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Representation of natural numbers

Leta =a_,...a;a, be a sequence of numerals from the
positional numeral system (b, Z, 0)=(2,{0,1},id).

(We call such numbers binary numbers.)

Then the value <a> of a is:

n-1
[
<a>=<a_..ad, >= Eb d(a,)
i=0




d = d, . 1..-dQ

Adder |—s5,...50= S

b=b_..by”"

<>

| <>

<> = Y

v =+ — < D>+<bh>= <>
<b>-
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Adder (with carry-in)

Given: 2 positive binary numbers
<a> =<a, g ... x>,

<b>=<b,; ... by>,

and a carry-in c € {0,1}.

Wanted: Circuit computing the binary representation of
<> = <a>+<b>+c.

HOW many bits do We Because <a> + <b> +c < 2(211 _ 1) +1= 2n+1 -1

need to represent s/

n+1 bits suffice for s,

i.e., a circuit with n+1 outputs.
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Definition (Adder):

An n-bit adder is a circuit that computes the
following Boolean function:

+ Bintl 5 Bntl ’
(@1, -y 29y D1y ooy Doy ©) = (S,, -ovy Sp) With

<> =<5 ...80>=<a,;...a> +<b_;..by>+c

Adders
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n -

n+1

\V4
ADD,
T
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Adding as you learned it

in grade school: 1011
+ 0110
+,q /)/'DO

100 64\

carry-in
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Half adder (HA)

Half adders may be used to sum up
two 1-Bit numbers without carry-in:

[t computes the following function:

ha:Bz—)Bz

with ha(a,, by) = (sq, sp)

with <s;sp> =12s; * s,

=2yt by =<ap>+ <by>



Adders

Thus:

a, by | ha; ha,
0 0 0 O
0 1 0 1
1 0 0 1
1 1 1 0

ha, =a, ® b,

ha, =a, A Db,

System Architecture, Jan Reineke
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do Do

e

Cost and depth of a half adder:
C(HA) = 2, depth(HA) =1
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Full adder (FA)

a by C fa, fa,
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

From the table we can derive:

fa
fa

0

1

a, ® b ® c = ha (c,ha(a,b, )
a Ab,vca(a @b
ha (a,,b,) v ha (c,ha (a,,b,))



Full adder composed from HAs

do by
L

HA

fa =a, Ab, vca(a @D C

From the table we can derive:
fa, = a, ® b, ® c = ha (c,ha (a,b,)

= ha (a,,b,) v ha (c,ha (a ,,b,))
HA
ap by C \
Cost and depth of a FA: FA LTJ 50
C(EA) = 5, depth(FA) = 3 /\ :,
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[Implementing the “school method”:

Ripple-carry adder (RC)
(also called Carry-chain adder)

b1 any b, > an b; a; by Q
\ \ EE R B I
FA FA L FA FA 7
/ Cn-2 Cns [ Co
Ch1 o Spy Sn-2 Sq So



[Implementing the “school method”:

Ripple-carry adder (RC)

Hierarchical construction:

(inductive definition)

Forn=1: RC,=FA

For n>1: Circuit RC, is defined as follows

Notation:

We refer to the carry-in with ¢ ;, and the carry from position i
to i+1 with ¢, .



!

FA

Adders System Architecture, Jan Reineke
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Theorem: The RC_ circuit is an n-bit adder.

L.e., it computes the function
+ Bin+l SN Botl ’
(@1, .oy 29y D1y ooy Doy ©) = (5, -ovy 8g) With

<> =<5 ...80>=<a,(...a> +<b_;..by>+c
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Correctness of the RC : Proof

Proof by induction:

* n=1: v

* nl—2n:
Input to RC: (a,,q, ..., 29, b1, -+ by, ¢1)
Show that the output (s, ..., sg) of RC,, satisfies
<> =<5, ...50> =<a,..ay> +<b,..b>+c,

We know that: <cy, sp> =ay + by + ¢; (FA)
And by inductive hypothesis:
FOT RCn—l: <Sn cou Sl> = <an,1 voe al> + <bn—l ces b1> + Co

Putting it all together:

<8, .or S0 =2-<s,...5> *sg
(IH) = 2 : (<an,1 ces al> + <bn—1 cos b1> + Co) + SO
(FA) = 2 : <an,1 voe al> + 40 + 2 . <bn—1 voo b1> + bo + C1

=<a> +<pb> + C1



Cn'l Sn-l Sn-2 51 So

Cost of RC_! C(RC,) = n-C(FA) = 5n

/
Depth of RC.!? depth(RC,) = 3 + 2(n-1) < 3n (for n > 1)
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L C1
An-1 a; b, b, C FA L
RC, ;
l ...... l
S S Sp

Cost of RC,: C(RC,) = C(FA) + C(RC,,}) =5 + C(RC, )

Depth of RC_: depth(RC,) = 3 + depth(RC_)-1 = 3 + 2(n-1)

20




Some more important circuits




An n-bit incrementer computes the following function:

inc,: Bl — Bl
(@1, -y 29, ©) > (S, +ory 89)  With

<§, ... Sp> =<a> t ¢
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Adders

An Incrementer is an adder with b;=0 for all i.

—> Replaces the FAs in RC_ by HA:s.

Cost and depth:
C(INC,) =n - C(HA) = 2n
depth(INC.) = n - depth(HA) = n

System Architecture, Jan Reineke
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Definition: n-bit multiplexer

An n-bit multiplexer MUX ) is a circuit
that computes the following function:

sel : Bl — B with

a b
sel.(a,_1, ..., b _1, ..., Dy, S) HJ( nj(
B {(an_l, Qo) tifs=1

(b1, by) 1 if s =0 10

(sel,,)j =s-a;j+5s-b; J(
N

sel



Schematic of an n-bit multiplexer

Based on the equation: (sel,); =s-a;+5-b;

dn-1 b1

do bo

O

O
¢/

el
HJ

sel 4

\/

%J

sel,

Cost and depth of a
DU [

CMUX.) = 3n + 1
depthMUX,) = 3




Brainstorming:
* Are there cheaper and faster adders than RC_?

e (Can we construct a constant-depth adder, independently of n?

Adders 26



Back to adders

Brainstorming:
* Are there cheaper and faster adders than RC_?

* Can we construct a constant-depth adder, independently of n?

Lower bounds!
C(+.) > 2n, depth(+,)>log(n) + 1

Observation: Output s depends on all 2n+1 inputs!

We use gates with at most 2 inputs.
Binary trees with 2n+1 leaves have 2n inner nodes.

Binary trees with n leaves have depth > log n |.

v In the following, let n = 2k,
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[dea: “Divide and Conquer”:
Employ parallel processing to reduce the depth!

|
n_l...agla%_l...ao

+b, ,..bb, ,..b,
2| 2

+ C, | 4 C_,

a

NS

I
SS_ ....5,S, {-..S

n__
2| 2 1

More precisely:
Compute upper and lower half of
result in parallel.

Problem:

Dependency of the upper half of
the result on carry from lower half.

Solution:

Computer upper half for both
possible values of the carry and pick
the correct one later.

System Architecture, Jan Reineke 30



Schematic of a

conditional-sum adder (CSA,)

o b h

_ ,,Upper half*

/ b, ,,Lower ha%

d

n/z/’/ /’/n/Z C4
A&/
CSA, >

4+ n/2

Sh,,Pick correct resultp

N |




On the complexity of the CSA




Brainstorming: Depth of the CSA |

How does depth(

CSA,) evolve depending on n!

depth(CSA, )= dept

ept]

ept]
ept]

ept]

Il
N OINN OO ONNG)

ept]

I(CSAn/z) + depth(MUX(n/2)+1)

h(CSA, ;) + 3

h(CSA, /) +3 + 3

h(CSA,g) +3+3+3

h(CSA, ,~) + 3k

h(CSA ) + 3k (n = 2% k = log, n)

= deptl!

h(FA) + 3k

= 3(k+1)
= 3 10g2 n -+ 3




Depth of the CSA

Theorem (Depth of the CSA ):
depth(CSA,) =3 log, n + 3

Proof:
By induction over n.
* Induction base (n=1):
depth(CSA,) = depth(FA) = 3.
* Induction step (n>1):
depth(CSA,) = depth(CSA,, ;) + depthMUX(,, /)+1)

Reminder:
We assume that n is
a power of two.

=3 log; (n/2) + 3 + depthMUX,,, 2)+1) (inductive hypothesis)

=3 log, (n/2)+3+3

= 3 ((log; n)log, 2)) + 3 + 3
=3 ((log; n)-1) +3 +3

=3 log;,n+3

Remember:

log (a/b) = (log a) - (log b)

Adders

System Architecture, Jan Reineke

(depth of the multiplexer)
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Lower bound on the cost of the CSA |

How does the cost C(CSA,) evolve depending on n?

C(CSA,) =

C(CSA,)

(*) To derive a lower
bound we ignore the
multiplexer.

C(FA) =5

- 3 C(CSAn/Z) + C(MUX(H/2)+1)

=3 C(CSA, ) +3 - n/2 +4

Reminder:

CMUX,) =3n+1

>3.C(CSA, )
>3.3-C(CSA, )
> 3k. C(CSA, /14
= 3k. C(CSA,)

= 5. 3logn (k =

log; )




Lower bound on the cost of the CSA |

Theorem (Cost of the CSA):
C(CSA,_)>5 - 3logn

Proof (by induction over n):
Induction base (n = 1):

C(CSA|) = C(FA)=5>5=5. 3lgl
Induction step (n > 1):

C(CSA,) =3-C(C8A, /) + CMUX,/2)+1)

- C(CSA, »)
.5 . 3log /)
. 3 . 3(logn)l
. 3logn

(inductive hypothesis)

[ AV V4
U1 U1 W




What is 3logn?

3log n — (zlog 3)log n — zlog 3-logn = (zlog n)log 3 nlog 3

nlog3 = 1,58

For example:

64log3 = 3log64 = 36 = 779

Adders

System Architecture, Jan Reineke
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Exact cost of the CSA_

Taking into account the cost of the multiplexer,

the exact cost of the CSA_ is:
C(CSA,) = 10n¢3.3n -2

Thus, the conditional-sum adder is
very fast, but also pretty expensive!

Questions: Are there adders with
* linear cost (like the ripple-carry adder), and
e Jogarithmic depth (like the conditional-sum adder)?

Adders System Architecture, Jan Reineke



Can we use n-bit adders for numbers in two’s
complement!

Observation:

[dn—l‘“dO]Z = <dn—2“’d0>'dn—l' 2“’1 and <dn_1...d0> = <dn—2‘“d0>+dn—1. Zn—l

So <dn_1...d0> - [dn—l‘“dO]Z = dn,l(Zn‘1+2n‘1) = dn_lzn.

Th’l/tS <dn—1‘“d0> = [dn—l’“dOJZ (mod Zn).

Adders System Architecture, Jan Reineke 39



Excursion:
Addition of numbers in two’s complement

Theorem:
Leta,be B ¢ i,c; €EBands € B",

such that <c_,s> = <a>+ <b> + ¢;.
Then: [s], = [a], + [b], + ¢; (mod 27).

Proof:
1. [al,=<a> (mod 27), [b],=<b> (mod 2?), [s],=<s> (mod 2")
2. <a>+<b>+c; = <c, (,8>=<s> (mod 2")

(L.) (2.) (L)
3. [a]2+[b]2+c,1 E<a>+<b>+c,lE<s>E [S]Z (mod Zn)




Excursion:
Addition of numbers in two’s complement

Observation:

The range of numbers covered by n-bit two’s

complement is R_ = {2~ .. 2~}

—> There are no two different values in R |
that are equal modulo 2".

Thus:

[f the result of the addition is representable in
n-bit two’s complement, then it is computed
correctly by an n-bit adder.




Excursion:

Addition of numbers in two’s complement

Question: When is the result of the addition of
two n-bit two’s complement numbers
not representable in n-bit two’s complement!

o -
b
o'yt 3/ j Ev
1 |
= U -7
L |




Circuit detects an-1 Dny ag by c
5
whether an —O—‘% ‘ ‘

overflow L@)
(or underflow) ADD,
OCCurs: \
Ch-1
Sn-1 Sn-2 So
@D
Intuitively:
The sign of the operands is the same,
Adders dn.1 = bn—l 7% S..1 | but different from the sign of the result. 8




Excursion:
Addition of numbers in two’s complement

Theorem:
Letab e BY ¢ ,c; € Bands € B,
such that <c_;,s> = <a> + <b> + ¢ .

r—

[hen:

al,*[bl,+c, € R, & (a, = b, #s,1)

2. :a:2+:43:2+(:,1 - Rn = [a]2+[b:2+C,1 = [S]z

Proof of 1. via case distinction [a],, [b], both positive, both negative,
[a], negative [b], positive, [a], positive [b], negative.
Proof of 2. follows from the previous theorem.

Alternatively one can use the following overflow test:
lal; (bl e € Ry & ¢ * ¢

44



Adder with

linear cost and logarithmic depth!

Approach: Fast precomputation of the carries c..

If the carries ¢, are known, then s, is simply a, @ b, ® ¢, ;.

Computation of ¢; via parallel prefix computation.

Adders

System Architecture, Jan Reineke
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Definition:
Let M be a set and o : MxM — M an associative operation.
The parallel prefix sum PP™: M™ — M™ is defined as follows:

pPpn (Xn—l’ orey Xo) = (Xn—l O X2 ++o O Xpy +eey X1 O Xy, Xo)

Adders System Architecture, Jan Reineke 46



PP™ (x4, ..., Xp) = (X1 0 X, ... O X, ..y X1 O Xy Xp)

Base case: PP! (x) = (xp)

S
|

Adders System Architecture, Jan Reineke 48
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pPpn (Xn—l’ cesy Xo) = (Xn—l O X2 +++ O Xpy X170 O0X130 .00 0Xpyeesy Xo)

Xh-1 Xh2 Xn3 Xn—4 X3 X2 X1 X0
L 2K 2R 4
) y ’ ’
X n/2-1 X n/22 X1 X0
P Pn/ 2
M ) b M
Y n/2-1 Y n/22 Y1 Yo
O O
L 2 2R 4
Yn-1 Yn2 Yn-3 Y3 Y2 Y1 Yo
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Parallel prefix computation :
Correctness (for n = 2Y)

Induction base (i=0, n=1): v

Induction step (n/2 =2 n):
Inductive hypothesis: vy, =x. 0x.; 0 ... 0 X
For the odd outputs we have:

) ) ) )
Yo+ “YV;iTX;0X,10..0X) (inductive hypothesis)
= (X21+1 O XZi) 0...0 (Xl O Xo)

= X741 0 X5, 0... 0X;1 0Xj (associativity)

For the even outputs (except i = 0) we have:
) ) )
V9, =X, 0¥ 1X5,0 (X 10...0X O) (inductive hypothesis)
= X9 0 ((XZi—l O XZi—Z) O0...0 (Xl O Xo))
= X7, 0X5,10...0X;0Xj (associativity)



Cost of

parallel prefix computation (for n = 2)

Cost: C(PP») < 2n - C(o)

Proof by induction over i:
¢ =0, n=1:
C(PPHY=0<2-C(o)
* n 2 2n:
C(PP™) = C(PP™) + (2n-1) - C(o)
<2n-C(o) + 2n-1) - C(o) (I.LH.)
< 2(2n) - C(o)



Depth of
parallel prefix computation(for n = 2)

Depth: depth(PP") < (2 - log, n) - depth(o)

Proof by induction over i:

e =0, n=1: depth(PP!)=0<2
= (2 - log, 2) - depth(o)

* n 2 2n: depth(PP?") = depth(PP?) + 2 - depth(o)
<LH) (2 . log n + 2) - depth(o)
=(2-(logn + 1)) - depth(o)
= (2 - log (2n)) - depth(o)




Back to the adder:

Precomputation of the carries

Distinguish and propagated carries:
anfl X a] X al X 80
bn—l X b] X bl X bO

XX C] C]’I LR XS C1’1 LR C’]‘

g;from i to j:

¢, = 1 independently of c, ;.

Propagated carry p;; from i to j:

¢, = L if and only if also ¢ = 1

Examples!?




Properties of generated and
propagated carries

Carry ¢; is obtained as follows:

C; = &0 T PjoC1

For i = j we have:
Pii T 4 X bv
i~ 4 bi’

Fori#= i with i < k <jwe have:
] |

i~ 8ikr1 1 Djk+1° Bkiv
Pii = Pjk+1 ° Pkt



Associative operator for the
computation of g;; and p;;

Define operator o as follows

(g, polg,p)=(p -g,p-p),
so that

(g5 ;) = (€1 1Pjaer 1) © (s Pre)-
Then we have:
(g 0D;.0) = (g P ) 0 ... 0 (g1, P1.1) 0 (€o0) Poo)

The operator o is associative.

= Parallel prefix computation to determine (g; o, p; o)



L 2R 2R 4 U ® L 2R 2R 4

A2 2 A2
(€n 1,015 Prtyne1) (g Pi,) (€0,00 Po,0)
ppn
(€n-1,00 Pa10) (g0, Pi0) (20,0 Poo)
%E o 17 DPio A1 o
dj+1 bi+1

Pi+1,i+1= @
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Cost: C(CLA™) = C(PP) + 5n
<2n-C(o) + 5n
= 11n

Depth: depth(CLA™) = depth(PP") + 4
<(2-logn-1)-depth(o) + 4
=4 .-logn+2
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Summary:
Circuits and their complexity

Half Full Ripple-carry Conditional- Carry-lookahead
adder adder adder sum adder adder
Cost 2 5 5n 10-nlog3.3:n-2 11'n
Depth 1 3 3+2+(n-1) 3-logn + 3 4-logn + 2
Incrementer ~ Multiplexer arbitrary Parallel prefix
n-bit adder computation
Cost 2'n 3:n+l > 2n < 2:n-C(0)

Depth n 3 > log n +1 (2:log n -1) - depth(o)




