right) \land x_{n} \Leftrightarrow \left(\left\langle x_{n} x_{n-1} \dots x_{0} \right\rangle = i \right)_{22}$$

Alternative: Dynamic RAM (DRAM)



- Word line active, when bit is read or written to, transistor transmits
- Writing:
 - Voltage on **bit line**
 - high for 1, low for 0
 - Pulse on word line
 - transfers charge to capacitor
- Reading:
 - Charge of capacitor is transferred via the bit line to a sense amplifier
 - compares with reference value to detect 0 or 1
- Capacitor "leaks" charge.
 State must be refreshed periodically; according to standard every 64 ms → thus "dynamic" RAM
 - temperature-dependent
 - less leakage the colder the transistor is

Anecdote: "Memory attacks"



Lest We Remember: Cold-Boot Attacks on Encryption Keys Communications of the ACM, 2009

Sequential circuits

Comparison: SRAM vs DRAM

Both are volatile:

i.e. must expend energy to keep data

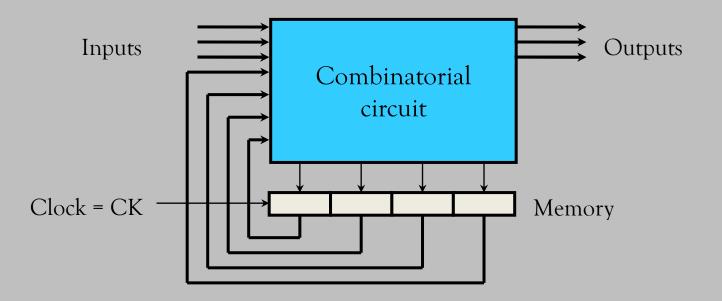
Static RAM	Dynamic RAM
requires 6 transistors per bit \rightarrow lower density	requires 1 transistor and 1 capacitor per bit → higher density
faster accesses	slower accesses
	requires refresh
\rightarrow used in caches	\rightarrow used in main memory

SEQUENTIAL CIRCUITS

Sequential circuits

System Architecture, Jan Reineke

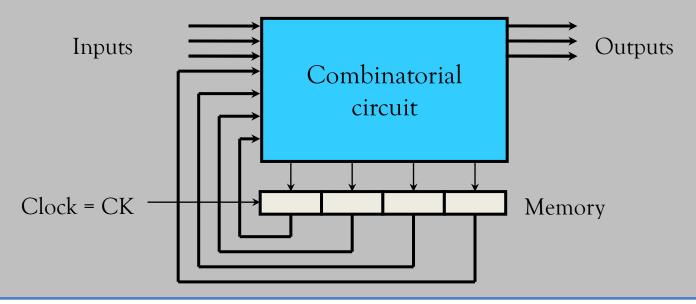
Sequential circuits = (combinatorial) circuits + memory



Properties:

- Every cycle contains storage element
- Separation between circuits and storage elements

Sequential circuits = (combinatorial) circuits + memory



Wanted:

- Predictable, deterministic behavior:
 - deterministic: same output sequence on same input sequence
 - predictable: can mathematically capture input/output behavior

Required for that:

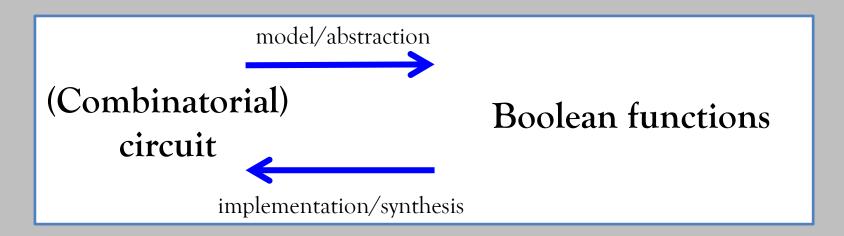
• Depth of combinatorial circuit < length of a clock cycle

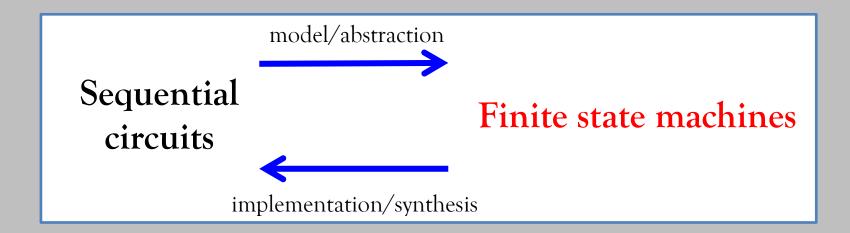
FINITE STATE MACHINES

Sequential circuits

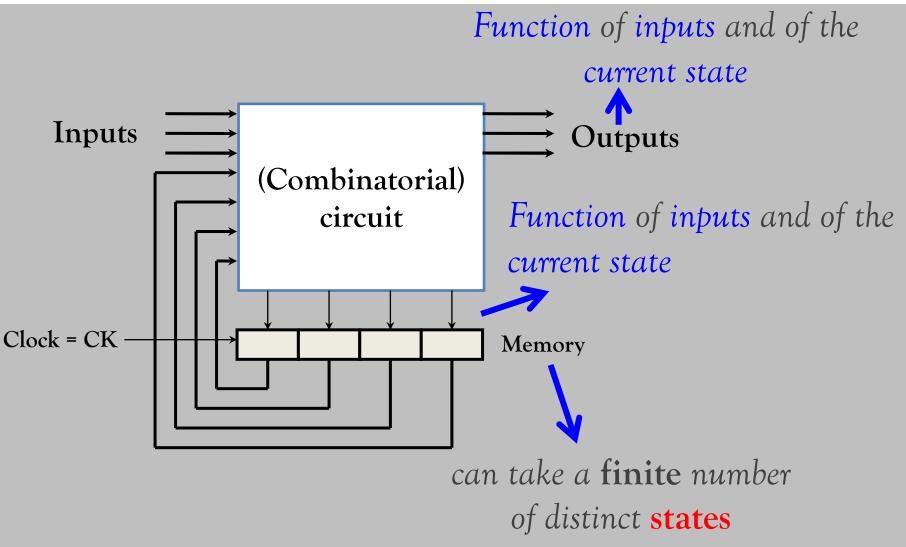
System Architecture, Jan Reineke

Finite state machines as models of sequential circuits





Sequential circuits: Abstraction



Finite state machine, Mealy machine

Definition:

A Mealy machine is a 6-tuple $M=(Q, q_0, I, O, \delta, \lambda)$:

- Q is a finite, non-empty set of states,
- $q_0 \in Q$ is the initial state,
- I is a *finite*, *non-empty* input alphabet,
- O is a *finite*, *non-empty* output alphabet,
- $\delta : Q \ge I \rightarrow Q$ is the transition function,
- $\lambda : Q \ge I \rightarrow O$ is the output function.

Named after: Mealy, George H. (1955), "A method for synthesizing sequential circuits", Bell System Technical Journal

Mealy machine: Example vending machine

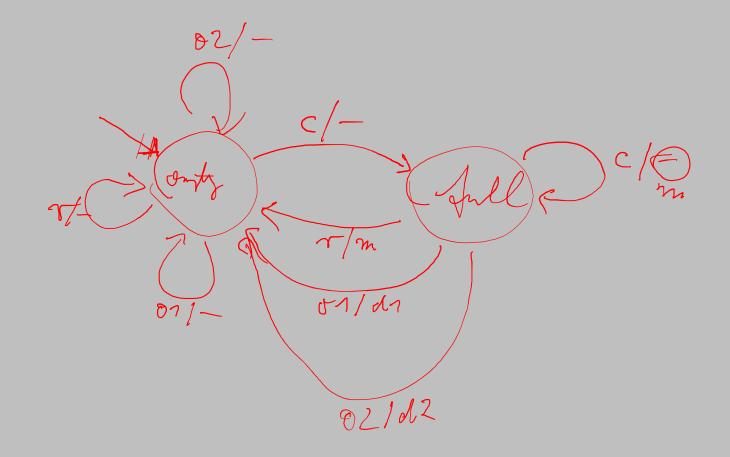
- A (simple) vending machine:
 1. Pay one euro,
 2a. Then choose one among two drinks.
 - 2b. Or press the return button to retrieve the money
- Other behavior is ignored by the vending machine.

Example: Vending machine

- Set of states Q?
- Input alphabet I?
- Output alphabet O?

- $Q = \{empty, full\}, q_0 = empty$
- I = {coin (c), return (r), option 1 (o1), option 2 (o2)}
- O = {no output (-), emission of money (m), emission of drink 1 (d1), emission of drink 2 (d2)}

Example: Vending machine Transition and output function graphically



Example: Vending machine Transition and output function

Transition function:

Q	Ι	δ
empty	С	full
empty	r	empty
empty	01	empty
empty	02	empty
full	С	full
full	r	empty
full	01	empty
full	02	empty

Output function:

Q	Ι	λ
empty	С	-
empty	r	-
empty	d1	-
empty	d2	-
full	С	-
full	r	m
full	d1	01
full	d2	02

From Mealy machines to Sequential circuits

How can we turn transition and output functions into Boolean functions?

From Mealy machines to Sequential circuits

- 1. Fix encoding of states, inputs, and outputs
- 2. Synthesize **circuits** for *transition function* and *output function*

Example: Vending machine 1. Encoding

- 2 states, i.e., we require at least one bit.
 Assume *empty* → 0, *full* → 1.
- 4 inputs and 4 outputs, and so we require at least 2 bits, as $4 = 2^2$.

For example:

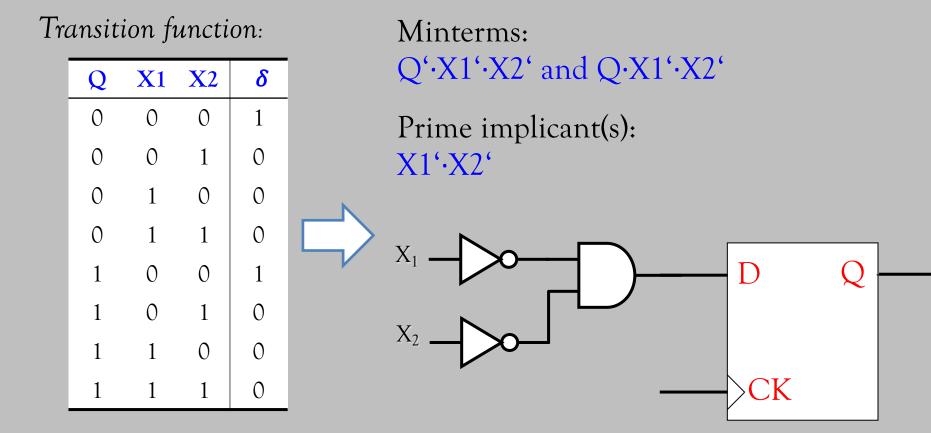
Ι	X 1	X2	0	Y 1	Y 2
С	0	0	-	0	0
r	0	1	m	0	1
01	1	0	d1	1	0
02	1	1	d2	1	1

Truth table of transition function follows from encoding:

Transition function:

Q	I	δ	Q	X 1	X 2	δ
empty	С	full	0	0	0	1
empty	r	empty	0	0	1	0
empty	01	empty	0	1	0	0
empty	02	empty	0	1	1	0
full	С	full	1	0	0	1
full	r	empty	1	0	1	0
full	01	empty	1	1	0	0
full	02	empty	1	1	1	0

Synthesis of a circuit for the transition function:



Truth table of output function follows from encoding:

Output function:

Q	Ι	λ		Q	X 1	X2	Y1	Y 2
empty	С	-		0	0	0	0	0
empty	r	-		0	0	1	0	0
empty	01	-	Ν	0	1	0	0	0
empty	02	-		0	1	1	0	0
full	С	-	V	1	0	0	0	0
full	r	m		1	0	1	0	1
full	01	d1		1	1	0	1	0
full	02	d2		1	1	1	1	1

Synthesis of a circuit for the output function:

Output function:

Ε	Q	X 1	X 2	Y1	Y2	
Γ	0	0	0	0	0	
	0	0	1	0	0	
	0	1	0	0	0	
	0	1	1	0	0	
	1	0	0	0	0	
	1	0	1	0	1	
	1	1	0	1	0	
	1	1	1	1	1	

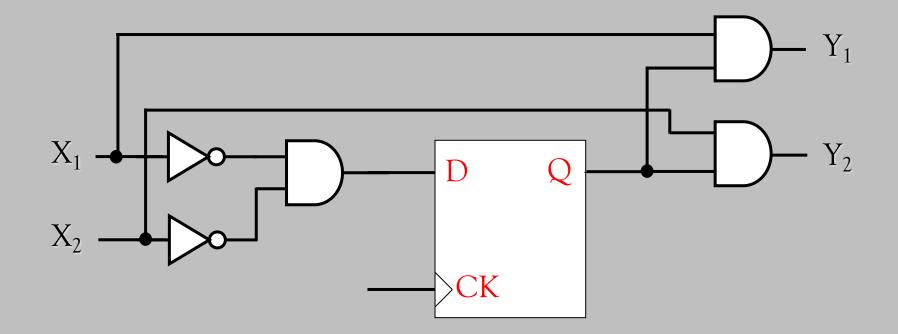
Minterms for Y1: Q·X1·X2' and Q·X1·X2

Prime implicant(s): Q·X1

Minterms for Y2: Q·X1[·]·X2 and Q·X1·X2

Prime implicant(s): Q·X2

Example: Vending machine Sequential circuit



From Mealy machines to Sequential circuits

Encoding may strongly influence cost and depth of resulting circuits!

For lack of time we do not further consider this topic in this course.

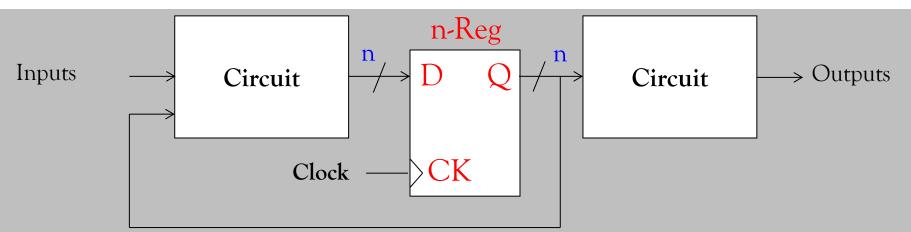
Alternative: Moore machine

Definition:

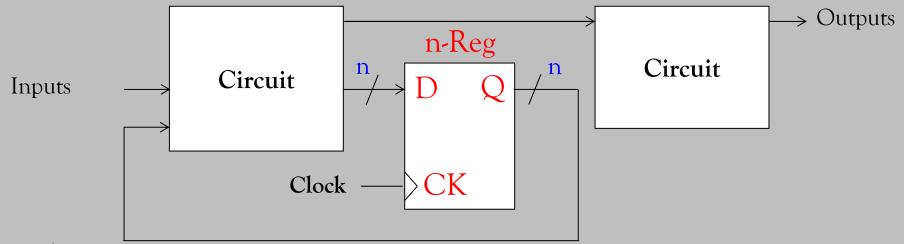
- A Moore machine is a tuple $M=(Q, q_0, I, O, \delta, \lambda)$:
- Q is a finite, non-empty set of states,
- $q_0 \in Q$ is the initial state,
- I is a *finite*, *non-empty* input alphabet,
- O is a *finite*, *non-empty* output alphabet,
- $\delta : Q \ge I \rightarrow Q$ is the transition function,
- $\lambda : Q \rightarrow O$ is the output function.

Named after: Moore, Edward F. (1956), "Gedanken-experiments on Sequential Machines", Automata Studies

From Moore machines to Sequential circuits



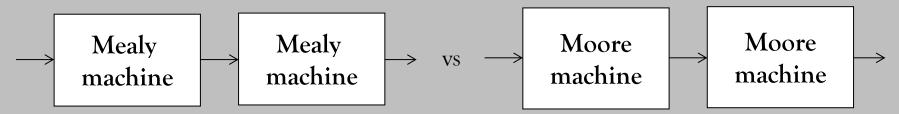
In contrast to Mealy automata:



Sequential circuits

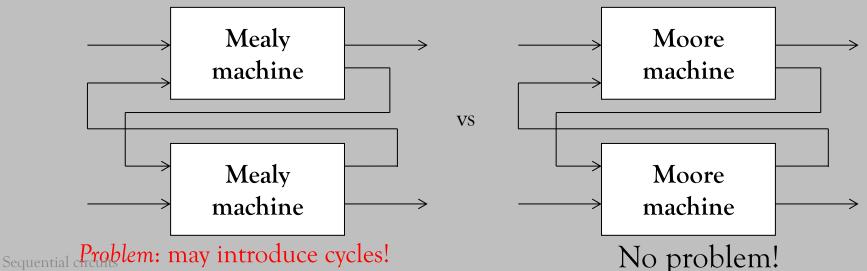
Moore- vs Mealy machines

- Mealy machines *react faster* on inputs: reaction in the same cycle
- Mealy machines often require *fewer states*: Need not store current input
- Moore machines can be more "safely" composed:
 "Serial composition":



Moore- vs Mealy machines

- Mealy machines *react faster* on inputs: reaction in the same cycle
- Mealy automata often require *fewer states*: Need not store current input
- Moore automata can be more *"safely"* composed: *"Feedback composition"*:



Summary

- Cyclic circuits are necessary to implement storage elements:
 - **Latches** are level-triggered
 - Flip-flops are edge-triggered
- Memory technologies:
 - **SRAM**: fast, but low density
 - **DRAM**: slower, but higher density
- Mathematical models for sequential circuits:
 - Mealy machine:
 - Output depends on current state and current input
 - Moore machine: Output depends only on current state