
Arithmetic Circuits:
Subtractors, Multipliers, ALU

Becker/Molitor, Chapter 9.2+9.3
Harris/Harris, Chapter 5.2

Jan Reineke
Universität des Saarlandes

System Architecture, Jan ReinekeArithmetic Circuits 1

Roadmap: Computer architecture

1. Combinatorial circuits: Boolean
Algebra/Functions/Expressions/Synthesis

2. Number representations
3. Arithmetic Circuits:

Addition, Multiplication, Division, ALU

4. Sequential circuits: Flip-Flops, Registers,
SRAM, Moore and Mealy automata

5. Verilog

6. Instruction Set Architecture
7. Microarchitecture

8. Performance: RISC vs. CISC, Pipelining,
Memory Hierarchy

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

Arithmetic

As we have the difference
is equal to the sum .

à Derive subtractor circuit from adder circuit

à combined adder/subtractor

Subtraction

[] [] 1+=- bb [] []ba -

[] [] 1++ ba

Arithmetic Circuits System Architecture, Jan Reineke 3

Example: n = 2, k = 0:

Reminder: Two’s complement

d 000 001 010 011 100 101 110 111

[d]2 0 1 2 3 -4 -3 -2 -1

Lemma:

Let 𝑑 be a fixed-point number and 𝑑 the number obtained by
flipping all bits (0 ® 1, 1 ® 0) in 𝑑.

Then: 𝑑 ! + 1 = − 𝑑 !.

Arithmetic Circuits System Architecture, Jan Reineke 4

Example: Subtraction

0 1 1 0
1 0 0 0

1
1 1 1 1
= (−1)10

Arithmetic Circuits System Architecture, Jan Reineke 5

𝑎 ! = 0110 ! = 6"# 𝑏 ! = 0111 ! = 7"#
𝑏 ! = 1000 ! = −8"#

Schematic of a subtractor

a bn-1 b0

...

1 = c-1

s

n+1

n
n

Arithmetic Circuits System Architecture, Jan Reineke 6

Schematic of a combined
adder/subtractor

a bn-1 b0

...

s

n+1

n
n

Å Å

sub

Arithmetic Circuits System Architecture, Jan Reineke 7

𝑏! ⊕0 = 𝑏!
𝑏! ⊕1 = 𝑏!

𝑠𝑢𝑏 = 0: 𝑎 ! + 𝑏 ! + 0
𝑠𝑢𝑏 = 1: 𝑎 ! + 𝑏

!
+ 1 = 𝑎 ! − 𝑏 !

Wanted: Circuit for the multiplication of
two binary numbers <an-1, ..., a0>, <bn-1, ..., b0>.

Multiplier

Example:

1
1

1 1 0
0 0 0
1 0
1 1 1 0

= 30
10

Arithmetic Circuits System Architecture, Jan Reineke 8

110 ⋅ 101
= 6"# ⋅ 5"#

How many bits are required for the result?

Outputs of a multiplier

<a>⋅ ≤

2n -1() ⋅ 2n -1()=22n -2n+1+1≤22n -1

Thus: 2n bits are sufficient to represent the
product of two n-bit binary numbers.

Arithmetic Circuits System Architecture, Jan Reineke 9

Definition: An n-bit multiplier is a circuit that
computes the following function:

Multiplier

muln: B2n ® B2n with

muln(an-1, ..., a0, bn-1, ..., b0) = (p2n-1, ..., p0) with

<p2n-1, ..., p0> = <a> ·

< a > ⋅< b > = < a > ⋅ bi ⋅2
i

i=0

n−1

∑ = < a > ⋅bi ⋅2
i

i=0

n−1

∑
Def. <.>

partial product

Arithmetic Circuits System Architecture, Jan Reineke 10

The multiplication matrix

pp0
pp1
!
ppn−1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

0 0 ... 0 0 an−1b0 an−2b0 ... a1b0 a0b0
0 0 ... 0 an−1b1 an−2b1 an−3b1 ... a0b1 0

! ! ! ! !
0 an−1bn−1 ... a2bn−1 a1bn−1 a0bn−1 0 ... 0 0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

n partial products, each with 2n bits

carry?
Implementation of the mult. matrix?

à with n2 AND gates

(and n2 constants 0).
Arithmetic Circuits System Architecture, Jan Reineke 11

Goal: Fast addition of n partial products of length 2n.

Fast addition of partial products

First approach:
Use carry-lookahead adders (CLAs).

Cost: O(n2)

Depth:
• O(n · log n) if partial products are

summed up one by one linearly
• O(log2 n) (= O((log n)2) for tree-shaped

summation of partial products
12

Can we do better than adding up the partial
products in O(log2n)?

Brainstorming:
Addition of partial products:

Arithmetic Circuits System Architecture, Jan Reineke 13

Use carry-save adders.

Reduction of three input values u, v, w into two

output values s, c s.t. <u> + <v> + <w> = <s> + <c>.

Fast addition of n partial products

un−1 un−2 ... u2 u1 u0
vn−1 vn−2 v2 v1 v0
wn−1 wn−2 w2 w1 w0

cn−1 cn−2 cn−3 ... c1 c0 0

0 sn−1 sn−2 s2 s1 s0

Solved by juxtaposition of independent full adders (not in a chain!)

Carry-save adder (also: 3:2 adder)

CSavA

u v w

c s

n n n

n n

FA

u1 v1 w1

s1
c1

FA

u0 v0 w0

s0
c0

FA

un-1 vn-1 wn-1

sn-1

cn-1

...=

Cost: C(CSavAn) = n ·C(FA) = 5 ·n
Depth: depth(CSavAn) = depth(FA) = 3

Arithmetic Circuits System Architecture, Jan Reineke 15

• Cascade connection of n-2 CSavAs of length 2n:
à Combine n partial products into two 2n-bit words

• Add the last two 2n-bit words using a CLA

• Cost: O(n2), Depth: O(n)

1. Serial solution
C

Sa
vA

pp2

pp1

pp0

C
Sa

vA

pp3

C
Sa

vA

ppn-2

C
Sa

vA

ppn-1

...

A
D

D

16

• Combine two carry-save adders
to reduce four 2n-bit input words
into two output words: 4-to-2 reducer

• Balanced binary tree of 4-to-2
reducers to summarize the n partial
products using two 2n-bit words

• Addition of the two final 2n-bit
words using a CLA

2. Tree-shaped solution

CSavA

4-to-2

4-to-2 reducer

CSavA

Cost: O(n2)
Depth: O(log n)

Arithmetic Circuits System Architecture, Jan Reineke 17

Adder stage of the log-time multiplier
for 16 bits

ADD

4-to-2

4-to-2 4-to-2

4-to-2 4-to-2 4-to-2 4-to-2

pp0 pp3pp2pp1 pp15pp14pp13pp12
... ...

Arithmetic Circuits System Architecture, Jan Reineke 18

ALU = arithmetic logic unit for
performing basic arithmetic and logic operations

Construction of an ALU

Here: n-bit-ALU with:

§ 2 n-bit operands a, b, carry-in c

§ m-bit select input, which selects the function to execute

§ (n+1)-bit output

Arithmetic Circuits System Architecture, Jan Reineke 19

Schematic of an n-bit ALU

a b
c

select

n n

n+1

m

Arithmetic Circuits System Architecture, Jan Reineke 20

Here: 8 functions, i.e. 3-bit select input

Example ALU specification

Function number
ALU function

s2 s1 s0

0 0 0 0 ... 0

0 0 1 [b] – [a]

0 1 0 [a] – [b]

0 1 1 [a] + [b] + c

1 0 0 a Å b = (an-1 Å bn-1, ..., a0 Å b0)

1 0 1 a Ú b = (an-1 Ú bn-1, ..., a0 Ú b0)

1 1 0 a Ù b = (an-1 Ù bn-1, ..., a0 Ù b0)

1 1 1 1 ... 1

“Arithmetic”

“Logic”

21

1. Possibility:
Implement f0, ..., f2^m-1 separately via circuits Ci

for fi; then select correct output via generalized
multiplexer
(see upcoming figure)

2. Possibility:
Shared circuit for similar functions
(see upcoming figure)

Possible implementations of an ALU

Arithmetic Circuits System Architecture, Jan Reineke 22

1. Possible implementation

C0 C1

generalized multiplexer

...

a b c

select

n+1 n+1n+1

n+1

12 -mC

m

Arithmetic Circuits System Architecture, Jan Reineke 23

2. Possible implementation

s2 s1 s0 Function

0 0 0 0 ... 0

0 0 1 [b] – [a]

0 1 0 [a] – [b]

0 1 1 [a] + [b] + c

1 0 0 a Å b

1 0 1 a Ú b

1 1 0 a Ù b

1 1 1 1 ... 1

Å Å

Å
ÅÅ

1 0

1 0

3 2 1 0

AND OR EXOR

n+1 n+1

n+1

n+1 n+1

n+1 n n n

n n n n n n

n

2

1

a b

s1s0

s1

0

nn

s0 s1An

0

s0 s1

c

s0

b0bn-1
a0an-1

s2

0 0
0

n+1 n+1 n+1

“Logic” “Arithmetic”

Arithmetic Circuits System Architecture, Jan Reineke

Outlook:
Datapath and instruction execution

Arithmetic Circuits System Architecture, Jan Reineke 25

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

