Sequential Circuits:
 Memory, Finite State Machines

Becker/Molitor, Chapter 11.3.1 Harris/Harris, Chapters 3.3, 3.4, 5.5

Jan Reineke

Universität des Saarlandes

Motivation: Sequential circuits

So far: combinatorial circuits $=$ acyclic circuits

- Compute the same fixed Boolean function
- Not powerful enough to compute all computable functions
\rightarrow Computers process programs step-by-step:
- Fetch-decode-execute cycle
- Need memory to:
- store programs and data
- store intermediate results

Roadmap: Computer architecture

1. Combinatorial circuits: Boolean

Algebra/Functions/Expressions/Synthesis
2. Number representations
3. Arithmetic Circuits:

Addition, Multiplication, Division, ALU
4. Sequential circuits: Flip-Flops, Registers, SRAM, Moore and Mealy automata
5. Verilog
6. Instruction Set Architecture
7. Microarchitecture
8. Performance: RISC vs. CISC, Pipelining, Memory Hierarchy

From combinatorial to sequential circuits
So far only combinatorial circuits:

$$
\mathrm{C}=\left(X_{n}, G, \text { typ, } I N, Y_{m}\right),
$$

i.e., G was acyclic.

What happens if G is cyclic?

Circuits like this one are required to build storage elements!

Sequential circuits $=$ (combinatorial) circuits + memory

Properties:

- Every cycle contains storage element
- Separation between circuits and storage elements
- Implement finite state automata (Moore or Mealy, more on these later)

MEMORY CELLS

Example: Cyclic circuit

Which values can P and Q take?

How can the values of P and Q be changed?

(NAND) SR latch

Transition: Stable state $\mathrm{Q}=0 \rightarrow$ stable state $\mathrm{Q}=1$:

[^0]1. At time t_{0} lower $/ S$ and at $t_{0}+x$ raise it again (we call this a pulse)
2. After propagation delay $t_{P / S Q}$ we have $Q=1$.
3. After propagation delay $t_{P / S / Q}$ we have $/ \mathrm{Q}=0$.

Circuit with two stable states, adequate to store $\log _{2} 2=1$ bit.

D latch: Behavior

To store an incoming data value D via a pulse (interval between raising and lowering) at W.

D latch
Symbol:

Behavior:

Q

D latch: Implementation

1. Case: $\mathrm{W}=0 \rightarrow / \mathrm{S}=/ \mathrm{R}=1$
2. Case: $\mathrm{W}=1 \rightarrow / \mathrm{S}=\operatorname{NAND}(1, \mathrm{D})=\mathrm{D}^{‘}$ and $/ \mathrm{R}=\operatorname{NAND}\left(1, \mathrm{D}^{\imath}\right)=\mathrm{D}$

D flip-flop: Edge-triggered

Controlled via a rising edge of a signal (usually of a clock):
Symbol:
D-FF

Behavior:

D flip-flop: Implementation

Latch vs Flip-flop

- Latch = level-triggered
- Flip-flop = edge-triggered
- Advantage:

More predictable in circuits with feedback

With a latch the behavior depends on the precise timing of the circuit!

With a flip-flop the circuit just has to be "fast enough".

Derived circuit: n -bit register

A simple sequential circuit:

 An n-bit counter/C clear, /L load, X input, Y output

STATIC RAM AND DYNAMIC RAM

Derived circuit:

Random access memory (RAM)

Characteristics:

- linear array of storage cells
- single storage cell selected by adress
- Reading and writing possible
- volatile $=$ not persistent $=$ loses its state if power is off.

Schematic of an SRAM ${ }_{\text {a s single addressed d bit })}$

Inputs: A address $(\mathrm{i}=\langle\mathrm{A}\rangle)$, W write, $\mathrm{D}_{\text {in }}$ data input, Output: $\mathrm{D}_{\text {out }}$ data output Components: D_{n} decoder, O_{N} or gate

Decoder

Definition:
An n-bit decoder is a circuit that computes the following Boolean function $f: \mathrm{B}^{\mathrm{n}} \rightarrow \mathrm{B}^{\mathrm{N}}$, with $\mathrm{N}=2^{\mathrm{n}}$:

$$
y_{i}=f\left(x_{n-1} \ldots x_{0}\right)_{i} \Leftrightarrow\left(\left\langle x_{n-1} \ldots x_{0}\right\rangle=i\right)
$$

Base case: 1-bit decoder

Truth table:

x_{0}	y_{0}	y_{1}
0	1	0
1	0	1

Properties:

- 1 input, $2^{1}=2$ outputs
- Depth: $\operatorname{depth}\left(\mathrm{D}_{1}\right)=1$
- Cost: $\mathrm{C}\left(\mathrm{D}_{1}\right)=1$
n -Bit decoder: Recursive construction (from D_{n} to D_{n+1})

Depth?

Cost?

$\mathrm{C}\left(\mathrm{D}_{1}\right)=1$
$C\left(D_{n+1}\right)=C\left(D_{n}\right)+2^{n+1}+1$

$$
\rightarrow \mathrm{C}\left(\mathrm{D}_{\mathrm{n}}\right)=2^{\mathrm{n}+1}+\mathrm{n}-4
$$

$\operatorname{depth}\left(\mathrm{D}_{1}\right)=1$ $\operatorname{depth}\left(D_{n+1}\right)=$ $\operatorname{depth}\left(\mathrm{D}_{\mathrm{n}}\right)+1$
$\rightarrow \operatorname{depth}\left(\mathrm{D}_{\mathrm{n}}\right)=\mathrm{n}$

Correctness of an n-bit decoder

Proof by induction over n :
Base case ($\mathrm{n}=1$): \downarrow
Induction step ($\mathrm{n} \rightarrow \mathrm{n}+1$):
Need to show for all $0 \leq \mathrm{i}<2^{\mathrm{n}+1}$:
Case distinction:

$$
y_{i} \Leftrightarrow\left(\left\langle x_{n} x_{n-1} \ldots x_{0}\right\rangle=i\right)
$$

1. $0 \leq \mathrm{i}<2^{\mathrm{n}}$: by construction we have:

$$
y_{i} \Leftrightarrow y_{i}^{\prime} \wedge \bar{x}_{n}^{\text {I.H. }} \Leftrightarrow\left(\left\langle x_{n-1} \ldots x_{0}\right\rangle=i\right) \wedge \bar{x}_{n} \Leftrightarrow\left(\left\langle x_{n} x_{n-1} \ldots x_{0}\right\rangle=i\right)
$$

2. $2^{\mathrm{n}} \leq \mathrm{i}<2^{\mathrm{n}+1}$: by construction we have:

$$
y_{i} \Leftrightarrow y_{i-2^{2^{\prime}}}^{\prime} \wedge x_{n}^{\text {I.H. }} \Leftrightarrow\left(\left\langle x_{n-1} \ldots x_{0}\right\rangle=i-2^{n}\right) \wedge x_{n} \Leftrightarrow\left(\left\langle x_{n} x_{n-1} \ldots x_{0}\right\rangle=i\right)
$$

Alternative: Dynamic RAM (DRAM)

- Word line active, when bit is read or written to, transistor transmits

- Writing:
- Voltage on bit line
- high for 1 , low for 0
- Pulse on word line
- transfers charge to capacitor
- Reading:
- Charge of capacitor is transferred via the bit line to a sense amplifier
- compares with reference value to detect 0 or 1
- Capacitor "leaks" charge.

State must be refreshed periodically; according to standard every $64 \mathrm{~ms} \rightarrow$ thus "dynamic" RAM

- temperature-dependent
- less leakage the colder the transistor is

Anecdote: "Memory attacks"

Lest We Remember: Cold-Boot Attacks on Encryption Keys Communications of the ACM, 2009

Comparison: SRAM vs DRAM

Both are volatile:

 i.e. must expend energy to keep data
Static RAM

requires 6 transistors per bit
\rightarrow lower density
faster accesses
\rightarrow used in caches

Dynamic RAM

requires 1 transistor and
1 capacitor per bit
\rightarrow higher density
slower accesses
requires refresh
\rightarrow used in main memory

SEQUENTIAL CIRCUITS

Sequential circuits $=$ (combinatorial) circuits + memory

Properties:

- Every cycle contains storage element
- Separation between circuits and storage elements

Sequential circuits $=$
 (combinatorial) circuits + memory

Wanted:

- Predictable, deterministic behavior:
- deterministic: same output sequence on same input sequence
- predictable: can mathematically capture input/output behavior

Required for that:

- Depth of combinatorial circuit < length of a clock cycle

FINITE STATE MACHINES

Finite state machines as

 models of sequential circuits
(Combinatorial)

 circuit
Boolean functions

implementation/synthesis

Sequential circuits: Abstraction

Function of inputs and of the

can take a finite number of distinct states

Finite state machine, Mealy machine

Definition:

A Mealy machine is a 6 -tuple $\mathrm{M}=\left(\mathrm{Q}, \mathrm{q}_{0}, \mathrm{I}, \mathrm{O}, \delta, \lambda\right)$:

- Q is a finite, non-empty set of states,
- $q_{0} \in Q$ is the initial state,
- I is a finite, non-empty input alphabet,
- O is a finite, non-empty output alphabet,
- $\delta: \mathrm{Q} \times \mathrm{I} \rightarrow \mathrm{Q}$ is the transition function,
- $\lambda: \mathrm{Q} \times \mathrm{I} \rightarrow \mathrm{O}$ is the output function.

Named after:
Mealy, George H. (1955), "A method for synthesizing sequential circuits", Bell System Technical Journal

Mealy machine:
Example vending machine

- A (simple) vending machine: 1. Pay one euro,

2a. Then choose one among two drinks.
2 b . Or press the return button to retrieve the money

- Other behavior is ignored by the vending machine.

Example: Vending machine

- Set of states Q?
- Input alphabet I?
- Output alphabet O?
- $\mathrm{Q}=\{$ empty, full $\}, \mathrm{q}_{0}=$ empty
- $\mathrm{I}=\{$ coin (c), return (r), option 1 (o1), option $2(\mathrm{o} 2)\}$
- $\mathrm{O}=\{$ no output $(-)$, emission of money (m), emission of drink 1 (d1), emission of drink 2 (d2)\}

Example: Vending machine Transition and output function graphically

Example: Vending machine Transition and output function

Transition function:		
Q	I	δ
empty	c	full
empty	r	empty
empty	o 1	empty
empty	o 2	empty
full	c	full
full	r	empty
full	o 1	empty
full	o 2	empty

Output function:		
Q	I	λ
empty	c	-
empty	r	-
empty	d 1	-
empty	d2	-
full	c	-
full	r	m
full	d 1	o 1
full	d 2	o 2

From Mealy machines to Sequential circuits

How can we turn transition and output functions into Boolean functions?

From Mealy machines to Sequential circuits

1. Fix encoding of states, inputs, and outputs 2. Synthesize circuits for transition function and output function

Example: Vending machine

1. Encoding

- 2 states, i.e., we require at least one bit. Assume empty $\rightarrow 0$, full $\rightarrow 1$.
- 4 inputs and 4 outputs, and so we require at least 2 bits, as $4=2^{2}$.

For example:

I	X 1	X 2
c	0	0
r	0	1
o1	1	0
o2	1	1

O	Y 1	Y 2
-	0	0
m	0	1
d 1	1	0
d 2	1	1

Example: Vending machine 2. Synthesis of circuits

Truth table of transition function follows from encoding:

Transition function:

Q	I	$\boldsymbol{\delta}$
empty	c	full
empty	r	empty
empty	o1	empty
empty	o2	empty
full	c	full
full	r	empty
full	o1	empty
full	o2	empty

Q	X 1	X 2	$\boldsymbol{\delta}$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Example: Vending machine

 2. Synthesis of circuitsSynthesis of a circuit for the transition function:

Transition function:

Q	$\mathrm{X} \mathbf{1}$	$\mathrm{X} \mathbf{2}$	$\boldsymbol{\delta}$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Minterms:
$\mathrm{Q}^{‘} \cdot \mathrm{X} 1^{`} \cdot \mathrm{X} 2^{\prime}$ and $\mathrm{Q} \cdot \mathrm{X} 1^{`} \cdot \mathrm{X} 2^{\prime}$
Prime implicant(s):
$\mathrm{X} 1^{\prime} \cdot \mathrm{X}^{\prime}{ }^{\prime}$
$\rightarrow \infty$

Example: Vending machine 2. Synthesis of circuits

Truth table of output function follows from encoding:

Output function:		
Q	I	λ
empty	c	-
empty	r	-
empty	o 1	-
empty	o 2	-
full	c	-
full	r	m
full	o 1	d 1
full	o 2	d 2

Q	X 1	X 2	Y 1	Y 2
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

Example: Vending machine

2. Synthesis of circuits

Synthesis of a circuit for the output function:
Output function:

Q	X 1	X 2	Y 1	Y 2
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	0	0
1	0	0	0	0
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

Minterms for Y1:
$\mathrm{Q} \cdot \mathrm{X} 1 \cdot \mathrm{X} 2^{\prime}$ and $\mathrm{Q} \cdot \mathrm{X} 1 \cdot \mathrm{X} 2$
Prime implicant(s):
Q•X1

Minterms for Y2:
$\mathrm{Q} \cdot \mathrm{X} 1^{\prime} \cdot \mathrm{X} 2$ and $\mathrm{Q} \cdot \mathrm{X} 1 \cdot \mathrm{X} 2$
Prime implicant(s):
Q•X2

Example: Vending machine Sequential circuit

From Mealy machines to Sequential circuits

Encoding may strongly influence cost and depth of resulting circuits!

For lack of time we do not further consider this topic in this course.

Alternative: Moore machine

Definition:
A Moore machine is a tuple $\mathrm{M}=\left(\mathrm{Q}, \mathrm{q}_{0}, \mathrm{I}, \mathrm{O}, \delta, \lambda\right)$:

- Q is a finite, non-empty set of states,
- $\mathrm{q}_{0} \in \mathrm{Q}$ is the initial state,
- I is a finite, non-mpty input alphabet,
- O is a finite, non-mpty output alphabet,
- $\delta: \mathrm{QxI} \rightarrow \mathrm{Q}$ is the transition function,
- $\lambda: \mathrm{Q} \rightarrow \mathrm{O}$ is the output function.

Named after:
Moore, Edward F. (1956), "Gedanken-experiments on Sequential Machines", Automata Studies

From Moore machines to Sequential circuits

In contrast to Mealy automata:

Moore- vs Mealy machines

- Mealy machines react faster on inputs: reaction in the same cycle
- Mealy machines often require fewer states: Need not store current input
- Moore machines can be more "safely" composed: "Serial composition":

Moore- vs Mealy machines

- Mealy machines react faster on inputs: reaction in the same cycle
- Mealy automata often require fewer states:

Need not store current input

- Moore automata can be more "safely" composed: "Feedback composition":

Summary

- Cyclic circuits are necessary to implement storage elements:
- Latches are level-triggered
- Flip-flops are edge-triggered
- Memory technologies:
- SRAM: fast, but low density
- DRAM: slower, but higher density
- Mathematical models for sequential circuits:
- Mealy machine:

Output depends on current state and current input

- Moore machine:

Output depends only on current state

[^0]: "active low" terminology: /S and /R activated at low input voltage

