Number representations

Becker/Molitor, Chapter 3.3
Harris/Harris, Chapter 1.4

Jan Reineke
Universität des Saarlandes

Roadmap: Computer architecture

1. Combinatorial circuits: Boolean

Algebra/Functions/Expressions/Synthesis
2. Number representations
3. Arithmetic Circuits:

Addition, Multiplication, Division, ALU
4. Sequential circuits: Flip-Flops, Registers, SRAM, Moore and Mealy automata
5. Verilog
6. Instruction Set Architecture
7. Microarchitecture
8. Performance: RISC vs. CISC, Pipelining, Memory Hierarchy

Outlook: Arithmetic circuits

$$
<\cdot>
$$

Challenge: Number representations

Internally, computers represent numbers by binary strings of some fixed length n bits.

Questions:

1. How many different numbers can be represented?
2. How to represent natural numbers?
3. How to represent integers? Challenge: negative numbers
fixed-point numbers
4. How to represent rational numbers?
$\left.\begin{array}{l}\text { 5. How to represent very large } \\ \text { and very small numbers? }\end{array}\right\}$ floating-point numbers
5. How many different numbers can be represented?

For n bits and b (typically $b=2$) different numerals in each position,

- there are b^{n} distinct strings, and so
- at most b^{n} distinct numbers can be represented, e.g. $0, \ldots, b^{n}-1$ or $-b^{n-1}, \ldots, b^{n-1}-1$

Examples of numeral systems

Examples:

- Binary numeral system

$$
b=2, \quad Z=\{0,1\}
$$

- Decimal numeral system

$$
b=10, \quad Z=\{0,1,2,3,4,5,6,7,8,9\}
$$

- Hexadecimal numeral system:

$$
b=16 \quad Z=\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}
$$

Numeral systems formally

Definition (Positional numeral system):
A positional numeral system is a triple $S=(b, Z, \delta)$ with the following properties:

- $b \in \mathbb{N}$ is a natural number, the basis.
- Z is a set of symbols of size b, the numerals (or digits).
- $\delta: Z \rightarrow\{0,1, \ldots, \mathrm{~b}-1\}$ is a bijective mapping that associates each numeral with a natural number between 0 and $b-1$.

2. Representation of natural numbers

Which natural number $<\mathrm{d}>$ is represented the sequence

$$
\mathrm{d}=\mathrm{d}_{\mathrm{n}} \mathrm{~d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{1} \mathrm{~d}_{0}
$$

of numerals from a positional numeral system (b, Z, δ) ?
Examples:
Let d = 0110

- $b=2, \quad\langle d\rangle=$
- $b=10, \quad\langle d\rangle=$
- $b=16, \quad\langle d\rangle=$

$$
\text { In general: }<d>=<d_{n} d_{n-1} \ldots d_{1} d_{0}>=\sum_{i=0}^{n} b^{i} \cdot \delta\left(d_{i}\right)
$$

Binary numbers

For $b=2$ and $n=2$ we thus have:

d	000	001	010	011	100	101	110	111
$\langle\mathrm{~d}\rangle$	0	1	2	3	4	5	6	7

Properties:

- Smallest representable number: 0
- Largest representable number: $\quad 2^{n+1}-1$
- „Adjacent numbers" are at distance 1.

3. Representing integers, in particular negative numbers

Goals:

1. Want to cover large number space:
\rightarrow aim for unique number representation
2. Would like to reuse arithmetic circuits for natural numbers

Signed magnitude representation

1. Approach: Signed magnitude representation.

The most significant digit d_{n} determines the sign of the number:

$$
\begin{aligned}
{\left[\mathrm{d}_{\mathrm{n}} \mathrm{~d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{0}\right]_{\mathrm{SM}}:=(-1)^{\mathrm{d}_{\mathrm{n}}}<\mathrm{d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{0} } & > \\
& =(-1)^{\mathrm{d}_{\mathrm{n}}} \cdot \Sigma_{\mathrm{i}=0, \ldots, \ldots-1} \mathrm{~d}_{\mathrm{i}} \cdot 2^{\mathrm{i}} .
\end{aligned}
$$

d	000	001	010	011	100	101	110	111
$[\mathrm{~d}]_{\mathrm{SM}}$	0	1	2	3	0	-1	-2	-3

Signed magnitude representation

d	000	001	010	011	100	101	110	111
$[\mathrm{d}]_{\text {SM }}$	0	1	2	3	0	-1	-2	3

Properties:

- The number range is symmetric:
- Smallest number: - $\left(2^{n}-1\right)$
- Largest number: $2^{n}-1$
- To invert a number d , one needs to flip the first bit.
- Two representations of zero (000 and 100 for $\mathrm{n}=2$).
- „Adjacent numbers" are at distance 1 in terms of absolute value.

$\left(2^{\mathrm{n}}-1\right)$ complement $=$ One's complement

2. Approach: Representation via ($2^{\mathrm{n}}-1$) complement. The most-significant digit d_{n} again determines whether it is a positive or a negative number.
But now $\mathrm{d}_{\mathrm{n}} \cdot\left(2^{\mathrm{n}}-1\right)$ is subtracted: $\left[\mathrm{d}_{\mathrm{n}} \mathrm{d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{0}\right]_{1}:=\left\langle\mathrm{d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{0}\right\rangle-\mathrm{d}_{\mathrm{n}} \cdot\left(2^{\mathrm{n}}-1\right)$

$$
=\left(\sum_{\mathrm{i}=0, \ldots, \mathrm{n}-1} \mathrm{~d}_{\mathrm{i}} \cdot 2^{\mathrm{i}}\right)-\mathrm{d}_{\mathrm{n}} \cdot\left(2^{\mathrm{n}}-1\right) .
$$

d	000	001	010	011	100	101	110	111
$[\mathrm{~d}]_{1}$	0	1	2	3	-3	-2	-1	0

One's complement

$$
\left[\mathrm{d}_{\mathrm{n}} \mathrm{~d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{0}\right]_{1}:=\left(\sum_{\mathrm{i}=0, \ldots, \mathrm{n}-1} \mathrm{~d}_{\mathrm{i}} \cdot 2^{\mathrm{i}}\right)-\mathrm{d}_{\mathrm{n}} \cdot\left(2^{\mathrm{n}}-1\right)
$$

d	000	001	010	011	100	101	110	111
$[\mathrm{~d}]_{1}$	0	1	2	3	-3	-2	-1	0

Properties:

- The number range is symmetric:
- Smallest number: $-\left(2^{n}-1\right)$
- Largest number: 2^{n-1}
- To invert a number d , one needs to flip all bits.
- Two representations of zero (000 and 111 for $\mathrm{n}=2$).
- „Adjacent numbers" are at distance 1 in terms of absolute value.

2^{n} complement $=$ Two's complement

3. Approach: Representation via 2^{n} complement. The most-significant digit d_{n} again determines whether it is a positive or a negative number.
But now $\mathrm{d}_{\mathrm{n}} \cdot 2^{\mathrm{n}}$ is subtracted: $\left[\mathrm{d}_{\mathrm{n}} \mathrm{d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{0}\right]_{2}:=\left\langle\mathrm{d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{0}\right\rangle-\mathrm{d}_{\mathrm{n}} \cdot 2^{\mathrm{n}}$

$$
=\left(\sum_{\mathrm{i}=0, \ldots, \mathrm{n}-1} \mathrm{~d}_{\mathrm{i}} \cdot 2^{\mathrm{i}}\right)-\mathrm{d}_{\mathrm{n}} \cdot 2^{\mathrm{n}} .
$$

d	000	001	010	011	100	101	110	111
$[\mathrm{~d}]_{2}$	0	1	2	3	-4	-3	-2	-1

Two's complement

$\left[\mathrm{d}_{\mathrm{n}} \mathrm{d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{0}\right]_{2}:=\left(\sum_{\mathrm{i}=0, \ldots, \mathrm{n}-1} \mathrm{~d}_{\mathrm{i}} \cdot 2^{\mathrm{i}}\right)-\mathrm{d}_{\mathrm{n}} \cdot 2^{\mathrm{n}}$								
d	000	001	010	011	100	101	110	111
dd_{2}	0	1	2	3	-4	-3	-2	-1

Properties:

- The number range is asymmetric:
- Smallest number: -2^{n}
- Largest number: $2^{n}-1$
- Let d be arbitrary and d^{\prime} be obtained by flipping all digits of d .

Then we have $\left[d^{\prime}\right]_{2}+1=-[d]_{2}$.

- The number representation is unique.
- „Adjacent numbers" are at distance 1 in terms of absolute value.

Two's complement

Main advantage of two's complement: Can use arithmetic circuits for additions of natural numbers also for integers.
$(\rightarrow$ more details later)

4. Representing rational numbers

1. Approach: Fixed-point numbers.

- Interpret first part of the digit sequence as integral part and the rest as decimal places.
- Assume we have $n+1$ integral and k decimal places.
- Then the value $\langle d\rangle$ of a non-negative fixed-pointer number

$$
\mathrm{d}=\mathrm{d}_{\mathrm{n}} \mathrm{~d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{1} \mathrm{~d}_{0}, \mathrm{~d}_{-1}, \ldots, \mathrm{~d}_{-\mathrm{k}}
$$

is given by

$$
<d>=<d_{n} d_{n-1} \ldots d_{1} d_{0}, d_{-1}, \ldots, d_{-k}>=\sum_{i=-k}^{n} b^{i} \cdot \delta\left(d_{i}\right)
$$

Negative fixed-point numbers: Two's complement

Extension of two's complement to fixed-point numbers:

$$
\left[\mathrm{d}_{\mathrm{n}} \mathrm{~d}_{\mathrm{n}-1} \ldots \mathrm{~d}_{0}, \mathrm{~d}_{-1} \ldots \mathrm{~d}_{-\mathrm{k}}\right]_{2}:=\left(\sum_{\mathrm{i}=\mathrm{k}, \ldots, \mathrm{n}-1} \mathrm{~d}_{\mathrm{i}} \cdot 2^{\mathrm{i}}\right)-\mathrm{d}_{\mathrm{n}} \cdot 2^{\mathrm{n}}
$$

Problems with fixed-point numbers

Consider the set of numbers that have a two's complement representation with n integral and k decimal places.

- Cannot represent very large nor very small numbers!
- Largest numbers in terms of absolute value: - 2^{n} and $2^{\mathrm{n}}-2^{-\mathrm{k}}$
- Smallest non-zero numbers in terms of absolute value: -2^{-k} and 2^{-k}
- Representation is not closed under addition/substraction!
$-2^{\mathrm{n}-1}+2^{\mathrm{n}-1}$ is not representable even though the operands are representable \rightarrow Overflow

4. Representing rational numbers

2. Approach: Floating-point numbers.

Position of the decimal point is not fixed, it is "floating".
Covering a larger number range using the same number of digits.
Single precision floating-point numbers: $\left.(-1)^{\mathrm{S}} \cdot<\mathrm{M}>\cdot 2^{[\mathrm{E}}\right]$

31	3029282726252423	222019	\ldots	3210
S	Exponent E	Mantissa M		

Double precision floating-point numbers: $(-1)^{\mathrm{S}} \cdot\langle\mathrm{M}\rangle \cdot 2^{[\mathrm{E}]}$

63	626160	\ldots	545352	515049	\ldots	3210
S	Exponent E		Mantissa M			

It remains to define how the mantissa and exponent bits are interpreted. This is e.g. captured by the IEEE 754 standard.

Advantages of floating-point numbers

Distribution of fixed-point numbers:

Distribution of floating-point numbers:

- In the fixed-point representation the distance between adjacent numbers is the same everywhere.
- In the floating-point representation the relative difference between adjacent numbers is kept small.

Problems with floating-point numbers

- Associativity does not hold:

$$
\varepsilon+(1+(-1)) \neq(\varepsilon+1)+(-1)
$$

small number

- Distributivity holds neither

