
Arithmetic Circuits:
Adders

Becker/Molitor, Chapter 9.2
Harris/Harris, Chapter 5.2

Jan Reineke
Universität des Saarlandes

Adders 1System Architecture, Jan Reineke

Roadmap: Computer architecture

1. Combinatorial circuits: Boolean
Algebra/Functions/Expressions/Synthesis

2. Number representations
3. Arithmetic Circuits:

Addition, Multiplication, Division, ALU

4. Sequential circuits: Flip-Flops, Registers,
SRAM, Moore and Mealy automata

5. Verilog

6. Instruction Set Architecture
7. Microarchitecture

8. Performance: RISC vs. CISC, Pipelining,
Memory Hierarchy

SignImm

CLK

A RD
Instruction

Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0
1

0
1

A RD
Data

Memory
WD

WE
0
1

PC0
1

PC' Instr 25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch
MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

Zero

PCSrc

CLK

ALUControl2:0

AL
U

Arithmetic

Let a = an-1...a1a0 be a sequence of numerals from the
positional numeral system (b, Z, d)=(2,{0,1},id).

(We call such numbers binary numbers.)

Then the value <a> of a is:

Representation of natural numbers

< a >=< an−1...a1a0 >= bi ⋅δ(ai)
i=0

n−1

∑

Adders 3System Architecture, Jan Reineke

Adders

Adders 4

a = an-1...a0

b = bn-1...b0

<a>

<·>

<·>

<a>++

Adder sn...s0 = s

<·>

= <s>

Given: 2 positive binary numbers
<a> = <an-1 ... a0>,

 = <bn-1 ... b0>,

and a carry-in c Î {0,1}.

Adder (with carry-in)

Wanted: Circuit computing the binary representation of
<s> = <a>++c.

Because <a> + + c £ 2×(2n – 1) + 1 = 2n+1 - 1

n+1 bits suffice for s,

i.e., a circuit with n+1 outputs.

How many bits do we
need to represent s?

Adders 5

Definition: Adder

Definition (Adder):

An n-bit adder is a circuit that computes the
following Boolean function:

+n : B2n+1 ® Bn+1 ,

(an-1, ..., a0, bn-1, ..., b0, c) ® (sn, ..., s0) with

<s> = <sn ... s0> = <an-1 ... a0> + <bn-1 ... b0> + c

Adders 6System Architecture, Jan Reineke

Schematic of an n-bit adder

n+1

nn

a b
c

s

ADDn

Adders 7System Architecture, Jan Reineke

Adding as you learned it
in grade school:

Back to the basics: Grade school addition

1 0 1 1
+ 0 1 1 0
+ 0
¾¾¾¾¾

carry-in

Adders 8System Architecture, Jan Reineke

Half adders may be used to sum up
two 1-Bit numbers without carry-in:

It computes the following function:

Half adder (HA)

ha : B2 ® B2

with ha(a0, b0) = (s1, s0)

with <s1s0> = 2s1 + s0

= a0 + b0 = <a0> + <b0>

Adders 9System Architecture, Jan Reineke

Truth table of the HA

0111

1001

1010

0000

ha0ha1b0a0 Thus:
001 baha Ù=000 baha Å=

Adders 10System Architecture, Jan Reineke

Half adder circuit

Å

a0 b0

s0s1

= HA

a0 b0

s1 s0

Cost and depth of a half adder:

C(HA) = 2, depth(HA) = 1
11

Full adder (FA)

11111
01011
01101
10001
01110
10010
10100
00000
fa0fa1cb0a0

From the table we can derive:
fa0 = a0 ⊕ b0 ⊕ c = ha0 (c, ha0(a0, b0))

fa1 = a0 ∧ b0 ∨ c ∧ (a0 ⊕ b0)
= ha1(a0, b0) ∨ ha1(c, ha0(a0, b0))

Adders 12

Full adder composed from HAs

Cost and depth of a FA:

C(FA) = 5, depth(FA) = 3

HA

HA

a0 b0

c

s0

s1

FA

a0 b0 c

s1 s0

From the table we can derive:
fa0 = a0 ⊕ b0 ⊕ c = ha0 (c, ha0(a0, b0))

fa1 = a0 ∧ b0 ∨ c ∧ (a0 ⊕ b0)
= ha1(a0, b0) ∨ ha1(c, ha0(a0, b0))

Adders 13

(also called Carry-chain adder)

Implementing the “school method”:
Ripple-carry adder (RC)

c0

FA

b0 a0

s0

c-1
FA

b1 a1

s1cn-1
= sn

FA FA

bn-1 an-1 bn-2 an-2

cn-2

sn-1 sn-2

cn-3

Adders 14System Architecture, Jan Reineke

Implementing the “school method”:
Ripple-carry adder (RC)

Hierarchical construction:

(inductive definition)

For n=1: RC1 = FA
For n>1: Circuit RCn is defined as follows

Notation:

We refer to the carry-in with c-1, and the carry from position i
to i+1 with ci .

Adders 15System Architecture, Jan Reineke

Recursive construction of an
n-bit Ripple-carry adder (RCn)

RCn-1

an-1 a1

...
bn-1 b1

...

......
sn s1

FA
c0

a0 b0
c-1

s0
Adders 16System Architecture, Jan Reineke

Theorem: The RCn circuit is an n-bit adder.

Correctness of the RCn

I.e., it computes the function

+n : B2n+1 ® Bn+1 ,

(an-1, ..., a0, bn-1, ..., b0, c) ® (sn, ..., s0) with

<s> = <sn ... s0> = <an-1 ... a0> + <bn-1 ... b0> + c

Adders 17System Architecture, Jan Reineke

Correctness of the RCn: Proof

Proof by induction:
• n=1: ü
• n-1 à n:

Input to RCn: (an-1, ..., a0, bn-1, ... b0, c-1)
Show that the output (sn, ..., s0) of RCn satisfies
<s> = <sn ... s0> = <an-1 ... a0> + <bn-1 ... b0> +c-1

We know that: <c0, s0> = a0 + b0 + c-1 (FA)
And by inductive hypothesis:

For RCn-1: <sn ... s1> = <an-1 ... a1> + <bn-1 ... b1> + c0

Putting it all together:
<sn ... s0> = 2 × <sn ... s1> + s0

(I.H.) = 2 × (<an-1 ... a1> + <bn-1 ... b1> + c0) + s0

(FA) = 2 × <an-1 ... a1> + a0 + 2 × <bn-1 ... b1> + b0 + c-1

= <a> + + c-1

Adders 18System Architecture, Jan Reineke

Cost and depth of
Ripple-carry adders

c0

FA

b0 a0

s0

c-1
FA

b1 a1

s1cn-1
= sn

FA FA

bn-1 an-1 bn-2 an-2

cn-2

sn-1 sn-2

cn-3

Cost of RCn? C(RCn) = n×C(FA) = 5n

Depth of RCn? depth(RCn) = 3 + 2(n-1) < 3n (for n > 1)
!

Adders 19System Architecture, Jan Reineke

Cost and depth of
Ripple-carry adders (recursive)

FA
c0

a0 b0
c-1

s0

RCn-1

an-1 a1
...

bn-1 b1
...

......
sn s1

Cost of RCn: C(RCn) = C(FA) + C(RCn-1) = 5 + C(RCn-1)

Depth of RCn: depth(RCn) = 3 + depth(RCn-1)-1 = 3 + 2(n-1)
20

• n-bit incrementer

• n-bit multiplexer

Some more important circuits

Adders 21System Architecture, Jan Reineke

Definition: n-bit incrementer

An n-bit incrementer computes the following function:

incn : Bn+1 ® Bn+1 ,

(an-1, ..., a0, c) ® (sn, ..., s0) with

<sn ... s0> = <a> + c

Adders 22System Architecture, Jan Reineke

An Incrementer is an adder with bi=0 for all i.

à Replaces the FAs in RCn by HAs.

Incrementer

Cost and depth:

C(INCn) = n × C(HA) = 2n

depth(INCn) = n × depth(HA) = n

Adders 23System Architecture, Jan Reineke

An n-bit multiplexer (MUXn) is a circuit
that computes the following function:

Definition: n-bit multiplexer

seln : B2n+1 ® Bn with
a b

s

sel

1 0

nn

n

Adders 24System Architecture, Jan Reineke

𝑠𝑒𝑙! 𝑎!"#, … , 𝑏!"#, … , 𝑏$, 𝑠

=)
𝑎!"#, … , 𝑎$ ∶ 𝑖𝑓 𝑠 = 1
𝑏!"#, … , 𝑏$ ∶ 𝑖𝑓 𝑠 = 0

𝑠𝑒𝑙! % = 𝑠 / a& + 𝑠 / b&

Based on the equation:

Schematic of an n-bit multiplexer

seln-1 sel0

an-1 bn-1 a0 b0
s

... Cost and depth of a
MUX:

C(MUXn) = 3n + 1

depth(MUXn) = 3

Adders 25

𝑠𝑒𝑙! % = 𝑠 / a& + 𝑠 / b&

Brainstorming:

• Are there cheaper and faster adders than RCn?

• Can we construct a constant-depth adder, independently of n?

Back to adders

Adders 26

Back to adders

Lower bounds!
C(+n) ≥ 2n, depth(+n) ≥ log(n) + 1
Observation: Output sn depends on all 2n+1 inputs!
We use gates with at most 2 inputs.

Binary trees with 2n+1 leaves have 2n inner nodes.

Binary trees with n leaves have depth ≥ élog nù.

In the following, let n = 2k.Adders 28

Brainstorming:

• Are there cheaper and faster adders than RCn?

• Can we construct a constant-depth adder, independently of n?

Brainstorming: Faster adders

Adders 29

Idea: “Divide and Conquer”:
Employ parallel processing to reduce the depth!

011n

011n

b...bb...b

a...aa...a

2
n

2
n

2
n

2
n

--

--

+

+ 12
nc - 1c-

011nn s...ss...ss
2
n

2
n --

More precisely:
Compute upper and lower half of
result in parallel.

Problem:
Dependency of the upper half of
the result on carry from lower half.

Solution:
Computer upper half for both
possible values of the carry and pick
the correct one later.

Adders 30System Architecture, Jan Reineke

Schematic of a
conditional-sum adder (CSAn)

„Upper half“

CSAn/2 CSAn/2

(n/2)+1 (n/2)+1

1 0

n/2

ah bh „Lower half“

CSAn/2

al bl
c-1n/2 n/2

sl

n/2

„Pick correct result“

1 0

sh

MUX

31

• We have: CSA1 = FA.

• A CSAn consists of 3 CSAn/2.

On the complexity of the CSAn

Adders 32System Architecture, Jan Reineke

How does depth(CSAn) evolve depending on n?

Brainstorming: Depth of the CSAn

depth(CSAn)= depth(CSAn/2) + depth(MUX(n/2)+1)
= depth(CSAn/2) + 3
= depth(CSAn/4) + 3 + 3
= depth(CSAn/8) + 3 + 3 + 3
= depth(CSAn/2^k) + 3k
= depth(CSA1) + 3k (n = 2k, k = log2 n)
= depth(FA) + 3k
= 3(k+1)
= 3 log2 n + 3

Adders 33

Theorem (Depth of the CSAn):
depth(CSAn) = 3 log2 n + 3

Depth of the CSAn

Proof:
By induction over n.
• Induction base (n=1):

depth(CSA1) = depth(FA) = 3.
• Induction step (n>1):

depth(CSAn) = depth(CSAn/2) + depth(MUX(n/2)+1)
= 3 log2 (n/2) + 3 + depth(MUX(n/2)+1) (inductive hypothesis)
= 3 log2 (n/2) + 3 + 3 (depth of the multiplexer)
= 3 ((log2 n)-(log2 2)) + 3 + 3
= 3 ((log2 n)-1) + 3 + 3
= 3 log2 n + 3

Reminder:
We assume that n is
a power of two.

Adders 34System Architecture, Jan Reineke

Remember:
log (a/b) = (log a) - (log b)

C(CSA1) = C(FA) = 5

C(CSAn) = 3 × C(CSAn/2) + C(MUX(n/2)+1)
= 3 × C(CSAn/2) + 3 × n/2 + 4
≥ 3 × C(CSAn/2)
≥ 3 × 3 × C(CSAn/4)
≥ 3k × C(CSAn/2^k)
= 3k × C(CSA1)
= 5 × 3log n (k = log2 n)

Lower bound on the cost of the CSAn

Reminder:
C(MUXn) = 3n + 1(*) To derive a lower

bound we ignore the
multiplexer.

(*)

How does the cost C(CSAn) evolve depending on n?

Adders 35

Proof (by induction over n):
Induction base (n = 1):

C(CSA1) = C(FA) = 5 ≥ 5 = 5 × 3log 1

Induction step (n > 1):
C(CSAn) = 3 × C(CSAn/2) + C(MUX(n/2)+1)

≥ 3 × C(CSAn/2)
≥ 3 × 5 × 3log (n/2) (inductive hypothesis)
= 5 × 3 × 3(log n)-1

= 5 × 3log n

Lower bound on the cost of the CSAn

Theorem (Cost of the CSAn):
C(CSAn) ≥ 5 × 3log n

Adders 36System Architecture, Jan Reineke

What is 3log n?

Lower bound on the cost of the CSAn

3log n = (2log 3)log n = 2log 3×log n = (2log n)log 3 = nlog 3

nlog 3 ≈ n1.58

For example:

64log 3 = 3log 64 = 36 = 729

Adders 37System Architecture, Jan Reineke

Taking into account the cost of the multiplexer,
the exact cost of the CSAn is:

C(CSAn) = 10nlog 3 - 3n - 2

Exact cost of the CSAn

Thus, the conditional-sum adder is
very fast, but also pretty expensive!

Questions: Are there adders with
• linear cost (like the ripple-carry adder), and
• logarithmic depth (like the conditional-sum adder)?

Adders 38System Architecture, Jan Reineke

Can we use n-bit adders for numbers in two’s
complement?

Excursion:
Addition of numbers in two’s complement

Observation:
[dn-1...d0]2 = <dn-2...d0>-dn-1× 2n-1 and <dn-1...d0> = <dn-2...d0>+dn-1× 2n-1

So <dn-1...d0> - [dn-1...d0]2 = dn-1(2n-1+2n-1) = dn-12n.

Thus <dn-1...d0> ≡ [dn-1...d0]2 (mod 2n).

Adders 39System Architecture, Jan Reineke

Theorem:
Let a, b ∈ Bn, cn-1, c-1 ∈ B and s ∈ Bn,
such that <cn-1,s> = <a> + + c-1.

Then: [s]2 ≡ [a]2 + [b]2 + c-1 (mod 2n).

Proof:
1. [a]2≡<a> (mod 2n), [b]2≡ (mod 2n), [s]2≡<s> (mod 2n)
2. <a>++c-1 = <cn-1,s>≡<s> (mod 2n)

3. [a]2+[b]2+c-1≡<a>++c-1≡<s>≡[s]2 (mod 2n)
(1.) (1.)(2.)

Adders 40System Architecture, Jan Reineke

Excursion:
Addition of numbers in two’s complement

Observation:
The range of numbers covered by n-bit two’s
complement is Rn = {-2n-1, ..., 2n-1-1}
à There are no two different values in Rn

that are equal modulo 2n.

Thus:
If the result of the addition is representable in
n-bit two’s complement, then it is computed
correctly by an n-bit adder.

41

Excursion:
Addition of numbers in two’s complement

Question: When is the result of the addition of
two n-bit two’s complement numbers

not representable in n-bit two’s complement?

Adders 42System Architecture, Jan Reineke

Excursion:
Addition of numbers in two’s complement

Discovering an overflow of an n-bit adder

ADDn

Å

cn-1
sn-1 sn-2 s0

an-1 bn-1 a0 b0 c

Å

an-1 = bn-1 ¹ sn-1

Circuit detects
whether an
overflow
(or underflow)
occurs:

Intuitively:
The sign of the operands is the same,
but different from the sign of the result.Adders 43

Theorem:
Let a,b Î Bn, cn-1, c-1 Î B and s Î Bn,
such that <cn-1,s> = <a> + + c-1.

Then:

1. [a]2+[b]2+c-1 ∉ Rn ⇔ (an-1 = bn-1 ¹ sn-1)

2. [a]2+[b]2+c-1 ∈ Rn ⇒ [a]2+[b]2+c-1 = [s]2
Proof of 1. via case distinction [a]2, [b]2 both positive, both negative,

[a]2 negative [b]2 positive, [a]2 positive [b]2 negative.
Proof of 2. follows from the previous theorem.

Alternatively one can use the following overflow test:
[a]2+[b]2+c-1 ∉ Rn⇔ cn-1 ≠ cn-2 44

Excursion:
Addition of numbers in two’s complement

Adder with
linear cost and logarithmic depth!

Carry-lookahead adder

Computation of ci via parallel prefix computation.

Approach: Fast precomputation of the carries ci.

If the carries ci are known, then si is simply ai Å bi Å ci-1.

Adders 45System Architecture, Jan Reineke

Parallel prefix computation

Definition:
Let M be a set and o : M´M ® M an associative operation.
The parallel prefix sum PPn: Mn ® Mn is defined as follows:

PPn (xn-1, …, x0) = (xn-1 o xn-2 … o x0, …, x1 o x0, x0)

Adders 46System Architecture, Jan Reineke

Parallel prefix computation:
Recursive construction: Base case

PPn (xn-1, …, x0) = (xn-1 o xn-2 … o x0, …, x1 o x0, x0)

Base case: PP1 (x0) = (x0)

x0

y0

= PP1

x0

y0
Adders 48System Architecture, Jan Reineke

Parallel prefix computation:
PPn based on PPn/2

PPn (xn-1, …, x0) = (xn-1 o xn-2 … o x0, xn-2 o xn-3 o … o x0,…, x0)

PPn/2

x’n/2-1 x’1 x’0

y’n/2-1 y’1 y’0y’n/2-2

x’n/2-2

o

yn-2

o

y2 y0

...

o

xn-1 xn-2

o

x1 x0

o

x3 x2

o

xn-3 xn-4

...

yn-1 yn-3 y3 y1

Adders 49System Architecture, Jan Reineke

Induction base (i=0, n=1): ✔
Induction step (n/2 à n):

Inductive hypothesis: y’i = x’i o x’i-1 o ... o x’0
For the odd outputs we have:

y2i+1 = y’i = x’i o x’i-1 o ... o x’0 (inductive hypothesis)
= (x2i+1 o x2i) o ... o (x1 o x0)
= x2i+1 o x2i o ... o x1 o x0 (associativity)

For the even outputs (except i = 0) we have:
y2i = x2i o y’i-1 = x2i o (x’i-1 o ... o x’0) (inductive hypothesis)

= x2i o ((x2i-1 o x2i-2) o ... o (x1 o x0))
= x2i o x2i-1 o ... o x1 o x0 (associativity)

Parallel prefix computation :
Correctness (for n = 2i)

Adders 50

Proof by induction over i:

• i=0, n=1:
C(PP1) = 0 < 2 × C(o)

• n à 2n:
C(PP2n) = C(PPn) + (2n-1) × C(o)

< 2n × C(o) + (2n-1) × C(o) (I.H.)
< 2(2n) × C(o)

Cost of
parallel prefix computation (for n = 2i)

Cost: C(PPn) < 2n × C(o)

Adders 51System Architecture, Jan Reineke

Proof by induction over i:

• i=0, n=1: depth(PP1) = 0 < 2
= (2 × log2 2) × depth(o)

• n à 2n: depth(PP2n) = depth(PPn) + 2 × depth(o)
≤(I.H.) (2 × log n + 2) × depth(o)
= (2 × (log n + 1)) × depth(o)
= (2 × log (2n)) × depth(o)

Depth of
parallel prefix computation(for n = 2i)

Depth: depth(PPn) < (2 × log2 n) × depth(o)

Adders 52

Distinguish generated and propagated carries:

Generated carry gj,i from i to j:

cj = 1 independently of ci-1.

Propagated carry pj,i from i to j:

cj = 1 if and only if also ci-1 = 1

Back to the adder:
Precomputation of the carries

Examples?

an-1 ... aj ... ai ... a0

bn-1 ... bj ... bi ... b0

... cj cj-1 ... ci-1 ... c-1

Adders 53System Architecture, Jan Reineke

Carry cj is obtained as follows:
cj = gj,0 + pj,0 × c-1

Properties of generated and
propagated carries

For i = j we have:
pi,i = ai ⨂ bi,
gi,i = ai × bi.

For i ≠ j with i ≤ k < j we have:
gj,i = gj,k+1 + pj,k+1 × gk,i,
pj,i = pj,k+1 × pk,i.

Adders 54System Architecture, Jan Reineke

Define operator o as follows

(g, p) o (g’, p’) = (g+p × g’, p × p’),
so that

(gj,i, pj,i) = (gj,k+1,pj,k+1) o (gk,i, pk,i).

Then we have:

(gj,0,pj,0) = (gj,j,pj,j) o ... o (g1,1, p1,1) o (g0,0, p0,0)

Associative operator for the
computation of gj,i and pj,i

The operator o is associative.
à Parallel prefix computation to determine (gj,0, pj,0) Adders 55

Carry-lookahead adder

PPn

(gi,i, pi,i)
2

(gn-1,n-1, pn-1,n-1)
2

(g0,0, p0,0)
2

(gn-1,0, pn-1,0)
2

(gi,0, pi,0)
2

(g0,0, p0,0)
2

gi,0 c-1
pi,0

ci

⨂

⨂

si+1

ai+1 bi+1

pi+1,i+1=

bi ai

⨂... ...

Adders 56

Cost and depth of the CLAn

Cost: C(CLAn) = C(PPn) + 5n
< 2n × C(o) + 5n
= 11n

Depth: depth(CLAn) = depth(PPn) + 4
≤ (2 × log n - 1) × depth(o) + 4
= 4 × log n + 2

Adders 57System Architecture, Jan Reineke

Summary:
Circuits and their complexity

Half
adder

Full
adder

Ripple-carry
adder

Conditional-
sum adder

Carry-lookahead
adder

Cost 2 5 5·n 10·nlog 3 -3·n-2 11·n
Depth 1 3 3+2·(n-1) 3·log n + 3 4·log n + 2

Incrementer Multiplexer arbitrary
n-bit adder

Parallel prefix
computation

Cost 2·n 3·n+1 ≥ 2·n < 2·n·C(o)

Depth n 3 ≥ log n +1 (2·log n -1) · depth(o)

Adders 58System Architecture, Jan Reineke

