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Roadmap: Computer architecture

1. Combinatorial circuits: Boolean 
Algebra/Functions/Expressions/Synthesis

2. Number representations
3. Arithmetic Circuits: 

Addition, Multiplication, Division, ALU

4. Sequential circuits: Flip-Flops, Registers, 
SRAM, Moore and Mealy automata

5. Verilog

6. Instruction Set Architecture
7. Microarchitecture

8. Performance: RISC vs. CISC, Pipelining, 
Memory Hierarchy
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Outlook: Arithmetic circuits
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a = an-1...a0

b = bn-1...b0
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Internally, computers represent numbers by 
binary strings of some fixed length n bits.

Questions:
1. How many different numbers can be 

represented?
2. How to represent natural numbers?
3. How to represent integers? 

Challenge: negative numbers
4. How to represent rational numbers?
5. How to represent very large

and very small numbers?

Challenge: Number representations

fixed-point numbers

floating-point numbers
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For n bits and b (typically b=2) different numerals
in each position,

• there are bn distinct strings, and so

• at most bn distinct numbers can be represented, 
e.g. 0, ..., bn-1 or –bn-1, ..., bn-1-1

1. How many different numbers can be 
represented?
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Examples of numeral systems

Examples:

• Binary numeral system
b=2, Z = {0,1}

• Decimal numeral system
b=10, Z = {0,1,2,3,4,5,6,7,8,9}

• Hexadecimal numeral system:
b=16 Z = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

Number representations System Architecture, Jan Reineke 6



Definition (Positional numeral system):

A positional numeral system is a triple S = (b, Z, d) with 
the following properties:

• b ∊ ℕ is a natural number, the basis.
• Z is a set of symbols of size b, the numerals (or digits).

• d : Z ® {0, 1, ..., b-1} is a bijective mapping that 
associates each numeral with a natural number 
between 0 and b-1.

Numeral systems formally
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Which natural number <d> is represented the sequence 
d = dndn-1...d1d0

of numerals from a positional numeral system (b, Z, d)?

2. Representation of natural numbers

Examples: 
Let d = 0110
• b = 2, <d> =
• b = 10, <d> = 
• b = 16,     <d> = 

In general: < d >=< dndn−1...d1d0 >= bi ⋅δ(di )
i=0

n

∑
8



For b = 2 and n = 2 we thus have:

Binary numbers

d 000 001 010 011 100 101 110 111

<d> 0 1 2 3 4 5 6 7

Properties:
• Smallest representable number: 0
• Largest representable number:  2n+1-1
• „Adjacent numbers“ are at distance 1.
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Goals:

1. Want to cover large number space:
→ aim for unique number representation

2. Would like to reuse arithmetic circuits for 
natural numbers

3. Representing integers, 
in particular negative numbers
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Signed magnitude representation

d 000 001 010 011 100 101 110 111

[d]SM 0 1 2 3 0 -1 -2 -3

1. Approach: Signed magnitude representation.

The most significant digit dn determines 
the sign of the number:

[dndn-1...d0]SM := (-1)dn×<dn-1...d0>
= (-1)dn×Si=0,...,n-1 di×2i.
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[dndn-1...d0]SM := (-1)dn×Si=0,...,n-1 di×2i

Signed magnitude representation

d 000 001 010 011 100 101 110 111

[d]SM 0 1 2 3 0 -1 -2 -3

Properties:
• The number range is symmetric:

• Smallest number: -(2n-1)
• Largest number: 2n-1

• To invert a number d, one needs to flip the first bit.
• Two representations of zero (000 and 100 for n=2).
• „Adjacent numbers“ are at distance 1 in terms of absolute value.
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(2n-1) complement = One’s complement

2. Approach: Representation via (2n-1) complement.
The most-significant digit dn again determines whether it 
is a positive or a negative number.
But now dn× (2n-1) is subtracted:
[dndn-1...d0]1 := <dn-1...d0>-dn× (2n-1)

= (Si=0,...,n-1 di×2i) - dn× (2n-1).

d 000 001 010 011 100 101 110 111

[d]1 0 1 2 3 -3 -2 -1 0
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One’s complement

[dndn-1...d0]1 := (Si=0,...,n-1 di×2i) - dn× (2n-1)
d 000 001 010 011 100 101 110 111

[d]1 0 1 2 3 -3 -2 -1 0

Properties:
• The number range is symmetric:

• Smallest number: -(2n-1)
• Largest number: 2n-1

• To invert a number d, one needs to flip all bits.
• Two representations of zero (000 and 111 for n=2).
• „Adjacent numbers“ are at distance 1 in terms of absolute value.
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2n complement = Two’s complement

3. Approach: Representation via 2n complement.
The most-significant digit dn again determines whether it 
is a positive or a negative number.
But now dn× 2n is subtracted:
[dndn-1...d0]2 := <dn-1...d0>-dn× 2n

= (Si=0,...,n-1 di×2i) - dn× 2n.

d 000 001 010 011 100 101 110 111

[d]2 0 1 2 3 -4 -3 -2 -1
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Two’s complement

[dndn-1...d0]2 := (Si=0,...,n-1 di×2i) - dn× 2n

d 000 001 010 011 100 101 110 111

[d]2 0 1 2 3 -4 -3 -2 -1

Properties:
• The number range is asymmetric:

• Smallest number: -2n

• Largest number: 2n-1
• Let d be arbitrary and d‘ be obtained by flipping all digits of d. 

Then we have [d‘]2+1 = -[d]2.
• The number representation is unique.
• „Adjacent numbers“ are at distance 1 in terms of absolute value. 16



Main advantage of two’s complement:
Can use arithmetic circuits for additions of 
natural numbers also for integers. 

(® more details later)

Two’s complement
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4. Representing rational numbers

1. Approach: Fixed-point numbers.
• Interpret first part of the digit sequence as integral part and

the rest as decimal places.
• Assume we have n+1 integral and k decimal places.

• Then the value <d> of a non-negative fixed-pointer number

d = dndn-1...d1d0 , d-1, ..., d-k

is given by

< d >=< dndn−1...d1d0 ,d−1,...,d−k >= bi ⋅δ(di )
i=−k

n

∑
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Extension of two’s complement to 
fixed-point numbers:

Negative fixed-point numbers:
Two’s complement

[dndn-1...d0,d-1...d-k]2 := (Si=-k,...,n-1 di×2i) - dn× 2n
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Consider the set of numbers that have a two’s complement 
representation with n integral and k decimal places.

• Cannot represent very large nor very small numbers!
– Largest numbers in terms of absolute value: -2n and 2n-2-k

– Smallest non-zero numbers in terms of absolute value: -2-k and 2-k

• Representation is not closed under 
addition/substraction!
– 2n-1+2n-1 is not representable even though the operands 

are representable à Overflow

Problems with fixed-point numbers
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4. Representing rational numbers

Single precision floating-point numbers: (-1)S×<M>×2[E]

2. Approach: Floating-point numbers.
Position of the decimal point is not fixed, it is “floating”.

Covering a larger number range using the same number of digits.

31 30 29 28 27 26 25 24 23 22 21 20 19              ...                 3 2 1 0

S Exponent E Mantissa M

Double precision floating-point numbers: (-1)S×<M>×2[E]

63 62 61 60 ...    54 53 52 51 50 49                  ...                  3 2 1 0

S Exponent E Mantissa M

float

double

It remains to define how the mantissa and exponent bits are interpreted.
This is e.g. captured by the IEEE 754 standard. 21



Distribution of fixed-point numbers:

Distribution of floating-point numbers:

Advantages of floating-point numbers

• In the fixed-point representation the distance between
adjacent numbers is the same everywhere.

• In the floating-point representation the relative 
difference between adjacent numbers is kept small.

0

0

22



• Associativity does not hold:

• Distributivity holds neither

Problems with floating-point numbers

)1()1())1(1( -++¹-++ ee
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