Arithmetic Circuits: Adders

Becker/Molitor, Chapter 9.2
Harris/Harris, Chapter 5.2

Jan Reineke
Universität des Saarlandes

Roadmap: Computer architecture

1. Combinatorial circuits: Boolean

Algebra/Functions/Expressions/Synthesis
2. Number representations
3. Arithmetic Circuits:

Addition, Multiplication, Division, ALU
4. Sequential circuits: Flip-Flops, Registers, SRAM, Moore and Mealy automata
5. Verilog
6. Instruction Set Architecture
7. Microarchitecture
8. Performance: RISC vs. CISC, Pipelining, Memory Hierarchy

Representation of natural numbers

Let $\mathrm{a}=\mathrm{a}_{\mathrm{n}-1} \ldots \mathrm{a}_{1} \mathrm{a}_{0}$ be a sequence of numerals from the positional numeral system $(b, Z, \delta)=(2,\{0,1\}, i d)$. (We call such numbers binary numbers.)

Then the value $\langle a>$ of a is:

$$
<a>=<a_{n-1} \ldots a_{1} a_{0}>=\sum_{i=0}^{n-1} b^{i} \cdot \delta\left(a_{i}\right)
$$

Adders

$$
\underset{\langle\mathrm{a}\rangle}{\langle\cdot\rangle} \underset{\langle\mathrm{b}|}{\substack{\mathrm{a}=\\\langle\cdot\rangle \\ \mathrm{a}_{\mathrm{n}-1} \ldots \mathrm{a}_{0} \longrightarrow \\ \mathrm{~b}=\mathrm{b}_{\mathrm{n}-1} \ldots \mathrm{~b}_{0}}} \rightarrow \text { Adder } \rightarrow \mathrm{s}_{\mathrm{n}} \ldots \mathrm{~s}_{0}=\mathrm{s}
$$

Adder (with carry-in)

Given: 2 positive binary numbers

$$
\begin{aligned}
& \langle\mathrm{a}\rangle=\left\langle a_{n-1} \ldots a_{0}\right\rangle, \\
& \langle b\rangle=\left\langle b_{n-1} \ldots b_{0}\right\rangle,
\end{aligned}
$$

and a carry-in $c \in\{0,1\}$.
Wanted: Circuit computing the binary representation of

$$
\langle\mathrm{s}\rangle=\langle\mathrm{a}\rangle+\langle\mathrm{b}\rangle+\mathrm{c} .
$$

How many bits do we need to represent s?

Definition: Adder

Definition (Adder):

An n-bit adder is a circuit that computes the following Boolean function:
$+_{\mathrm{n}}: \mathrm{B}^{2 \mathrm{n}+1} \rightarrow \mathrm{~B}^{\mathrm{n}+1}$,
$\left(a_{n-1}, \ldots, a_{0}, b_{n-1}, \ldots, b_{0}, c\right) \rightarrow\left(s_{n}, \ldots, s_{0}\right)$ with
$\langle s\rangle=\left\langle s_{n} \ldots s_{0}\right\rangle=\left\langle a_{n-1} \ldots a_{0}\right\rangle+\left\langle b_{n-1} \ldots b_{0}\right\rangle+c$

Schematic of an n-bit adder

Back to the basics: Grade school addition

Adding as you learned it in grade school:

$$
\begin{array}{r}
1011 \\
+\quad 0110 \\
+n 1100 \\
\hline 10001
\end{array}
$$

Half adder (HA)

Half adders may be used to sum up two 1-Bit numbers without carry-in:
It computes the following function:
$h a: \mathrm{B}^{2} \rightarrow \mathrm{~B}^{2}$
with ha $\left(a_{0}, b_{0}\right)=\left(s_{1}, s_{0}\right)$
with $\left\langle\mathrm{s}_{1} \mathrm{~s}_{0}\right\rangle=2 \mathrm{~s}_{1}+\mathrm{s}_{0}$

$$
=\mathrm{a}_{0}+\mathrm{b}_{0}=\left\langle\mathrm{a}_{0}\right\rangle+\left\langle\mathrm{b}_{0}\right\rangle
$$

Truth table of the HA

a_{0}	$\mathrm{~b}_{0}$	ha_{1}	ha_{0}
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Thus:
$h a_{0}=\mathrm{a}_{0} \oplus \mathrm{~b}_{0} \quad h \mathrm{a}_{1}=\mathrm{a}_{0} \wedge \mathrm{~b}_{0}$

Half adder circuit

Cost and depth of a half adder:
$C(H A)=2, \operatorname{depth}(H A)=1$

Full adder (FA)

a_{0}	$\mathrm{~b}_{0}$	c	fa_{1}	fa_{0}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

From the table we can derive:

$$
\begin{aligned}
\mathrm{fa}_{0} & =\mathrm{a}_{0} \oplus \mathrm{~b}_{0} \oplus \mathrm{c}=\mathrm{ha}_{0}\left(\mathrm{c}, \mathrm{ha}_{0}\left(\mathrm{a}_{0}, \mathrm{~b}_{0}\right)\right) \\
\mathrm{fa}_{1} & =\mathrm{a}_{0} \wedge \mathrm{~b}_{0} \vee \mathrm{c} \wedge\left(\mathrm{a}_{0} \oplus \mathrm{~b}_{0}\right) \\
& =h \mathrm{a}_{1}\left(\mathrm{a}_{0}, \mathrm{~b}_{0}\right) \vee h \mathrm{ha}_{1}\left(\mathrm{c}, \mathrm{ha}_{0}\left(\mathrm{a}_{0}, \mathrm{~b}_{0}\right)\right)
\end{aligned}
$$

Full adder composed from HAs

From the table we can derive:

$$
\begin{aligned}
\mathrm{fa}_{0} & =\mathrm{a}_{0} \oplus \mathrm{~b}_{0} \oplus \mathrm{c}=\mathrm{ha} a_{0}\left(\mathrm{c}, \mathrm{ha}_{0}\left(\mathrm{a}_{0}, \mathrm{~b}_{0}\right)\right) \\
\mathrm{fa}_{1} & =\mathrm{a}_{0} \wedge \mathrm{~b}_{0} \vee \mathrm{c} \wedge\left(\mathrm{a}_{0} \oplus \mathrm{~b}_{0}\right) \\
& =\mathrm{ha}_{1}\left(\mathrm{a}_{0}, \mathrm{~b}_{0}\right) \vee \mathrm{ha}_{1}\left(\mathrm{c}, \mathrm{ha}_{0}\left(\mathrm{a}_{0}, \mathrm{~b}_{0}\right)\right)
\end{aligned}
$$

Cost and depth of a FA:
$C(F A)=5, \operatorname{depth}(F A)=3$

Implementing the "school method": Ripple-carry adder (RC)

(also called Carry-chain adder)

$$
=s_{n}
$$

Implementing the "school method": Ripple-carry adder (RC)

Hierarchical construction:

(inductive definition)
For $\mathrm{n}=1: \quad \mathrm{RC}_{1}=\mathrm{FA}$
For $\mathrm{n}>1$: Circuit RC_{n} is defined as follows

Notation:
We refer to the carry-in with c_{-1}, and the carry from position i to $\mathrm{i}+1$ with c_{i}.

Recursive construction of an n-bit Ripple-carry adder $\left(\mathrm{RC}_{\mathrm{n}}\right)$

Correctness of the RC_{n}

Theorem: The RC_{n} circuit is an n -bit adder.

I.e., it computes the function
$+_{\mathrm{n}}: \mathrm{B}^{2 \mathrm{n}+1} \rightarrow \mathrm{~B}^{\mathrm{n}+1}$,
$\left(a_{n-1}, \ldots, a_{0}, b_{n-1}, \ldots, b_{0}, c\right) \rightarrow\left(s_{n}, \ldots, s_{0}\right)$ with
$\left\langle{ }_{s}\right\rangle=\left\langle\mathrm{s}_{\mathrm{n}} \ldots \mathrm{s}_{0}\right\rangle=\left\langle\mathrm{a}_{\mathrm{n}-1} \ldots \mathrm{a}_{0}\right\rangle+\left\langle\mathrm{b}_{\mathrm{n}-1} \ldots \mathrm{~b}_{0}\right\rangle+\mathrm{c}$

Correctness of the RC_{n} : Proof

Proof by induction:

- $\mathrm{n}=1$:
- $\mathrm{n}-1 \rightarrow \mathrm{n}$:

Input to $\mathrm{RC}_{\mathrm{n}}:\left(\mathrm{a}_{\mathrm{n}-1}, \ldots, \mathrm{a}_{0}, \mathrm{~b}_{\mathrm{n}-1}, \ldots \mathrm{~b}_{0}, \mathrm{c}_{-1}\right)$
Show that the output ($\mathrm{s}_{\mathrm{n}}, \ldots, \mathrm{s}_{0}$) of RC_{n} satisfies
$\langle s\rangle=\left\langle s_{n} \ldots s_{0}\right\rangle=\left\langle a_{n-1} \ldots a_{0}\right\rangle+\left\langle b_{n-1} \ldots b_{0}\right\rangle+c_{-1}$
We know that: $\left\langle\mathrm{c}_{0}, \mathrm{~s}_{0}\right\rangle=\mathrm{a}_{0}+\mathrm{b}_{0}+\mathrm{c}_{1}$ (FA)
And by inductive hypothesis:
For $\mathrm{RC}_{\mathrm{n}-1}:\left\langle\mathrm{s}_{\mathrm{n}} \ldots \mathrm{s}_{1}\right\rangle=\left\langle\mathrm{a}_{\mathrm{n}-1} \ldots \mathrm{a}_{1}\right\rangle+\left\langle\mathrm{b}_{\mathrm{n}-1} \ldots \mathrm{~b}_{1}\right\rangle+\mathrm{c}_{0}$
Putting it all together:

$$
\begin{aligned}
\left\langle s_{\mathrm{n}} \ldots \mathrm{~s}_{0}\right\rangle & =2 \cdot\left\langle s_{\mathrm{n}} \ldots s_{1}\right\rangle+s_{0} \\
\text { (I.H.) } & =2 \cdot\left(\left\langle a_{n-1} \ldots a_{1}\right\rangle+\left\langle b_{n-1} \ldots b_{1}\right\rangle+c_{0}\right)+s_{0} \\
\text { (FA) } & =2 \cdot\left\langle a_{n-1} \ldots a_{1}\right\rangle+a_{0}+2 \cdot\left\langle b_{n-1} \ldots b_{1}\right\rangle+b_{0}+c_{-1} \\
& =\langle a\rangle+\langle b\rangle+c_{-1}
\end{aligned}
$$

Cost and depth of Ripple-carry adders

Cost of RC_{n} ?
Depth of RC_{n} ?
$C\left(\mathrm{RC}_{\mathrm{n}}\right)=\mathrm{n} \cdot \mathrm{C}(\mathrm{FA})=5 \mathrm{n}$
$\operatorname{depth}\left(\mathrm{RC}_{\mathrm{n}}\right)=3+2(\mathrm{n}-1) \geqslant 3 \mathrm{n}($ for $\mathrm{n}>1)$

Cost and depth of

Ripple-carry adders (recursive)

Cost of $\mathrm{RC}_{\mathrm{n}}: \mathrm{C}\left(\mathrm{RC}_{\mathrm{n}}\right)=\mathrm{C}(\mathrm{FA})+\mathrm{C}\left(\mathrm{RC}_{\mathrm{n}-1}\right)=5+\mathrm{C}\left(\mathrm{RC}_{\mathrm{n}-1}\right)$
Depth of $R C_{n}: \operatorname{depth}\left(\mathrm{RC}_{\mathrm{n}}\right)=3+\operatorname{depth}\left(\mathrm{RC}_{\mathrm{n}-1}\right)-1=3+2(\mathrm{n}-1)$

Some more important circuits

- n-bit incrementer
- n-bit multiplexer

Definition: n-bit incrementer

An n-bit incrementer computes the following function:

$$
\begin{aligned}
& \text { inc }_{n}: B^{n+1} \rightarrow B^{n+1} \\
& \left(a_{n-1}, \ldots, a_{0}, c\right) \rightarrow\left(s_{n}, \ldots, s_{0}\right) \quad \text { with }
\end{aligned}
$$

$$
\left\langle\mathrm{s}_{\mathrm{n}} \ldots \mathrm{~s}_{0}\right\rangle=\langle\mathrm{a}\rangle+\mathrm{c}
$$

Incrementer

An Incrementer is an adder with $b_{i}=0$ for all i.
\rightarrow Replaces the FAs in RC_{n} by HAs.

Cost and depth:
$\mathrm{C}\left(\mathrm{INC}_{\mathrm{n}}\right)=\mathrm{n} \cdot \mathrm{C}(\mathrm{HA})=2 \mathrm{n}$
$\operatorname{depth}\left(\mathrm{INC}_{\mathrm{n}}\right)=\mathrm{n} \cdot \operatorname{depth}(H A)=\mathrm{n}$

Definition: n-bit multiplexer

An n-bit multiplexer $\left(\mathrm{MUX}_{\mathrm{n}}\right)$ is a circuit that computes the following function: $\operatorname{sel}_{\mathrm{n}}: \mathrm{B}^{2 \mathrm{n}+1} \rightarrow \mathrm{~B}^{\mathrm{n}}$ with
$\operatorname{sel}_{n}\left(a_{n-1}, \ldots, b_{n-1}, \ldots, b_{0}, s\right)$

$$
=\left\{\begin{array}{l}
\left(a_{n-1}, \ldots, a_{0}\right): \text { if } s=1 \\
\left(b_{n-1}, \ldots, b_{0}\right): \text { if } s=0
\end{array}\right.
$$

$\left(s e l_{n}\right)_{i}=s \cdot \mathrm{a}_{\mathrm{i}}+\bar{s} \cdot \mathrm{~b}_{\mathrm{i}}$

Schematic of an n-bit multiplexer

Based on the equation: $\left(s e l_{n}\right)_{i}=s \cdot \mathrm{a}_{\mathrm{i}}+\bar{s} \cdot \mathrm{~b}_{\mathrm{i}}$

Back to adders

Brainstorming:

- Are there cheaper and faster adders than RC_{n} ?
- Can we construct a constant-depth adder, independently of n ?

Back to adders

Brainstorming:

- Are there cheaper and faster adders than RC_{n} ?
- Can we construct a constant-depth adder, independently of n ?

Lower bounds!
$\mathrm{C}\left(+_{\mathrm{n}}\right) \geq 2 \mathrm{n}, \quad$ depth $\left(+_{\mathrm{n}}\right) \geq \log (\mathrm{n})+1$
Observation: Output s_{n} depends on all $2 \mathrm{n}+1$ inputs!
We use gates with at most 2 inputs.
Binary trees with $2 \mathrm{n}+1$ leaves have 2 n inner nodes.
Binary trees with n leaves have depth $\geq\lceil\log n\rceil$.
Addes In the following, let $\mathrm{n}=2^{\mathrm{k}}$.

Brainstorming: Faster adders

Idea: "Divide and Conquer":
 Employ parallel processing to reduce the depth!

More precisely:
Compute upper and lower half of result in parallel.

Problem:
Dependency of the upper half of the result on carry from lower half.

Solution:
Computer upper half for both possible values of the carry and pick the correct one later.

Schematic of a conditional-sum adder $\left(\mathrm{CSA}_{\mathrm{n}}\right)$

On the complexity of the CSA_{n}

- We have: $\mathrm{CSA}_{1}=\mathrm{FA}$.
- $\mathrm{A} \mathrm{CSA}_{\mathrm{n}}$ consists of $3 \mathrm{CSA}_{\mathrm{n} / 2}$.

Brainstorming: Depth of the $\mathrm{CSA}_{\mathrm{n}}$

How does depth $\left(\right.$ CSA $\left._{n}\right)$ evolve depending on n ?

$$
\begin{aligned}
\operatorname{depth}\left(\mathrm{CSA}_{\mathrm{n}}\right) & =\operatorname{depth}\left(\mathrm{CSA}_{\mathrm{n} / 2}\right)+\operatorname{depth}\left(\mathrm{MUX}_{(\mathrm{n} / 2)+1}\right) \\
& =\operatorname{depth}\left(\mathrm{CSA}_{\mathrm{n} / 2}\right)+3 \\
& =\operatorname{depth}\left(\mathrm{CSA}_{\mathrm{n} / 4}\right)+3+3 \\
& =\operatorname{depth}\left(\mathrm{CSA}_{\mathrm{n} / 8}\right)+3+3+3 \\
& =\operatorname{depth}\left(\mathrm{CSA}_{\mathrm{n} / 2 \wedge_{k}}\right)+3 \mathrm{k} \\
& =\operatorname{depth}\left(\mathrm{CSA}_{1}\right)+3 \mathrm{k} \quad\left(n=2^{k}, k=\log _{2} n\right) \\
& =\operatorname{depth}(\mathrm{FA})+3 \mathrm{k} \\
& =3(\mathrm{k}+1) \\
& =3 \log _{2} \mathrm{n}+3
\end{aligned}
$$

Depth of the $\mathrm{CSA}_{\mathrm{n}}$

Theorem (Depth of the $\mathrm{CSA}_{\mathrm{n}}$): $\operatorname{depth}\left(\mathrm{CSA}_{\mathrm{n}}\right)=3 \log _{2} \mathrm{n}+3$

Proof:

By induction over n .

- Induction base ($\mathrm{n}=1$):

Reminder:
We assume that n is a power of two.

$$
\operatorname{depth}\left(\mathrm{CSA}_{1}\right)=\operatorname{depth}(F A)=3
$$

- Induction step $(\mathrm{n}>1)$:

$$
\begin{aligned}
\operatorname{depth}\left(\mathrm{CSA}_{\mathrm{n}}\right) & =\operatorname{depth}\left(\mathrm{CSA}_{\mathrm{n} / 2}\right)+\operatorname{depth}\left(\mathrm{MUX}_{(\mathrm{n} / 2)+1}\right) \\
& =3 \log _{2}(\mathrm{n} / 2)+3+\operatorname{depth}\left(\mathrm{MUX}_{(\mathrm{n} / 2)+1}\right) \quad \text { (inductive hypothesis) } \\
& =3 \log _{2}(\mathrm{n} / 2)+3+3 \quad \text { (depth of the multiplexer) } \\
& =3\left(\left(\log _{2} \mathrm{n}\right)-\left(\log _{2} 2\right)\right)+3+3 \\
& =3\left(\left(\log _{2} \mathrm{n}\right)-1\right)+3+3 \\
& =3 \log _{2} \mathrm{n}+3
\end{aligned}
$$

Lower bound on the cost of the GSA $_{n}$

How does the cost $\mathrm{C}\left(\mathrm{CSA}_{\mathrm{n}}\right)$ evolve depending on n ?

$\mathrm{C}\left(\mathrm{CSA}_{1}\right)=\mathrm{C}(\mathrm{FA})=5$
$\mathrm{C}\left(\operatorname{CSA}_{\mathrm{n}}\right)=3 \cdot \mathrm{C}\left(\mathrm{CSA}_{\mathrm{n} / 2}\right)+\mathrm{C}\left(\mathrm{MUX}_{(\mathrm{n} / 2)+1}\right)$
(*) To derive a lower bound we ignore the multiplexer.

$$
=3 \cdot \mathrm{C}\left(\mathrm{CSA}_{\mathrm{n} / 2}\right)+3 \cdot \mathrm{n} / 2+4 \begin{aligned}
& \text { Reminder: } \\
& \mathrm{C}\left(\mathrm{MUX}_{\mathrm{n}}\right)=3 \mathrm{n}+1
\end{aligned}
$$

$$
\stackrel{\left({ }^{*}\right)}{\geq} 3 \cdot \mathrm{C}\left(\mathrm{CSA}_{\mathrm{n} / 2}\right)
$$

$$
\geq 3 \cdot 3 \cdot \mathrm{C}\left(\mathrm{CSA}_{\mathrm{n} / 4}\right)
$$

$$
\geq 3^{\mathrm{k}} \cdot \mathrm{C}\left(\mathrm{CSA}_{\mathrm{n} / 2 \wedge_{k}}\right)
$$

$$
=3^{\mathrm{k}} \cdot \mathrm{C}\left(\mathrm{CSA}_{1}\right)
$$

$$
=5 \cdot 3^{\log n}
$$

$$
\left(k=\log _{2} n\right)
$$

Lower bound on the cost of the $\mathrm{CSA}_{\mathrm{n}}$

Theorem (Cost of the CSA $_{n}$):

$$
\mathrm{C}\left(\mathrm{CSA}_{\mathrm{n}}\right) \geq 5 \cdot 3 \log \mathrm{n}
$$

Proof (by induction over n):
Induction base ($\mathrm{n}=1$):

$$
C\left(\mathrm{CSA}_{1}\right)=\mathrm{C}(\mathrm{FA})=5 \geq 5=5 \cdot 3^{\log 1}
$$

Induction step ($\mathrm{n}>1$):

$$
\begin{aligned}
\mathrm{C}\left(\mathrm{CSA}_{\mathrm{n}}\right) & =3 \cdot \mathrm{C}\left(\mathrm{CSA}_{\mathrm{n} / 2}\right)+\mathrm{C}\left(\mathrm{MUX}_{(\mathrm{n} / 2)+1}\right) \\
& \geq 3 \cdot \mathrm{C}\left(\mathrm{CSA}_{\mathrm{n} / 2}\right) \\
& \geq 3 \cdot 5 \cdot 3^{\log (\mathrm{n} / 2)} \quad \text { (inductive hypothesis) } \\
& =5 \cdot 3 \cdot 3^{(\log \mathrm{n}) \cdot 1} \quad \\
& =5 \cdot 33^{\log \mathrm{n}}
\end{aligned}
$$

Lower bound on the cost of the $\mathrm{CSA}_{\mathrm{n}}$

What is $3^{\log n}$?

$$
\begin{aligned}
& 3^{\log \mathrm{n}}=\left(2^{\log 3}\right)^{\log \mathrm{n}}=2^{\log 3 \cdot \log \mathrm{n}}=\left(2^{\log \mathrm{n}}\right)^{\log 3}=\mathrm{n}^{\log 3} \\
& \mathrm{n}^{\log 3} \approx \mathrm{n}^{1.58}
\end{aligned}
$$

For example:
$64^{\log 3}=3^{\log 64}=3^{6}=729$

Exact cost of the $\mathrm{CSA}_{\mathrm{n}}$

Taking into account the cost of the multiplexer, the exact cost of the CSA_{n} is:

$$
C\left(\mathrm{CSA}_{n}\right)=10 n^{\log 3}-3 n-2
$$

Thus, the conditional-sum adder is very fast, but also pretty expensive!

Questions: Are there adders with

- linear cost (like the ripple-carry adder), and
- logarithmic depth (like the conditional-sum adder)?

Excursion:

Addition of numbers in two's complement

Can we use n-bit adders for numbers in two's complement?

Observation:
$\left[d_{n-1} \ldots d_{0}\right]_{2}=\left\langle d_{n-2} \ldots d_{0}\right\rangle-d_{n-1} \cdot 2^{n-1}$ and $\left\langle d_{n-1} \ldots d_{0}\right\rangle=\left\langle d_{n-2} \ldots d_{0}\right\rangle+d_{n-1} \cdot 2^{n-1}$

So $\left\langle\mathrm{d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{0}\right\rangle-\left[\mathrm{d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{0}\right]_{2}=\mathrm{d}_{\mathrm{n}-1}\left(2^{\mathrm{n}-1}+2^{\mathrm{n}-1}\right)=\mathrm{d}_{\mathrm{n}-1} 2^{\mathrm{n}}$.
Thus $\left\langle\mathrm{d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{0}\right\rangle \equiv\left[\mathrm{d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{0}\right]_{2}\left(\bmod 2^{\mathrm{n}}\right)$.

Excursion:

Addition of numbers in two's complement

Theorem:
Let $\mathrm{a}, \mathrm{b} \in \mathrm{B}^{\mathrm{n}}, \mathrm{c}_{\mathrm{n}-1}, \mathrm{c}_{-1} \in \mathrm{~B}$ and $\mathrm{s} \in \mathrm{B}^{\mathrm{n}}$, such that $\left\langle\mathrm{c}_{\mathrm{n}-1}, \mathrm{~s}\right\rangle=\langle\mathrm{a}\rangle+\langle\mathrm{b}\rangle+\mathrm{c}_{-1}$.
Then: $[\mathrm{s}]_{2} \equiv[\mathrm{a}]_{2}+[\mathrm{b}]_{2}+\mathrm{c}_{-1}\left(\bmod 2^{\mathrm{n}}\right)$.
Proof:

1. $[\mathrm{a}]_{2} \equiv\langle\mathrm{a}\rangle\left(\bmod 2^{\mathrm{n}}\right),[\mathrm{b}]_{2} \equiv\langle\mathrm{~b}\rangle\left(\bmod 2^{\mathrm{n}}\right),[\mathrm{s}]_{2} \equiv\langle\mathrm{~s}\rangle\left(\bmod 2^{\mathrm{n}}\right)$
2. $\langle\mathrm{a}\rangle+\langle\mathrm{b}\rangle+\mathrm{c}_{-1}=\left\langle\mathrm{c}_{\mathrm{n}-1}, \mathrm{~s}\right\rangle \equiv\langle\mathrm{s}\rangle\left(\bmod 2^{\mathrm{n}}\right)$
(1.) (2.) (1.)
3. $[\mathrm{a}]_{2}+[\mathrm{b}]_{2}+\mathrm{c}_{-1} \equiv\langle\mathrm{a}\rangle+\langle\mathrm{b}\rangle+\mathrm{c}_{-1} \equiv\langle\mathrm{~s}\rangle \equiv[\mathrm{s}]_{2}\left(\bmod 2^{\mathrm{n}}\right)$

Excursion:

Addition of numbers in two's complement

Observation:

The range of numbers covered by n-bit two's complement is $\mathrm{R}_{\mathrm{n}}=\left\{-2^{\mathrm{n}-1}, \ldots, 2^{\mathrm{n}-1}-1\right\}$
\rightarrow There are no two different values in R_{n} that are equal modulo 2^{n}.

Thus:

If the result of the addition is representable in n-bit two's complement, then it is computed correctly by an n-bit adder.

Excursion:

Addition of numbers in two's complement

Question: When is the result of the addition of two n-bit two's complement numbers
not representable in n-bit two's complement?

Discovering an overflow of an n-bit adder

Excursion:

Addition of numbers in two's complement

Theorem:

Let $\mathrm{a}, \mathrm{b} \in \mathrm{B}^{\mathrm{n}}, \mathrm{c}_{\mathrm{n}-1}, \mathrm{c}_{-1} \in \mathrm{~B}$ and $\mathrm{s} \in \mathrm{B}^{\mathrm{n}}$, such that $\left\langle\mathrm{c}_{\mathrm{n}-1}, \mathrm{~s}\right\rangle=\langle\mathrm{a}\rangle+\langle\mathrm{b}\rangle+\mathrm{c}_{-1}$.

Then:

1. $[\mathrm{a}]_{2}+[\mathrm{b}]_{2}+\mathrm{c}_{-1} \notin \mathrm{R}_{\mathrm{n}} \Leftrightarrow\left(\mathrm{a}_{\mathrm{n}-1}=\mathrm{b}_{\mathrm{n}-1} \neq \mathrm{s}_{\mathrm{n}-1}\right)$
2. $[\mathrm{a}]_{2}+[\mathrm{b}]_{2}+\mathrm{c}_{-1} \in \mathrm{R}_{\mathrm{n}} \Rightarrow[\mathrm{a}]_{2}+[\mathrm{b}]_{2}+\mathrm{c}_{-1}=[\mathrm{s}]_{2}$

Proof of 1 . via case distinction $[\mathrm{a}]_{2},[\mathrm{~b}]_{2}$ both positive, both negative, $[\mathrm{a}]_{2}$ negative $[\mathrm{b}]_{2}$ positive, $[\mathrm{a}]_{2}$ positive $[\mathrm{b}]_{2}$ negative.
Proof of 2 . follows from the previous theorem.
Alternatively one can use the following overflow test:
$[\mathrm{a}]_{2}+[\mathrm{b}]_{2}+\mathrm{c}_{-1} \notin \mathrm{R}_{\mathrm{n}} \Leftrightarrow \mathrm{c}_{\mathrm{n}-1} \neq \mathrm{c}_{\mathrm{n}-2}$

Carry-lookahead adder

Adder with

linear cost and logarithmic depth!

Approach: Fast precomputation of the carries c_{i}.
If the carries c_{i} are known, then s_{i} is simply $\mathrm{a}_{\mathrm{i}} \oplus \mathrm{b}_{\mathrm{i}} \oplus \mathrm{c}_{\mathrm{i}-1}$.
Computation of c_{i} via parallel prefix computation.

Parallel prefix computation

Definition:
Let M be a set and $\mathrm{o}: \mathrm{M} \times \mathrm{M} \rightarrow \mathrm{M}$ an associative operation. The parallel prefix sum $\mathrm{PP}^{\mathrm{n}}: \mathrm{M}^{\mathrm{n}} \rightarrow \mathrm{M}^{\mathrm{n}}$ is defined as follows:

$$
\operatorname{PP}^{n}\left(x_{n-1}, \ldots, x_{0}\right)=\left(x_{n-1} o x_{n-2} \ldots o x_{0}, \ldots, x_{1} o x_{0}, x_{0}\right)
$$

Parallel prefix computation: Recursive construction: Base case

$\operatorname{PP}^{n}\left(x_{n-1}, \ldots, x_{0}\right)=\left(x_{n-1} o x_{n-2} \ldots o x_{0}, \ldots, x_{1} o x_{0}, x_{0}\right)$

Base case: $\mathrm{PP}^{1}\left(\mathrm{x}_{0}\right)=\left(\mathrm{x}_{0}\right)$

Parallel prefix computation: P^{n} based on $\mathrm{PP}{ }^{\mathrm{n} / 2}$

$$
\operatorname{PP}^{n}\left(x_{n-1}, \ldots, x_{0}\right)=\left(x_{n-1} o x_{n-2} \ldots o x_{0}, x_{n-2} \text { o } x_{n-3} \text { o } \ldots \text { o } x_{0}, \ldots, x_{0}\right)
$$

Parallel prefix computation : Correctness (for $\mathrm{n}=2^{\mathrm{i}}$)

Induction base $(\mathrm{i}=0, \mathrm{n}=1)$: Induction step $(\mathrm{n} / 2 \rightarrow \mathrm{n})$:
Inductive hypothesis: $y_{i}^{\prime}=x_{i}^{\prime} o x_{i-1}^{\prime} o \ldots o x_{0}^{\prime}$
For the odd outputs we have:

$$
\begin{aligned}
\mathrm{y}_{2 \mathrm{i}+1} & =\mathrm{y}_{\mathrm{i}}^{\prime}=\mathrm{x}_{\mathrm{i}}^{\prime} \mathbf{o} \mathrm{x}_{\mathrm{i}-1}^{\prime} \mathbf{o} \ldots \mathbf{o x}_{0}^{\prime} \\
& =\left(\mathrm{x}_{2 \mathrm{i}+1} \mathbf{o} \mathrm{x}_{2 \mathrm{i}}{ }_{\mathrm{o}}^{\prime} \ldots \mathbf{o}\left(\mathrm{x}_{1} \mathbf{o} \mathrm{x}_{0}\right)\right. \\
& =\mathrm{x}_{2 \mathrm{i}+1} \mathbf{o} \mathrm{x}_{2 \mathrm{i}} \mathbf{o} \ldots \mathbf{o} \mathrm{x}_{1} \mathbf{o} \mathrm{x}_{0}
\end{aligned}
$$

For the even outputs (except $i=0$) we have:

$$
\begin{aligned}
& y_{2 \mathrm{i}}=\mathrm{x}_{2 \mathrm{i}} \text { o } \mathrm{y}_{\mathrm{i}-1}^{\prime}=\mathrm{x}_{2 \mathrm{i}} \mathbf{o}\left(\mathrm{x}_{\mathrm{i}-1}^{\prime} \mathbf{o} \ldots \mathrm{ox}_{0}^{\prime}\right) \quad \text { (inductive hypothesis) } \\
& =x_{2 \mathrm{i}} \mathrm{o}\left(\left(\mathrm{x}_{2 \mathrm{i}-1} \mathrm{o} \mathrm{x}_{2 \mathrm{i}-2}\right) \mathrm{o} \ldots \mathrm{o}\left(\mathrm{x}_{1} \mathrm{o} \mathrm{x}_{0}\right)\right) \\
& =\mathrm{x}_{2 \mathrm{i}} \mathbf{o ~ x}_{2 \mathrm{i}-1} \mathbf{O} \ldots \mathrm{OX}_{1} \mathrm{ox}_{0}
\end{aligned}
$$

Cost of parallel prefix computation (for $n=2^{i}$)

Cost: $\mathrm{C}\left(\mathrm{PP}^{\mathrm{n}}\right)<2 \mathrm{n} \cdot \mathrm{C}(\mathrm{o})$

Proof by induction over i:

- $\mathrm{i}=0, \mathrm{n}=1$:

$$
\mathrm{C}\left(\mathrm{PP}^{1}\right)=0<2 \cdot \mathrm{C}(\mathrm{o})
$$

- $\mathrm{n} \rightarrow 2 \mathrm{n}$:

$$
\begin{aligned}
\mathrm{C}\left(\mathrm{PP}^{2 \mathrm{n}}\right) & =\mathrm{C}\left(\mathrm{PP}^{\mathrm{n}}\right)+(2 \mathrm{n}-1) \cdot \mathrm{C}(\mathrm{o}) \\
& <2 \mathrm{n} \cdot \mathrm{C}(\mathrm{o})+(2 \mathrm{n}-1) \cdot \mathrm{C}(\mathrm{o}) \\
& <2(2 \mathrm{n}) \cdot \mathrm{C}(\mathrm{o})
\end{aligned}
$$

Depth of
 parallel prefix computation(for $n=2^{i}$)

Depth: depth $\left(\mathrm{PP}^{\mathrm{n}}\right)<\left(2 \cdot \log _{2} \mathrm{n}\right) \cdot \operatorname{depth}(\mathbf{o})$

Proof by induction over i:

- $\mathrm{i}=0, \mathrm{n}=1$: depth $\left(\mathrm{PP}^{1}\right)=0<2$

$$
=\left(2 \cdot \log _{2} 2\right) \cdot \operatorname{depth}(\mathbf{o})
$$

- $\mathrm{n} \rightarrow 2 \mathrm{n}: \operatorname{depth}\left(\mathrm{PP}^{2 \mathrm{n}}\right)=\operatorname{depth}\left(\mathrm{PP}^{\mathrm{n}}\right)+2 \cdot \operatorname{depth}(\mathrm{o})$

$$
\begin{aligned}
& \leq(\text { I.H. })(2 \cdot \log \mathrm{n}+2) \cdot \operatorname{depth}(\mathbf{o}) \\
& =(2 \cdot(\log \mathrm{n}+1)) \cdot \operatorname{depth}(\mathbf{o}) \\
& =(2 \cdot \log (2 \mathrm{n})) \cdot \operatorname{depth}(\mathbf{o})
\end{aligned}
$$

Back to the adder:
 Precomputation of the carries

Distinguish generated and propagated carries:

$$
\begin{array}{rlllll}
a_{n-1} & \ldots & a_{j} & \ldots & a_{i} & \ldots
\end{array} a_{0} 0
$$

Generated carry $g_{j, i}$ from i to j :

$$
\mathrm{c}_{\mathrm{j}}=1 \text { independently of } \mathrm{c}_{\mathrm{i}-1} .
$$

Propagated carry $p_{j, i}$ from i to j :

$$
\mathrm{c}_{\mathrm{j}}=1 \text { if and only if also } \mathrm{c}_{\mathrm{i}-1}=1
$$

Properties of generated and propagated carries

Carry c_{j} is obtained as follows:

$$
\mathrm{c}_{\mathrm{j}}=\mathrm{g}_{\mathrm{j}, 0}+\mathrm{p}_{\mathrm{j}, 0} \cdot \mathrm{c}_{-1}
$$

For $\mathrm{i}=\mathrm{j}$ we have:

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{i}, \mathrm{i}}=\mathrm{a}_{\mathrm{i}} \otimes \mathrm{~b}_{\mathrm{i}}, \\
& \mathrm{~g}_{\mathrm{i}, \mathrm{i}}=\mathrm{a}_{\mathrm{i}} \cdot \mathrm{~b}_{\mathrm{i}} .
\end{aligned}
$$

For $\mathrm{i} \neq \mathrm{j}$ with $\mathrm{i} \leq \mathrm{k}<\mathrm{j}$ we have:

$$
\begin{aligned}
& g_{\mathrm{j}, \mathrm{i}}=\mathrm{g}_{\mathrm{j}, \mathrm{k}+1}+\mathrm{p}_{\mathrm{j}, \mathrm{k}+1} \cdot g_{\mathrm{k}, \mathrm{i}}, \\
& \mathrm{p}_{\mathrm{j}, \mathrm{i}}=\mathrm{p}_{\mathrm{j}, \mathrm{k}+1} \cdot \mathrm{p}_{\mathrm{k}, \mathrm{i}} .
\end{aligned}
$$

Associative operator for the

 computation of $g_{j, i}$ and $p_{j, i}$Define operator \mathbf{o} as follows

$$
(\mathrm{g}, \mathrm{p}) \mathrm{o}\left(\mathrm{~g}^{\prime}, \mathrm{p}^{\prime}\right)=\left(\mathrm{g}+\mathrm{p} \cdot \mathrm{~g}^{\prime}, \mathrm{p} \cdot \mathrm{p}^{\prime}\right),
$$

so that

$$
\left(\mathrm{g}_{\mathrm{j}, \mathrm{i}}, \mathrm{p}_{\mathrm{j}, \mathrm{i}}\right)=\left(\mathrm{g}_{\mathrm{j}, \mathrm{k}+1}, \mathrm{p}_{\mathrm{j}, \mathrm{k+1}}\right) \mathrm{o}\left(\mathrm{~g}_{\mathrm{k}, \mathrm{i}}, \mathrm{p}_{\mathrm{k}, \mathrm{j}}\right) .
$$

Then we have:

$$
\left(\mathrm{g}_{\mathrm{i}, 0}, \mathrm{p}_{\mathrm{j}, 0}\right)=\left(\mathrm{g}_{\mathrm{i}, \mathrm{j}}, \mathrm{p}_{\mathrm{j}, \mathrm{j}}\right) \text { o } \ldots \text { o }\left(\mathrm{g}_{1,1}, \mathrm{p}_{1,1}\right) \text { o }\left(\mathrm{g}_{0,0}, \mathrm{p}_{0,0}\right)
$$

The operator o is associative.
\rightarrow Parallel prefix computation to determine $\left(\mathrm{g}_{\mathrm{j}, 0}, \mathrm{p}_{\mathrm{j}, 0}\right)$

Carry-lookahead adder

Cost and depth of the CLA ${ }^{\text {n }}$

Cost: $\quad C\left(C L A^{n}\right)=C\left(P^{n}\right)+5 n$

$$
\begin{aligned}
& <2 n \cdot C(o)+5 n \\
& =11 n
\end{aligned}
$$

Depth: $\operatorname{depth}\left(\right.$ CLA $\left.^{\mathrm{n}}\right)=\operatorname{depth}\left(\mathrm{PP}^{\mathrm{n}}\right)+4$

$$
\begin{aligned}
& \leq(2 \cdot \log n-1) \cdot \operatorname{depth}(\mathbf{o})+4 \\
& =4 \cdot \log n+2
\end{aligned}
$$

Summary:

Circuits and their complexity

	Half adder	Full adder	Ripple-carry adder	Conditional- sum adder	Carry-lookahead adder
Cost	2	5	$5 \cdot n$	$10 \cdot \mathrm{n}^{\log 3-3 \cdot n-2}$	$11 \cdot \mathrm{n}$
Depth	1	3	$3+2 \cdot(\mathrm{n}-1)$	$3 \cdot \log \mathrm{n}+3$	$4 \cdot \log \mathrm{n}+2$

