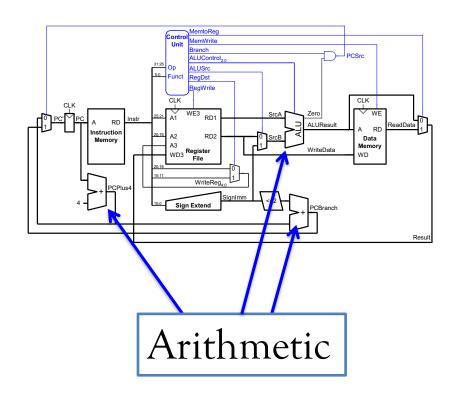
Arithmetic Circuits: Subtractors, Multipliers, ALU

Becker/Molitor, Chapter 9.2+9.3 Harris/Harris, Chapter 5.2

Jan Reineke Universität des Saarlandes

System Architecture, Jan Reineke

Roadmap: Computer architecture



- 1. Combinatorial circuits: Boolean Algebra/Functions/Expressions/Synthesis
- 2. Number representations
- 3. Arithmetic Circuits: Addition, **Multiplication**, **Division**, **ALU**
- 4. Sequential circuits: Flip-Flops, Registers, SRAM, Moore and Mealy automata
- 5. Verilog
- 6. Instruction Set Architecture
- 7. Microarchitecture
- 8. Performance: RISC vs. CISC, Pipelining, Memory Hierarchy

Subtraction

- As we have $-[b]=[\overline{b}]+1$ the difference [a]-[b] is equal to the sum $[a]+[\overline{b}]+1$.
- → Derive subtractor circuit from adder circuit
 → combined adder/subtractor

Reminder: Two's complement

Lemma:

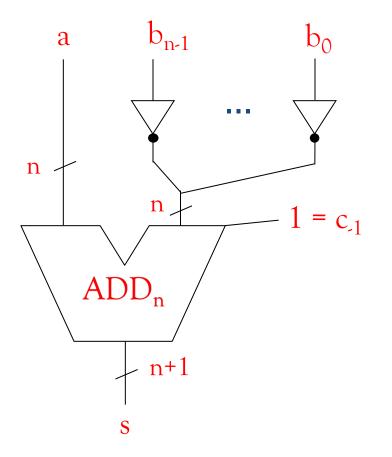
Let *d* be a fixed-point number and \overline{d} the number obtained by flipping all bits $(0 \rightarrow 1, 1 \rightarrow 0)$ in *d*. Then: $[\overline{d}]_2 + 1 = -[d]_2$.

Example:
$$n = 2, k = 0$$
:d000001010011100101110111[d]_20123-4-3-2-1

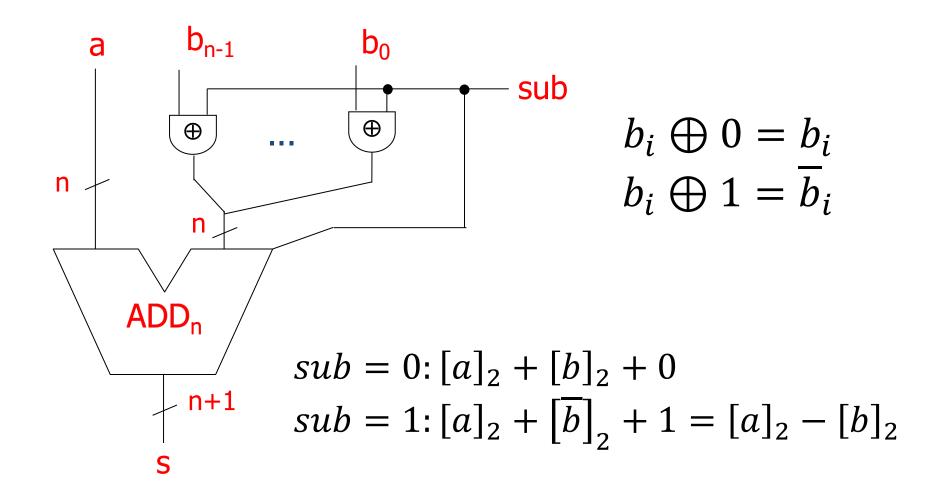
Example: Subtraction

$$[a]_{2} = [0110]_{2} = 6_{10} \qquad [b]_{2} = [0111]_{2} = 7_{10}$$
$$\overline{[b]}_{2} = [1000]_{2} = -8_{10}$$

Schematic of a subtractor

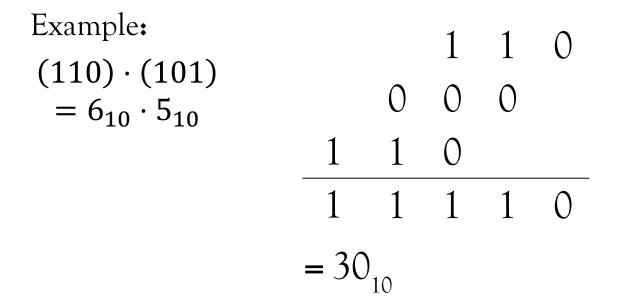


Schematic of a combined adder/subtractor



Multiplier

Wanted: Circuit for the **multiplication** of two binary numbers <a_n-1, ..., a_0>, <b_n-1, ..., b_0>.



Outputs of a multiplier

How many bits are required for the result?

$$\le$$

 $(2^{n}-1)\cdot(2^{n}-1)=2^{2n}-2^{n+1}+1\le 2^{2n}-1$

Thus: **2n bits** are sufficient to represent the product of two n-bit binary numbers.

Multiplier

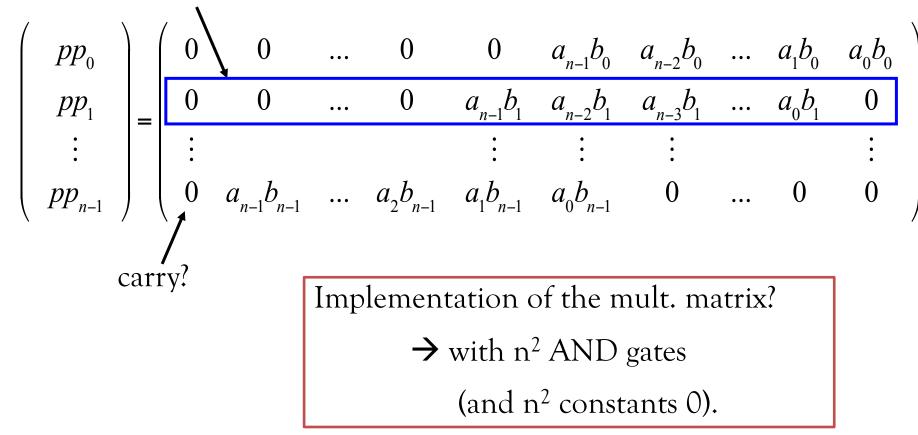
Definition: An **n-bit multiplier** is a circuit that computes the following function: $mul_n: \mathbf{B}^{2n} \to \mathbf{B}^{2n}$ with $mul_n(\mathbf{a}_{n-1}, ..., \mathbf{a}_0, \mathbf{b}_{n-1}, ..., \mathbf{b}_0) = (\mathbf{p}_{2n-1}, ..., \mathbf{p}_0)$ with $\langle \mathbf{p}_{2n-1}, ..., \mathbf{p}_0 \rangle = \langle \mathbf{a} \rangle \cdot \langle \mathbf{b} \rangle$

$$< a > \cdot < b > = < a > \cdot \sum_{i=0}^{n-1} b_i \cdot 2^i = \sum_{i=0}^{n-1} (a > \cdot b_i \cdot 2^i)$$

partial product

The multiplication matrix

n partial products, each with 2n bits



System Architecture, Jan Reineke

Fast addition of partial products

Goal: Fast addition of n partial products of length 2n.

First approach: Use carry-lookahead adders (CLAs).

Cost: $O(n^2)$

Depth:

- O(n · log n) if partial products are summed up one by one linearly
- O(log² n) (= O((log n)²) for tree-shaped summation of partial products

Brainstorming: Addition of partial products:

Can we do better than adding up the partial products in O(log²n)?

Fast addition of **n partial products**

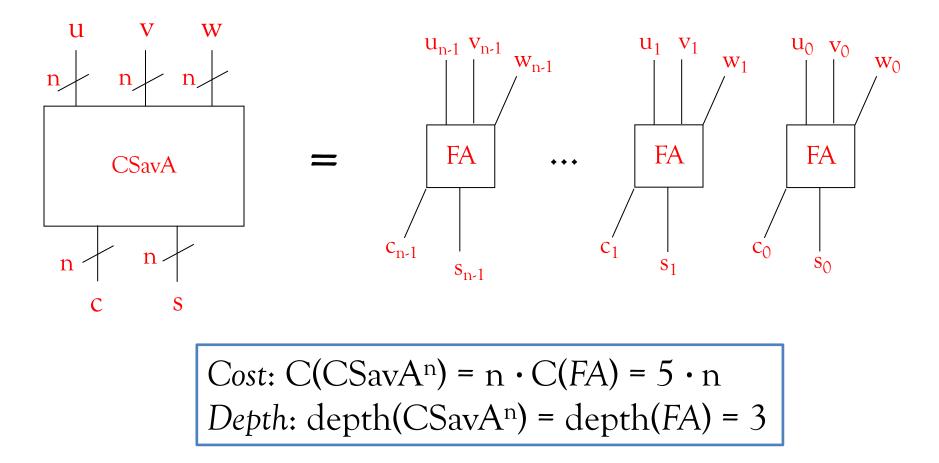
Use carry-save adders.

Reduction of three input values u, v, w into two output values s, c s.t. $\langle u \rangle + \langle v \rangle + \langle w \rangle = \langle s \rangle + \langle c \rangle$.

	u_{n-1}	\mathcal{U}_{n-2}	•••	u_2	u_1	$u_0^{}$
	V_{n-1}	V_{n-2}		v_2	v_1	$v_0^{}$
	W_{n-1}	W_{n-2}		W_2	W_1	W ₀
C_{n-1}	<i>C</i> _{<i>n</i>-2}	<i>C</i> _{<i>n</i>-3}	•••	<i>C</i> ₁	C ₀	0
0	S_{n-1}	S_{n-2}		S ₂	<i>S</i> ₁	S ₀

Solved by juxtaposition of independent full adders (not in a chain!)

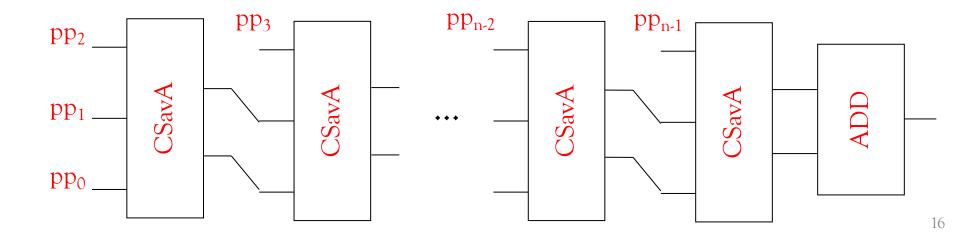
Carry-save adder (also: 3:2 adder)



System Architecture, Jan Reineke

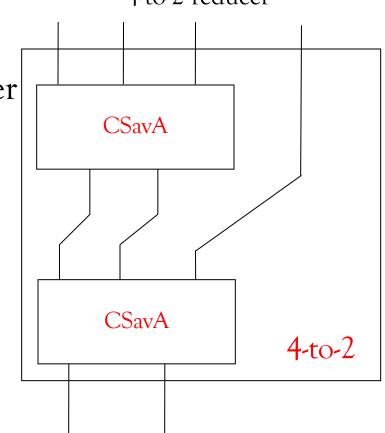
1. Serial solution

- Cascade connection of n-2 CSavAs of length 2n:
 → Combine n partial products into two 2n-bit words
- Add the last two 2n-bit words using a CLA
- Cost: $O(n^2)$, Depth: O(n)



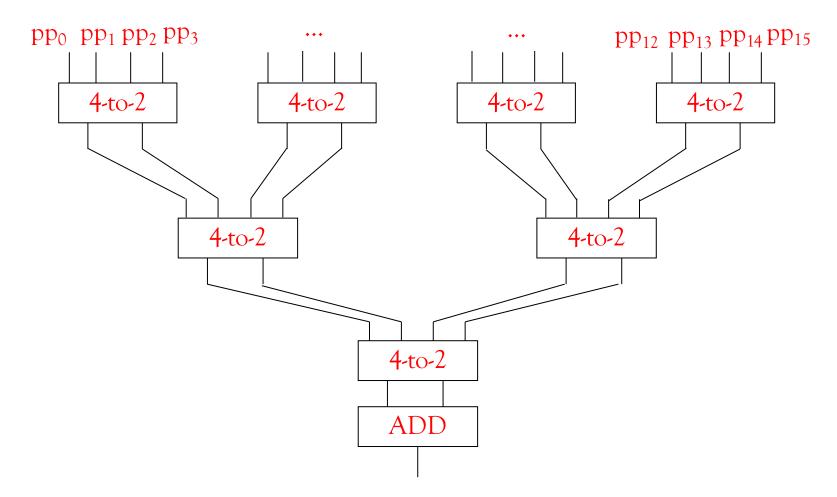
2. Tree-shaped solution

- Combine two carry-save adders to reduce four 2n-bit input words into two output words: 4-to-2 reducer
- Balanced binary tree of 4-to-2 reducers to summarize the n partial products using two 2n-bit words
- Addition of the two final 2n-bit words using a CLA



4-to-2 reducer

Adder stage of the log-time multiplier for 16 bits



Construction of an ALU

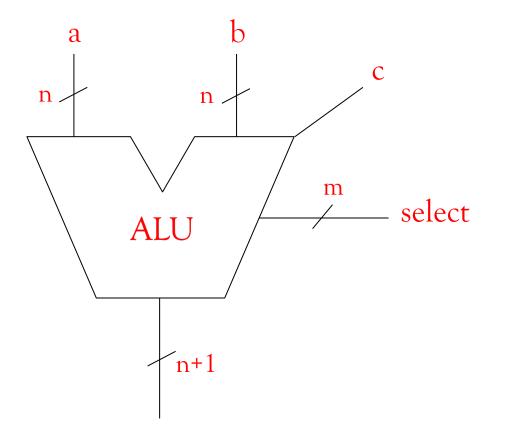
ALU = arithmetic logic unit for

performing basic arithmetic and logic operations

Here: n-bit-ALU with:

- 2 n-bit operands a, b, carry-in c
- m-bit select input, which selects the function to execute
- (n+1)-bit output

Schematic of an n-bit ALU



Example ALU specification

Here: 8 functions, i.e. 3-bit select input

Function number		umber	ALU function				
s ₂	s_1	s ₀					
-	0	-	0 0				
0	0	1	[b] – [a]				
0	1	0	[b] - [a] [a] - [b] [a] + [b] + c				
0	1	1	[a] + [b] + c				
	0		$\mathbf{a} \oplus \mathbf{b} = (\mathbf{a}_{n-1} \oplus \mathbf{b}_{n-1},, \mathbf{a}_0 \oplus \mathbf{b}_0)$				
1	0	1	$a \oplus b = (a_{n-1} \oplus b_{n-1},, a_0 \oplus b_0)$ $a \lor b = (a_{n-1} \lor b_{n-1},, a_0 \lor b_0)$ "Logic"				
1	1	0	$a \wedge b = (a_{n-1} \wedge b_{n-1},, a_0 \wedge b_0)$				
1	1	1	1 1				

Possible implementations of an ALU

1. Possibility:

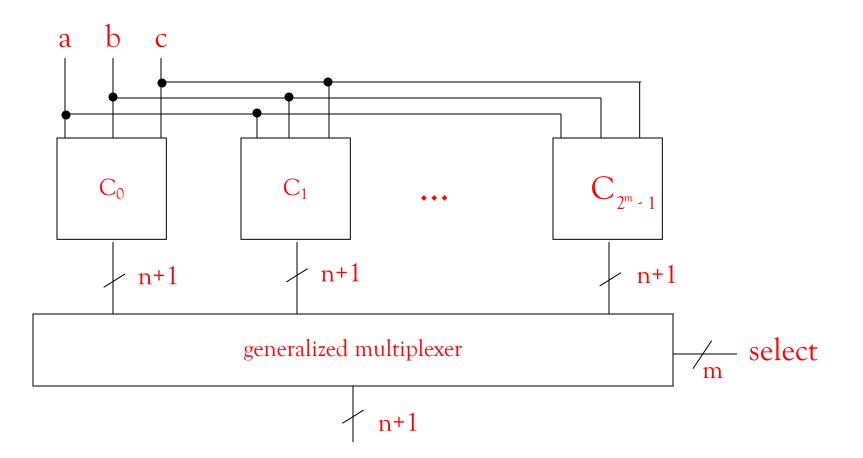
Implement f_0 , ..., f_{2^n-1} separately via circuits C_i for f_i ; then select correct output via generalized multiplexer

(see upcoming figure)

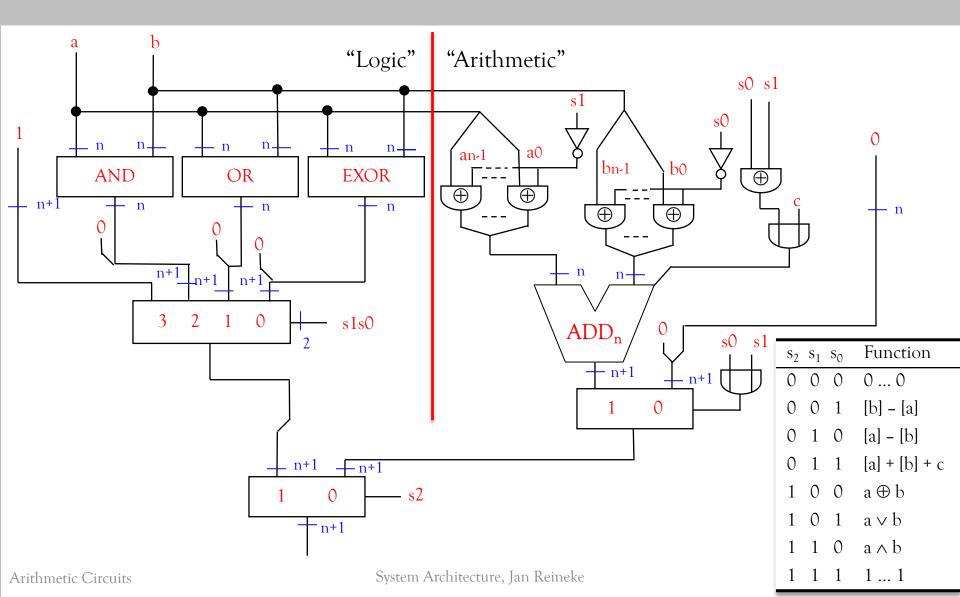
2. Possibility:

Shared circuit for similar functions (see upcoming figure)

1. Possible implementation



2. Possible implementation



Outlook: Datapath and instruction execution

