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Roadmap: Computer architecture

1. Combinatorial circuits: Boolean 
Algebra/Functions/Expressions/Synthesis

2. Number representations
3. Arithmetic Circuits: 

Addition, Multiplication, Division, ALU

4. Sequential circuits: Flip-Flops, Registers, 
SRAM, Moore and Mealy automata

5. Verilog

6. Instruction Set Architecture
7. Microarchitecture

8. Performance: RISC vs. CISC, Pipelining, 
Memory Hierarchy
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As we have  the difference 
is equal to the sum            .

à Derive subtractor circuit from adder circuit

à combined adder/subtractor

Subtraction

[ ] [ ] 1+=- bb [ ] [ ]ba -

[ ] [ ] 1++ ba
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Example: n = 2, k = 0:

Reminder: Two’s complement

d 000 001 010 011 100 101 110 111

[d]2 0 1 2 3 -4 -3 -2 -1

Lemma:

Let 𝑑 be a fixed-point number and 𝑑 the number obtained by
flipping all bits (0 ® 1, 1 ® 0) in 𝑑.

Then: 𝑑 ! + 1 = − 𝑑 !.
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Example: Subtraction

0 1 1 0
1 0 0 0

1
1 1 1 1
= (−1)10
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𝑎 ! = 0110 ! = 6"# 𝑏 ! = 0111 ! = 7"#
𝑏 ! = 1000 ! = −8"#



Schematic of a subtractor

a bn-1 b0

...

1 = c-1

s

n+1

n
n
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Schematic of a combined 
adder/subtractor

a bn-1 b0

...

s

n+1

n
n

Å Å

sub
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𝑏! ⊕0 = 𝑏!
𝑏! ⊕1 = 𝑏!

𝑠𝑢𝑏 = 0: 𝑎 ! + 𝑏 ! + 0
𝑠𝑢𝑏 = 1: 𝑎 ! + 𝑏

!
+ 1 = 𝑎 ! − 𝑏 !



Wanted: Circuit for the multiplication of 
two binary numbers <an-1, ..., a0>, <bn-1, ..., b0>.

Multiplier

Example:

1
1

1 1 0
0 0 0
1 0
1 1 1 0

= 30
10
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110 ⋅ 101
= 6"# ⋅ 5"#



How many bits are required for the result?

Outputs of a multiplier

<a>⋅<b>  ≤

2n -1( ) ⋅ 2n -1( )=22n -2n+1+1≤22n -1

Thus: 2n bits are sufficient to represent the
product of two n-bit binary numbers.
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Definition: An n-bit multiplier is a circuit that 
computes the following function:

Multiplier

muln: B2n ® B2n with

muln(an-1, ..., a0, bn-1, ..., b0) = (p2n-1, ..., p0) with

<p2n-1, ..., p0> = <a> · <b>

< a > ⋅< b >  =  < a > ⋅ bi ⋅2
i

i=0

n−1

∑ = < a > ⋅bi ⋅2
i

i=0

n−1

∑
Def. <.>

partial product
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The multiplication matrix

pp0
pp1
!
ppn−1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

0 0 ... 0 0 an−1b0 an−2b0 ... a1b0 a0b0
0 0 ... 0 an−1b1 an−2b1 an−3b1 ... a0b1 0

! ! ! ! !
0 an−1bn−1 ... a2bn−1 a1bn−1 a0bn−1 0 ... 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

n partial products, each with 2n bits

carry?
Implementation of the mult. matrix? 

à with n2 AND gates

(and n2 constants 0).
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Goal: Fast addition of n partial products of length 2n.

Fast addition of partial products

First approach:
Use carry-lookahead adders (CLAs).

Cost: O(n2)

Depth: 
• O(n · log n) if partial products are

summed up one by one linearly
• O(log2 n) (= O((log n)2) for tree-shaped

summation of partial products
12



Can we do better than adding up the partial 
products in O(log2n)?

Brainstorming: 
Addition of partial products:
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Use carry-save adders.

Reduction of three input values u, v, w into two

output values s, c s.t. <u> + <v> + <w> = <s> + <c>.

Fast addition of n partial products

un−1 un−2 ... u2 u1 u0
vn−1 vn−2 v2 v1 v0
wn−1 wn−2 w2 w1 w0

cn−1 cn−2 cn−3 ... c1 c0 0

0 sn−1 sn−2 s2 s1 s0

Solved by juxtaposition of independent full adders (not in a chain!)



Carry-save adder (also: 3:2 adder)

CSavA

u v w

c s

n n n

n n

FA

u1 v1 w1

s1
c1

FA

u0 v0 w0

s0
c0

FA

un-1 vn-1 wn-1

sn-1

cn-1

...=

Cost: C(CSavAn) = n ·C(FA) = 5 ·n
Depth: depth(CSavAn) = depth(FA) = 3
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• Cascade connection of n-2 CSavAs of length 2n:
à Combine n partial products into two 2n-bit words

• Add the last two 2n-bit words using a CLA

• Cost: O(n2), Depth: O(n)

1. Serial solution
C

Sa
vA

pp2

pp1

pp0

C
Sa

vA

pp3

C
Sa

vA

ppn-2

C
Sa

vA

ppn-1

...

A
D

D
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• Combine two carry-save adders 
to reduce four 2n-bit input words
into two output words: 4-to-2 reducer

• Balanced binary tree of 4-to-2 
reducers to summarize the n partial 
products using two 2n-bit words

• Addition of the two final 2n-bit 
words using a CLA

2. Tree-shaped solution

CSavA

4-to-2

4-to-2 reducer

CSavA

Cost: O(n2)
Depth: O(log n)
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Adder stage of the log-time multiplier 
for 16 bits

ADD

4-to-2

4-to-2 4-to-2

4-to-2 4-to-2 4-to-2 4-to-2

pp0 pp3pp2pp1 pp15pp14pp13pp12
... ...
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ALU = arithmetic logic unit for 
performing basic arithmetic and logic operations

Construction of an ALU

Here: n-bit-ALU with:

§ 2 n-bit operands a, b, carry-in c

§ m-bit select input, which selects the function to execute

§ (n+1)-bit output
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Schematic of an n-bit ALU

a b
c

select

n n

n+1

m
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Here: 8 functions, i.e. 3-bit select input

Example ALU specification

Function number
ALU function

s2 s1 s0

0      0      0 0 ... 0

0      0      1 [b] – [a]

0      1      0 [a] – [b]

0      1      1 [a] + [b] + c

1      0      0 a Å b = (an-1 Å bn-1, ..., a0 Å b0)

1      0      1 a Ú b = (an-1 Ú bn-1, ..., a0 Ú b0)

1      1      0 a Ù b = (an-1 Ù bn-1, ..., a0 Ù b0)

1      1      1 1 ... 1

“Arithmetic”

“Logic”

21



1. Possibility:
Implement f0, ..., f2^m-1 separately via circuits Ci

for fi; then select correct output via generalized 
multiplexer
(see upcoming figure)

2. Possibility:
Shared circuit for similar functions
(see upcoming figure)

Possible implementations of an ALU
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1. Possible implementation

C0 C1

generalized multiplexer

...

a b c

select

n+1 n+1n+1

n+1

12 -mC

m

Arithmetic Circuits System Architecture, Jan Reineke 23



2. Possible implementation

s2 s1 s0 Function

0   0   0 0 ... 0

0   0   1 [b] – [a]

0   1   0 [a] – [b]

0   1   1 [a] + [b] + c

1   0   0 a Å b

1   0   1 a Ú b

1   1   0 a Ù b

1   1   1 1 ... 1

Å Å

Å
ÅÅ

1        0

1         0

3     2     1     0

AND OR EXOR

n+1 n+1

n+1

n+1 n+1

n+1 n n n

n n n n n n

n

2

1

a b

s1s0

s1

0

nn

s0 s1An

0

s0 s1

c

s0

b0bn-1
a0an-1

s2

0 0
0

n+1 n+1 n+1

“Logic”     “Arithmetic”
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Outlook: 
Datapath and instruction execution
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