Number representations

Becker/Molitor, Chapter 3.3 Harris/Harris, Chapter 1.4

Jan Reineke Universität des Saarlandes

System Architecture, Jan Reineke

Roadmap: Computer architecture

- 1. Combinatorial circuits: Boolean Algebra/Functions/Expressions/Synthesis
- 2. Number representations
- 3. Arithmetic Circuits: Addition, Multiplication, Division, ALU
- 4. Sequential circuits: Flip-Flops, Registers, SRAM, Moore and Mealy automata
- 5. Verilog
- 6. Instruction Set Architecture
- 7. Microarchitecture
- 8. Performance: RISC vs. CISC, Pipelining, Memory Hierarchy

Outlook: Arithmetic circuits

Challenge: Number representations

Internally, computers represent numbers by binary strings of some fixed length n bits.

Questions:

- 1. How many different numbers can be represented?
- 2. How to represent *natural numbers*?
- 3. How to represent *integers*? Challenge: negative numbers
- 4. How to represent *rational numbers*?
- 5. How to represent very large and very small numbers?

fixed-point numbers

floating-point numbers

1. How many different numbers can be represented?

For *n* bits and *b* (typically b=2) different numerals in each position,

- there are b^n distinct strings, and so
- at most bⁿ distinct numbers can be represented,
 e.g. 0, ..., bⁿ-1 or -bⁿ⁻¹, ..., bⁿ⁻¹-1

Examples of numeral systems

Examples:

• Binary numeral system $b=2, \qquad Z = \{0,1\}$

Decimal numeral system

 $b=10, \qquad Z = \{0,1,2,3,4,5,6,7,8,9\}$

• Hexadecimal numeral system: *b*=16 *Z* = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

Numeral systems formally

- Definition (Positional numeral system):
- A positional numeral system is a triple S = (b, Z, δ) with the following properties:
- $b \in \mathbb{N}$ is a natural number, the **basis**.
- Z is a set of symbols of size b, the numerals (or digits).
- $\delta: \mathbb{Z} \to \{0, 1, ..., b\text{-}1\}$ is a bijective mapping that associates each numeral with a natural number between 0 and b-1.

2. Representation of natural numbers

Which natural number <d> is represented the sequence $d = d_n d_{n-1} \dots d_1 d_0$

of numerals from a positional numeral system (b, Z, δ)?

Examples: Let d = 0110

- *b* = 10, *<d*> =
- *b* = 16, <*d*> =

In general: $\langle d \rangle = \langle d_n d_{n-1} \dots d_1 d_0 \rangle = \sum b^i \cdot \delta(d_i)$ i=()

Binary numbers

For b = 2 and n = 2 we thus have:

d	000	001	010	011	100	101	110	111
<d></d>	0	1	2	3	4	5	6	7

Properties:

- Smallest representable number: 0
- Largest representable number: 2^{n+1} -1
- "Adjacent numbers" are at distance 1.

3. Representing **integers**, in particular negative numbers

Goals:

- 1. Want to cover large number space: \rightarrow aim for *unique* number representation
- 2. Would like to reuse arithmetic circuits for *natural numbers*

Signed magnitude representation

1. Approach: Signed magnitude representation.

The most significant digit d_n determines the sign of the number:

 $[d_n d_{n-1} \dots d_0]_{SM} := (-1)^{d_n} \cdot \langle d_{n-1} \dots d_0 \rangle$ = (-1)^{d_n} \cdot \sum_{i=0,\dots,n-1} d_i \cdot 2^i.

d	000	001	010	011	100	101	110	111
[d] _{SM}	0	1	2	3	0	-1	-2	-3

Signed magnitude representation

$$\begin{bmatrix} d_n d_{n-1} \dots d_0 \end{bmatrix}_{SM} := (-1)^{d_n} \cdot \sum_{i=0,\dots,n-1} d_i \cdot 2^i$$

$$\frac{d}{[d]_{SM}} = 0 \quad 1 \quad 2 \quad 3 \quad 0 \quad -1 \quad -2 \quad -3$$

Properties:

- The number range is **symmetric**:
 - Smallest number: -(2ⁿ-1)
 - Largest number: 2^{*n*}-1
- To invert a number **d**, one needs to **flip the first bit**.
- Two representations of zero (000 and 100 for n=2).
- "Adjacent numbers" are at distance 1 in terms of absolute value.

(2ⁿ-1) complement = One's complement

2. Approach: Representation via (2ⁿ-1) complement. The most-significant digit d_n again determines whether it is a positive or a negative number. But now $d_n \cdot (2^n-1)$ is subtracted: $[d_n d_{n-1} \dots d_0]_1 := \langle d_{n-1} \dots d_0 \rangle \cdot d_n \cdot (2^n-1)$ $= (\sum_{i=0,\dots,n-1} d_i \cdot 2^i) \cdot d_n \cdot (2^n-1).$

d	000	001	010	011	100	101	110	111
$[d]_1$	0	1	2	3	-3	-2	-1	0

One's complement

$$\begin{bmatrix} d_n d_{n-1} \dots d_0 \end{bmatrix}_1 := \left(\sum_{i=0,\dots,n-1} d_i \cdot 2^i \right) - d_n \cdot (2^{n-1})$$

$$\frac{d \quad 000 \quad 001 \quad 010 \quad 011 \quad 100 \quad 101 \quad 110 \quad 111}{[d]_1 \quad 0 \quad 1 \quad 2 \quad 3 \quad -3 \quad -2 \quad -1 \quad 0}$$

Properties:

- The number range is **symmetric**:
 - Smallest number: -(2ⁿ-1)
 - Largest number: 2ⁿ-1
- To invert a number **d**, one needs to **flip all bits**.
- Two representations of zero (000 and 111 for n=2).
- "Adjacent numbers" are at distance 1 in terms of absolute value.

2ⁿ complement = Two's complement

3. Approach: Representation via 2^{n} complement. The most-significant digit d_{n} again determines whether it is a positive or a negative number. But now $d_{n} \cdot 2^{n}$ is subtracted: $[d_{n}d_{n-1}...d_{0}]_{2} := \langle d_{n-1}...d_{0} \rangle \cdot d_{n} \cdot 2^{n}$ $= (\sum_{i=0,...,n-1} d_{i} \cdot 2^{i}) \cdot d_{n} \cdot 2^{n}$.

d	000	001	010	011	100	101	110	111
$[d]_2$	0	1	2	3	-4	-3	-2	-1

Two's complement

Properties:

- The number range is **asymmetric**:
 - Smallest number: -2ⁿ
 - Largest number: 2ⁿ-1
- Let d be arbitrary and d' be obtained by flipping all digits of d. Then we have [d']₂+1 = -[d]₂.
- The number representation is **unique**.
- "Adjacent numbers" are at distance 1 in terms of absolute value.

Two's complement

Main advantage of two's complement: Can use arithmetic circuits for additions of natural numbers also for integers.

 $(\rightarrow \text{more details later})$

4. Representing rational numbers

- 1. Approach: Fixed-point numbers.
- Interpret first part of the digit sequence as integral part and the rest as decimal places.
- Assume we have n+1 integral and k decimal places.
- Then the value <d> of a non-negative fixed-pointer number d = d_nd_{n-1}...d₁d₀, d₋₁, ..., d_{-k} is given by

$$< d > = < d_n d_{n-1} \dots d_1 d_0, d_{-1}, \dots, d_{-k} > = \sum_{i=-k}^n b^i \cdot \delta(d_i)$$

Negative fixed-point numbers: Two's complement

Extension of two's complement to fixed-point numbers:

 $[d_n d_{n-1} ... d_0, d_{-1} ... d_{-k}]_2 := (\sum_{i=-k,...,n-1} d_i \cdot 2^i) - d_n \cdot 2^n$

Problems with fixed-point numbers

Consider the set of numbers that have a two's complement representation with n integral and k decimal places.

- Cannot represent very large nor very small numbers!
 - Largest numbers in terms of absolute value: -2ⁿ and 2ⁿ-2^{-k}
 - Smallest non-zero numbers in terms of absolute value: -2^{-k} and 2^{-k}
- Representation is not closed under addition/substraction!
 - $2^{n-1}+2^{n-1}$ is not representable even though the operands are representable \rightarrow Overflow

4. Representing rational numbers

2. Approach: Floating-point numbers.

Position of the decimal point is not fixed, it is "floating".

Covering a larger number range using the same number of digits.

Sing					
31	30 29 28 27 26 25 24 23	3 22 21 20 19	•••	3210	1 Joat
S	Exponent E	Mantissa M			tre
				[12]]]
Dοι	ible precision floati	ng-point num	bers: (-1) ^s ·<	$(M > \cdot 2^{[E]})$	
63	62 61 60 54 53 5	2 51 50 49	***	3210	1 alble
S	Exponent E	Mantissa M			doe

It remains to define how the mantissa and exponent bits are interpreted. This is e.g. captured by the IEEE 754 standard.

Advantages of floating-point numbers

- In the fixed-point representation the distance between adjacent numbers is **the same everywhere**.
- In the floating-point representation the relative difference between adjacent numbers is kept small.

Problems with floating-point numbers

• Associativity does not hold:

$$\mathcal{E} + (1 + (-1)) \neq (\mathcal{E} + 1) + (-1)$$

$$\uparrow$$
small number

• Distributivity holds neither