Arithmetic Circuits: Adders

Becker/Molitor, Chapter 9.2 Harris/Harris, Chapter 5.2

Jan Reineke Universität des Saarlandes

Roadmap: Computer architecture

- 1. Combinatorial circuits: Boolean Algebra/Functions/Expressions/Synthesis
- 2. Number representations
- 3. Arithmetic Circuits: Addition, Multiplication, Division, ALU
- 4. Sequential circuits: Flip-Flops, Registers, SRAM, Moore and Mealy automata
- 5. Verilog
- 6. Instruction Set Architecture
- 7. Microarchitecture
- 8. Performance: RISC vs. CISC, Pipelining, Memory Hierarchy

Representation of natural numbers

Let $a = a_{n-1}...a_1a_0$ be a sequence of numerals from the positional numeral system (*b*, *Z*, δ)=(2,{0,1},*id*). (We call such numbers binary numbers.)

Then the value $\langle a \rangle$ of a is:

$$==\sum_{i=0}^{n-1}b^i\cdot\delta\(a_i\)$$

Adders

Adder (with carry-in)

Given: 2 positive binary numbers $\langle a \rangle = \langle a_{n-1} \dots a_0 \rangle,$ $\langle b \rangle = \langle b_{n-1} \dots b_0 \rangle,$ and a carry-in $c \in \{0,1\}.$

Wanted: Circuit computing the binary representation of $\langle s \rangle = \langle a \rangle + \langle b \rangle + c$.

How many bits do we need to represent s?

Because $\langle a \rangle + \langle b \rangle + c \leq 2 \cdot (2^n - 1) + 1 = 2^{n+1} - 1$

n+1 bits suffice for s,

i.e., a circuit with n+1 outputs.

Definition: Adder

Definition (Adder):

An **n-bit adder** is a circuit that computes the following Boolean function:

$$+_{n}: \mathbf{B}^{2n+1} \to \mathbf{B}^{n+1},$$

$$(a_{n-1}, ..., a_0, b_{n-1}, ..., b_0, c) \rightarrow (s_n, ..., s_0)$$
 with
 $\langle s \rangle = \langle s_n \dots s_0 \rangle = \langle a_{n-1} \dots a_0 \rangle + \langle b_{n-1} \dots b_0 \rangle + c$

Schematic of an n-bit adder

Back to the basics: Grade school addition

Half adder (HA)

Half adders may be used to sum up two 1-Bit numbers *without* carry-in: It computes the following function:

> $ha : \mathbf{B}^{2} \to \mathbf{B}^{2}$ with $ha(a_{0}, b_{0}) = (s_{1}, s_{0})$ with $\langle s_{1}s_{0} \rangle = 2s_{1} + s_{0}$ $= a_{0} + b_{0} = \langle a_{0} \rangle + \langle b_{0} \rangle$

Truth table of the HA

a_0	b_0	ha ₁	ha ₀	Thus:
0	0	0	0	$ha_0 = a_0 \in$
0	1	0	1	
1	0	0	1	
1	1	1	0	

Thus:

$$ha_0 = a_0 \oplus b_0$$
 $ha_1 = a_0 \wedge b_0$

Half adder circuit

$$C(HA) = 2$$
, depth(HA) = 1

Full adder (FA)

a ₀	b_0	c	fa ₁	fa ₀
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

From the table we can derive:

$$fa_0 = a_0 \oplus b_0 \oplus c = ha_0(c, ha_0(a_0, b_0))$$

 $fa_1 = a_0 \wedge b_0 \vee c \wedge (a_0 \oplus b_0)$
 $= ha_1(a_0, b_0) \vee ha_1(c, ha_0(a_0, b_0))$

Adders

Full adder composed from HAs

Implementing the "school method": Ripple-carry adder (RC)

(also called Carry-chain adder)

Implementing the "school method": Ripple-carry adder (RC)

Hierarchical construction:

(inductive definition)

For n=1: $RC_1 = FA$

For n>1: Circuit RC_n is defined as follows

Notation:

We refer to the carry-in with $c_{,1},$ and the carry from position i to $i\!+\!1$ with c_i .

Recursive construction of an n-bit Ripple-carry adder (RC_n)

Correctness of the RC_n

Theorem: The RC_n circuit is an n-bit adder.

- I.e., it computes the function
- $\begin{aligned} &+_{n}: \mathbf{B}^{2n+1} \to \mathbf{B}^{n+1}, \\ &(a_{n-1}, ..., a_{0}, b_{n-1}, ..., b_{0}, c) \to (s_{n}, ..., s_{0}) \quad \text{with} \\ &<_{\mathbf{S}} > = <_{\mathbf{S}_{n}} ... s_{0} > = <_{\mathbf{a}_{n-1}} ... a_{0} > + <_{\mathbf{b}_{n-1}} ... b_{0} > + c \end{aligned}$

Correctness of the RC_n: Proof

Proof by induction:

- n=1: ✓
- n-1 \rightarrow n: Input to RC_n: (a_{n-1}, ..., a₀, b_{n-1}, ... b₀, c₋₁) Show that the output (s_n, ..., s₀) of RC_n satisfies $\langle s \rangle = \langle s_n \dots s_0 \rangle = \langle a_{n-1} \dots a_0 \rangle + \langle b_{n-1} \dots b_0 \rangle + c_{-1}$

We know that:
$$\langle c_0, s_0 \rangle = a_0 + b_0 + c_{-1}$$
 (FA)
And by inductive hypothesis:

For
$$RC_{n-1}$$
: $\langle s_n \dots s_1 \rangle = \langle a_{n-1} \dots a_1 \rangle + \langle b_{n-1} \dots b_1 \rangle + c_0$

Putting it all together:

Adders

System Architecture, Jan Reineke

Cost and depth of Ripple-carry adders

Cost and depth of Ripple-carry adders (recursive)

Cost of RC_n : $C(RC_n) = C(FA) + C(RC_{n-1}) = 5 + C(RC_{n-1})$

Depth of RC_n : depth(RC_n) = 3 + depth(RC_{n-1})-1 = 3 + 2(n-1)

Some more important circuits

- n-bit incrementer
- n-bit multiplexer

Definition: n-bit incrementer

An **n-bit incrementer** computes the following function:

 $inc_n: \mathbf{B}^{n+1} \to \mathbf{B}^{n+1},$ $(a_{n-1}, ..., a_0, c) \to (s_n, ..., s_0)$ with

 $< s_n \dots s_0 > = <_a > + c$

Incrementer

An Incrementer is an adder with $b_i=0$ for all *i*. \rightarrow Replaces the FAs in RC_n by HAs.

Cost and depth:

$$C(INC_n) = n \cdot C(HA) = 2n$$

 $depth(INC_n) = n \cdot depth(HA) = n$

Definition: n-bit multiplexer

An **n-bit multiplexer** (MUX_n) is a circuit that computes the following function:

 $\operatorname{sel}_n : \mathbf{B}^{2n+1} \to \mathbf{B}^n \quad \text{with}$

$$sel_{n}(a_{n-1}, \dots, b_{n-1}, \dots, b_{0}, s) = \begin{cases} (a_{n-1}, \dots, a_{0}) : if \ s = 1 \\ (b_{n-1}, \dots, b_{0}) : if \ s = 0 \end{cases}$$
$$(sel_{n})_{i} = s \cdot a_{i} + \overline{s} \cdot b_{i}$$

Schematic of an n-bit multiplexer

Based on the equation: $(sel_n)_i = s \cdot a_i + \overline{s} \cdot b_i$

Back to adders

Brainstorming:

- Are there cheaper and faster adders than RC_n ?
- Can we construct a constant-depth adder, independently of *n*?

Back to adders

Brainstorming:

- Are there cheaper and faster adders than RC_n ?
- Can we construct a constant-depth adder, independently of *n*?

Lower bounds!

$$C(+_n) \ge 2n$$
, $depth(+_n) \ge log(n) + 1$

Observation: Output s_n depends on all 2n+1 inputs! We use gates with at most 2 inputs.

Binary trees with 2n+1 leaves have 2n inner nodes.

Binary trees with n leaves have depth $\geq \lceil \log n \rceil$.

Adders In the following, let $n = 2^k$.

Brainstorming: Faster adders

Idea: "Divide and Conquer": Employ **parallel processing** to reduce the depth!

More precisely:

Compute **upper** and **lower** half of result in **parallel**.

Problem:

Dependency of the upper half of the result **on carry** from lower half.

Solution:

Computer upper half **for both possible values** of the carry and pick the correct one later.

Schematic of a conditional-sum adder (CSA_n)

On the complexity of the CSA_n

- We have: $CSA_1 = FA$.
- A CSA_n consists of 3 CSA_{n/2}.

Brainstorming: Depth of the CSA_n

How does depth(CSA_n) evolve depending on n?

 $depth(CSA_n) = depth(CSA_{n/2}) + depth(MUX_{(n/2)+1})$ $= depth(CSA_{n/2}) + 3$ $= depth(CSA_{n/4}) + 3 + 3$ $= depth(CSA_{n/8}) + 3 + 3 + 3$ = depth(CSA_{n/2^k}) + 3k $= depth(CSA_1) + 3k$ (*n* = 2^{*k*}, *k* = log₂ *n*) = depth(FA) + 3k= 3(k+1) $= 3 \log_2 n + 3$

Depth of the CSA_n

Theorem (Depth of the CSA_{p}): $depth(CSA_n) = 3 \log_2 n + 3$

Proof:

By induction over n.

- Induction base (n=1): $depth(CSA_1) = depth(FA) = 3.$
- Induction step (n>1): ۲

$$\begin{array}{l} depth(CSA_{n}) = depth(CSA_{n/2}) + depth(MUX_{(n/2)+1}) \\ = 3 \log_{2} (n/2) + 3 + depth(MUX_{(n/2)+1}) \quad (inductive hypothesis) \\ = 3 \log_{2} (n/2) + 3 + 3 \qquad (depth of the multiplexer) \\ = 3 ((\log_{2} n) \cdot (\log_{2} 2)) + 3 + 3 \\ = 3 ((\log_{2} n) \cdot 1) + 3 + 3 \\ = 3 \log_{2} n + 3 \end{array}$$

Reminder: We assume that *n* is a power of two.

Adders

System Architecture, Jan Reineke

Lower bound on the cost of the CSA_n

How does the cost $C(CSA_n)$ evolve depending on n?

$$C(CSA_{1}) = C(FA) = 5$$

$$C(CSA_{n}) = 3 \cdot C(CSA_{n/2}) + C(MUX_{(n/2)+1})$$

$$= 3 \cdot C(CSA_{n/2}) + 3 \cdot n/2 + 4 \xrightarrow{\text{Reminder:}} (MUX_{n}) = 3n + 1$$

$$\Rightarrow 3 \cdot C(CSA_{n/2})$$

$$\Rightarrow 3 \cdot 3 \cdot C(CSA_{n/2})$$

$$\Rightarrow 3 \cdot 3 \cdot C(CSA_{n/4})$$

$$\Rightarrow 3^{k} \cdot C(CSA_{n/2} \wedge k)$$

$$= 3^{k} \cdot C(CSA_{1})$$

$$= 5 \cdot 3^{\log n} \qquad (k = \log_{2} n)$$

Lower bound on the cost of the CSA_n

Theorem (Cost of the
$$CSA_n$$
):
 $C(CSA_n) \ge 5 \cdot 3^{\log n}$

$$\begin{array}{l} \textit{Proof} \mbox{ (by induction over n):} \\ \textit{Induction base } (n = 1): \\ C(CSA_1) = C(FA) = 5 \ge 5 = 5 \cdot 3^{\log 1} \\ \textit{Induction step } (n > 1): \\ C(CSA_n) = 3 \cdot C(CSA_{n/2}) + C(MUX_{(n/2)+1}) \\ \ge 3 \cdot C(CSA_{n/2}) \\ \ge 3 \cdot 5 \cdot 3^{\log (n/2)} \\ = 5 \cdot 3 \cdot 3^{(\log n) \cdot 1} \\ = 5 \cdot 3^{\log n} \end{array}$$
 (inductive hypothesis)

Lower bound on the cost of the CSA_n

What is $3^{\log n}$?

$$3^{\log n} = (2^{\log 3})^{\log n} = 2^{\log 3 \cdot \log n} = (2^{\log n})^{\log 3} = n^{\log 3}$$

 $n^{\log 3} \approx n^{1.58}$

For example:
$$64^{\log 3} = 3^{\log 64} = 3^6 = 729$$

Exact cost of the CSA_n

Taking into account the cost of the multiplexer, the exact cost of the CSA_n is: $C(CSA_n) = 10n^{\log 3} - 3n - 2$

Thus, the conditional-sum adder is very fast, but also pretty expensive!

Questions: Are there adders with

- **linear cost** (like the ripple-carry adder), and
- logarithmic depth (like the conditional-sum adder)?

Addition of numbers in two's complement

Can we use **n-bit adders** for numbers in two's complement?

Observation: $[d_{n-1}...d_0]_2 = \langle d_{n-2}...d_0 \rangle \cdot d_{n-1} \cdot 2^{n-1} \text{ and } \langle d_{n-1}...d_0 \rangle = \langle d_{n-2}...d_0 \rangle + d_{n-1} \cdot 2^{n-1}$

So $< d_{n-1}...d_0 > - [d_{n-1}...d_0]_2 = d_{n-1}(2^{n-1}+2^{n-1}) = d_{n-1}2^n$.

Thus $\langle d_{n-1}...d_0 \rangle \equiv [d_{n-1}...d_0]_2 \pmod{2^n}$.

Addition of numbers in two's complement

Theorem:
Let a,
$$b \in B^n$$
, c_{n-1} , $c_{-1} \in B$ and $s \in B^n$,
such that $\langle c_{n-1}, s \rangle = \langle a \rangle + \langle b \rangle + c_{-1}$.
Then: $[s]_2 \equiv [a]_2 + [b]_2 + c_{-1} \pmod{2^n}$.

Proof:

- 1. $[a]_2 \equiv \langle a \rangle \pmod{2^n}, [b]_2 \equiv \langle b \rangle \pmod{2^n}, [s]_2 \equiv \langle s \rangle \pmod{2^n}$
- 2. $<_a > + <_b > +_{c_{-1}} = <_{c_{n-1}}, s > \equiv <_s > \pmod{2^n}$
- 3. $[a]_2 + [b]_2 + c_1 \equiv \langle a \rangle + \langle b \rangle + c_1 \equiv \langle s \rangle \equiv [s]_2 \pmod{2^n}$

Addition of numbers in two's complement

Observation:
The range of numbers covered by n-bit two's complement is R_n = {-2ⁿ⁻¹, ..., 2ⁿ⁻¹-1}
→ There are no two different values in R_n that are equal modulo 2ⁿ.

Thus:

If the result of the addition is representable in n-bit two's complement, then it is computed correctly by an n-bit adder.

Addition of numbers in two's complement

Question: When is the result of the addition of two n-bit two's complement numbers not representable in n-bit two's complement?

Discovering an overflow of an n-bit adder

Addition of numbers in two's complement

Theorem: Let $a, b \in B^n$, c_{n-1} , $c_{-1} \in B$ and $s \in B^n$, such that $<c_{n-1}, s> = <a> + + c_1$. Then: 1. $[a]_2 + [b]_2 + c_1 \notin R_n \Leftrightarrow (a_{n-1} = b_{n-1} \neq s_{n-1})$ 2. $[a]_2 + [b]_2 + c_1 \in R_n \Rightarrow [a]_2 + [b]_2 + c_1 = [s]_2$

Proof of 1. via case distinction $[a]_2$, $[b]_2$ both positive, both negative, $[a]_2$ negative $[b]_2$ positive, $[a]_2$ positive $[b]_2$ negative. Proof of 2. follows from the previous theorem.

Alternatively one can use the following overflow test: $[a]_2+[b]_2+c_1 \notin R_n \Leftrightarrow c_{n-1} \neq c_{n-2}$

Carry-lookahead adder

Adder with

linear cost and logarithmic depth!

Approach: Fast precomputation of the carries c_i .

If the carries c_i are known, then s_i is simply $a_i \oplus b_i \oplus c_{i-1}$.

Computation of c_i via **parallel prefix computation**.

Parallel prefix computation

Definition:

Let M be a set and $o : M \times M \rightarrow M$ an associative operation. The parallel prefix sum PPⁿ: $M^n \rightarrow M^n$ is defined as follows:

 $PP^{n}(x_{n-1}, ..., x_{0}) = (x_{n-1} o x_{n-2} ... o x_{0}, ..., x_{1} o x_{0}, x_{0})$

Parallel prefix computation: Recursive construction: Base case

 $PP^{n}(x_{n-1}, ..., x_{0}) = (x_{n-1} o x_{n-2} ... o x_{0}, ..., x_{1} o x_{0}, x_{0})$

Base case: $PP^1(x_0) = (x_0)$ X₀ **X**₀ \mathbf{PP}^1 Y₀ Y₀

Parallel prefix computation: PPⁿ based on PP^{n/2}

 $PP^{n}(x_{n-1}, ..., x_{0}) = (x_{n-1} o x_{n-2} ... o x_{0}, x_{n-2} o x_{n-3} o ... o x_{0}, ..., x_{0})$

System Architecture, Jan Reineke

Parallel prefix computation : Correctness (for n = 2ⁱ)

Induction base (i=0, n=1):
$$\checkmark$$

Induction step (n/2 \rightarrow n):
Inductive hypothesis: $y'_i = x'_i \circ x'_{i-1} \circ \dots \circ x'_0$
For the odd outputs we have:

$$y_{2i+1} = y'_{i} = x'_{i} o x'_{i-1} o \dots o x'_{0}$$
 (inductive hypothesis)
= $(x_{2i+1} o x_{2i}) o \dots o (x_{1} o x_{0})$
= $x_{2i+1} o x_{2i} o \dots o x_{1} o x_{0}$ (associativity)

For the *even* outputs (except i = 0) we have:

 $y_{2i} = x_{2i} o y'_{i-1} = x_{2i} o (x'_{i-1} o ... o x'_{0})$ (inductive hypothesis) $= x_{2i} o ((x_{2i-1} o x_{2i-2}) o ... o (x_{1} o x_{0}))$ $= x_{2i} o x_{2i-1} o ... o x_{1} o x_{0}$ (associativity)

Adders

Cost of parallel prefix computation (for $n = 2^i$)

Cost: $C(PP^n) \leq 2n \cdot C(o)$

Proof by induction over i:

•
$$i=0, n=1:$$

 $C(PP^1) = 0 < 2 \cdot C(o)$

•
$$n \rightarrow 2n$$
:
 $C(PP^{2n}) = C(PP^{n}) + (2n-1) \cdot C(o)$
 $< 2n \cdot C(o) + (2n-1) \cdot C(o)$ (I.H.)
 $< 2(2n) \cdot C(o)$

Depth of parallel prefix computation(for n = 2ⁱ)

 $Depth: depth(PP^n) \leq (2 \cdot \log_2 n) \cdot depth(o)$

Proof by induction over i:

•
$$i=0, n=1: depth(PP^1) = 0 < 2$$

= $(2 \cdot \log_2 2) \cdot depth(o)$

• $n \rightarrow 2n$: depth(PP²ⁿ) = depth(PPⁿ) + 2 · depth(o) $\leq^{(I.H.)} (2 \cdot \log n + 2) \cdot depth(o)$ = $(2 \cdot (\log n + 1)) \cdot depth(o)$ = $(2 \cdot \log (2n)) \cdot depth(o)$

Back to the adder: Precomputation of the carries

Distinguish generated and propagated carries:

$$a_{n-1} \dots a_j \dots a_i \dots a_0$$

 $b_{n-1} \dots b_j \dots b_i \dots b_0$
 $\dots c_j c_{j-1} \dots c_{i-1} \dots c_{-1}$

Generated carry g_{j,i} from i to j:

c_j = 1 independently of c_{i-1}.

Propagated carry p_{j,i} from i to j:

c_i = 1 if and only if also c_{i-1} = 1

Properties of generated and propagated carries

Carry c_j is obtained as follows: $c_j = g_{j,0} + p_{j,0} \cdot c_{-1}$

For i = j we have: $p_{i,i} = a_i \bigotimes b_i,$ $g_{i,i} = a_i \cdot b_i.$

For $i \neq j$ with $i \leq k \leq j$ we have: $g_{j,i} = g_{j,k+1} + p_{j,k+1} \cdot g_{k,i},$ $p_{j,i} = p_{j,k+1} \cdot p_{k,i}.$ Associative operator for the computation of $g_{j,i}$ and $p_{j,i}$

Define operator o as follows

(g, p) o (g', p') = (g+p \cdot g', p \cdot p'), so that

 $(g_{j,i}, p_{j,i}) = (g_{j,k+1}, p_{j,k+1}) o (g_{k,i}, p_{k,i}).$

Then we have:

 $(g_{j,0},p_{j,0}) = (g_{j,j},p_{j,j}) o \dots o (g_{1,1}, p_{1,1}) o (g_{0,0}, p_{0,0})$

The operator o is associative.

→ Parallel prefix computation to determine $(g_{j,0}, p_{j,0})$

Carry-lookahead adder

Cost and depth of the CLAⁿ

Cost:
$$C(CLA^n) = C(PP^n) + 5n$$

 $< 2n \cdot C(o) + 5n$
 $= 11n$

$$\begin{aligned} Depth: depth(CLA^n) &= depth(PP^n) + 4 \\ &\leq (2 \cdot \log n \cdot 1) \cdot depth(o) + 4 \\ &= 4 \cdot \log n + 2 \end{aligned}$$

Summary: Circuits and their complexity

	Half adder	Full adder	Ripple-carry adder	Conditional- sum adder	Carry-lookahead adder
Cost	2	5	5•n	10•n ^{log 3} - 3•n-2	11•n
Depth	1	3	3+2·(n-1)	3 · log n + 3	4•log n + 2
	Incrementer	Multiple	exer arb	itrary	Parallel prefix
			n-bi	adder	computation
Cost	2·n 3·n+1		1 >	2•n	< 2·n·C(o)
Depth	n	3	≥ lo	g n +1 (2	2·log n -1) · depth(o)