
Multi-level Logic:
Combinatorial Circuits

Becker/Molitor, Chapter 8.1

Jan Reineke
Universität des Saarlandes

System Architecture, Jan ReinekeCircuits 1

Wanted:
• Cheaper representations that need not be based on

Boolean polynomials
– There are Boolean functions whose best representations

via Boolean polynomials are very expensive…
• Practical implementation of these representations

Implementation of Boolean functions

Approach:
• Find implementations for simple Boolean functions
• Compose these to implement more complex functions
à leads to hierarchical models

Circuits System Architecture, Jan Reineke 2

Examples of simple Boolean functions...

0 0 0
0 1 1
1 0 1
1 1 0

XOR2

i1
i2

i1
i2

i1

i1
i2

i1
i2

i1
i2

NOT
0 1
1 0

0 0 0
0 1 0
1 0 0
1 1 1

AND2
0 0 0
0 1 1
1 0 1
1 1 1

OR2

0 0 1
0 1 1
1 0 1
1 1 0

NAND2
0 0 1
0 1 0
1 0 0
1 1 0

NOR2

ii2 i1 i2 i1

i2 i1 i2 i1 i2 i1

i1
i2

also:

Circuits 3

Short excursion: Transistors

• A transistor can be seen as a voltage-controlled switch:
– Gate g controls the conductivity between source and sink

• n-type transistor:
– transmits, if gate is 1
– disconnects, if gate is 0

• p-type transistor:
– transmits, if gate is 0
– disconnects, if gate is 1

4

p-type transistor n-type transistor

sink sink

sourcesource

• CMOS = Complementary Metal Oxide Semiconductor

• CMOS uses n-type as well as
“complementary” p-type transistors

Short excursion: MOS transistors

Circuits System Architecture, Jan Reineke 5

Short excursion: CMOS inverter (1/3)

p-type transistor

n-type transistor

[0 V, 5 V]

5 V = logical 1

0 V = logical 0

Circuits System Architecture, Jan Reineke 6

Short excursion: CMOS inverter (2/3)

p-type transistor

n-type transistor

5 V = logical 1

5 V = logical 1

0 V = logical 0

transmits

disconnects

0 V = logical 0

Circuits System Architecture, Jan Reineke 7

Short excursion: CMOS inverter (3/3)

p-type transistor

n-type transistor

0 V = logical 0

5 V = logical 1

0 V = logical 0

disconnects

transmits

5 V = logical 1

Circuits System Architecture, Jan Reineke 8

Short excursion: CMOS NAND

Output is 0 iff
there is a transmitting path from 0 to the output,
i.e., iff both n-type transistors transmit,
a = b = 1,
then NAND(a, b) = 0

Output is 1 iff
there is a transmitting path from 1 to the output,
i.e., iff one of the p-type transistors transmits,
a = 0 or b = 0,
then NAND(a, b) = 1

Circuits System Architecture, Jan Reineke 9

• In this way, implementations of all required
basic operations are designed.

These comprise the cells of a cell library.

• More complex functions:
“Composition” of these basic operations

Implementation of Boolean functions

Circuits System Architecture, Jan Reineke 10

Implementation of Boolean functions:
Example of a Boolean function f Î B8, 2

2. Which Boolean function is
computed by a given circuit?

• Concrete simulation
• Symbolic simulation

1. How to model circuits
mathematically?

Questions:

Syntax

Sem
antics

Circuits System Architecture, Jan Reineke 11

Intuitively:
A circuit is a directed graph with some
additional properties.

Modeling circuits

Circuits System Architecture, Jan Reineke 12

• A cell library BIB Í Bn contains basic operations
corresponding to basic gates

• A 5-tuple C = (Xn, G, type, IN, Ym) is called circuit
with n inputs and m outputs (for library BIB) iff
– Xn = (x1, ..., xn) is a finite sequence of inputs.

– G = (V, E) is a directed acyclic graph (DAG) with
{0, 1} ∪ {x1, ..., xn} Í V and E Í V x V.

– The set I = V \ ({0, 1} ∪ (x1, ..., xn)) is called the
set of gates.

Modeling circuits (1/3)

Circuits System Architecture, Jan Reineke 13

• The mapping type : I → BIB assigns a cell type
type(v) ∊ BIB to each gate v ∊ I.

• For each gate v ∊ I with type(v) ∊ Bk

we have indeg(v) = k.
For v ∊ V \ I = {0, 1} ∪ {x1, ..., xn} we have indeg(v) = 0.

Modeling circuits (2/3)

Circuits System Architecture, Jan Reineke 14

• The mapping IN : I → V* determines the order
of the incoming edges, i.e., if indeg(v) = k then
IN(v) = (v1, ..., vk) with ∀1≤i≤k: (vi, v) ∊ E.

• The sequence Yn = (y1, ..., yn) designates the
nodes yi ∊ V as the circuit’s outputs.

Modeling circuits (3/3)

Circuits System Architecture, Jan Reineke 15

Example circuit

x1 x2 x3 x4 x5 x6 x7 x8

y1 y2

g1 g2 g3

g4 g5 g6

g7 g8

= g7 = g8

Gates:
I = {g1, g2, g3, g4, g5, g6, g7, g8}

Inputs:
X = (x1, x2, x3, x4, x5, x6, x7, x8)

Outputs:
Y = (g7, g8)

Edges of the graph:
E = {(x1,g7), (x2,g1), (x3,g1), (x4,g2)

(x5,g2), (x6,g3), (x7,g3), (x8,g5),
(x8,g6), (g1,g4), (g2,g4), …}

Order of the incoming edges:
IN(g1)=(x2, x3)
IN(g4)=(g1, g2) ...

Types of gates:
type(g1) = type(g4) = XOR2

type(g2) = type(g6) = AND2 ... 16

• Let C = (Xn, G, typ, IN, Ym) be a circuit for the
cell library BIB.

• Let a = (a1, …, an) ∊ Bn be an input valuation.
• A valuation FC,a : V → {0, 1} for all nodes v ∊ V is given

via the following definitions:
– FC,a(xi) = ai ∀1£ i £ n
– FC,a(0) = 0, FC,a(1) = 1
– If v ∊ I with

type(v) = g ∊ Bk and IN(v) = (v1, …, vk),
then

FC,a(v) := g(FC,a(v1), …, FC,a(vk)).

Semantics of circuits (1/2)

Why is FC,a(v)
well-defined?

Because the underlying
graph G is acyclic!

• Then (FC,a(y1), …, FC,a(ym)) is the output valuation of
the circuit under the input valuation a = (a1, …, an).

• The computation of FC,a under the input valuation a
is called simulation of C under valuation a.

Semantics of circuits (2/2)

Circuits System Architecture, Jan Reineke 18

Example: Simulation

1 0 0 0 0 0 0 0

1 0

g1 g2 g3

g4 g5 g6

g7 g8

a =

0 0 0

0 0 0

Circuits System Architecture, Jan Reineke 19

Definition:
The function computed at a node v

y(v) : Bn → B
is defined as

y(v)(a) := FC,a(v)
for an arbitrary a ∊ Bn.

Which Boolean function does a
circuit compute?

Definition:
The function computed by circuit C is

fC := (y(y1), ..., y(ym))

Circuits System Architecture, Jan Reineke 20

• Symbolic simulation does not simulate a circuit for fixed
Boolean inputs. Rather it simulates the circuit on
Boolean variables.

• In this way it determines the Boolean expression
representing the Boolean function computed by a circuit

Symbolic simulation

Circuits System Architecture, Jan Reineke 21

Example: Symbolic simulation

x1 x2 x3 x4 x5 x6 x7 x8

x2⊗ x3 x4∧ x5 x6∨ x7

(x2 ⊗ x3) ⊗ (x4 ∧ x5)
x8’ ∧ x4 ∧ x5 x8 ∧ (x6∨ x7)

(x8’ ∧ x4 ∧ x5) ∨
(x8 ∧ (x6∨ x7))

x1 ∨ (x2 ⊗ x3) ⊗ (x4 ∧ x5)

Circuits System Architecture, Jan Reineke 22

What are reasonable measures of
(a) Cost and
(b) Speed

of circuits?

Brainstorming: Cost and Speed

x1 x2 x3 x4 x5 x6 x7 x8

y2y1

Circuits 23

Definition (Cost):

The hardware cost C(C) of a circuit C is its
number of gates|I| = |V \ ({0, 1} ∪ (x1, ..., xn))|.

Cost of circuits

Remark:
• Circuits are defined based on a cell library BIB
à Cost depends on the choice of the library.

• If not stated otherwise, in the following we will use the
standard library STD:
STD := {NOT, AND, OR, EXOR, NAND, NOR}

Circuits 24

Speed of a circuit

Definition (Depth):

The depth depth(C) of a circuit C is the maximal
number of gates on a path from an arbitrary
input xi to an arbitrary output yj of C.

Remark:
• Depth is only a reasonable indicators of a circuit’s

speed if the switching speed of each gate in the library
is approximately the same.

Circuits System Architecture, Jan Reineke 25

Example: Cost and depth of circuits

x1 x2 x3 x4 x5 x6 x7 x8

y2y1

Cost: 8

Depth: 3

Circuits System Architecture, Jan Reineke 26

In hierarchical circuits,
subcircuits are represented by symbols.

The corresponding (“flat”) circuit is obtained by
replacing the symbols by their defining subcircuits.

Hierarchical circuits

Circuits System Architecture, Jan Reineke 27

EXOR

EXOR

Example Hierarchical circuits

x1

x2

x3

EXOR

EXOR

x1

x2

x3Circuits 28

Every circuit computes a Boolean function.

Circuits vs Boolean functions

But can every Boolean function be computed by
a circuit?

Circuits System Architecture, Jan Reineke 29

Circuits vs Boolean functions

Theorem:

Let f Î Bn,m.

Then there is a circuit that computes f.

Lemma:

For every Boolean function fÎ Bn,1 there
is a Boolean expression that describes f.

Reminder:

Circuits System Architecture, Jan Reineke 30

Lemma:

For every Boolean expression e Î BE(Xn)
there is a circuit C = (Xn, G, typ, IN, Ym),
such that y(e) = fC.

Circuits vs Boolean expressions

Proof:
By induction over the structure of the Boolean expression.

Circuits System Architecture, Jan Reineke 31

Recapitulation: Boolean expressions

Circuits System Architecture, Jan Reineke 32

Definition:
The set BE(Xn) of fully parenthesized Boolean
expressions over Xn is the smallest subset of A*,
inductively defined as follows:
• The elements 0 and 1 are Boolean expressions
• The variables x1, ..., xn are Boolean expressions
• Let g and h be Boolean expressions. Then so is

their Disjunction (g + h),
their Conjunction (g × h),
and their Negation (~g).

Circuits vs Boolean functions

Proof:

Case 1: f Î Bn= Bn,1. $e Î BE(Xn), that computes f.

The theorem then directly follows from the previous lemma.

Case 2: f Î Bn,m, m ≥ 2.
Interpret f : Bn,m = Bn ® Bm as a sequence of functions (f1, ..., fm) with fi : Bn® B.

Construct a circuit for each fi.

Compose the circuits (see the following illustration).
Circuits 33

Theorem:

Let f Î Bn,m.

Then there is a circuit that computes f.

Construction of a circuit for a Boolean
function from Bn,m.

....

x1 x2 ... xn

... ...

f1 fmf2 ...

C1 C2 Cm

Circuits System Architecture, Jan Reineke 34

Given:
Function exor16 ∊ B16 with

Example: Generalized EXOR

= 1 if number of xi with xi = 1 is odd

Wanted:
Circuit implementation for exor16.

Assumption: exor2 is an element of our cell library.
Observations:
1. exor16 can be constructed from several ⊗ = exor2.
2. ⊗ is an associative operation!

𝑒𝑥𝑜𝑟!" 𝑥!, … , 𝑥!" =)
#$!

!"

𝑥# mod2

Circuits System Architecture, Jan Reineke 35

Circuits System Architecture, Jan Reineke 36

Generalized EXOR

Implementation of exor4:

Depth: 3
Cost: 3

x1 x2 x3 x4

Can we do better?

Idea: Make use of associativity:
𝑥1⊗ 𝑥2 ⊗ 𝑥3 ⊗ 𝑥4 = ((𝑥1⊗ 𝑥2) ⊗ (𝑥3⊗𝑥4))

(((𝑥1⊗ 𝑥2) ⊗ 𝑥3) ⊗ 𝑥4)

Circuits System Architecture, Jan Reineke 37

Generalized EXOR

Better implementation of exor4:

Depth: 2
Cost: 3

x1 x2 x3 x4

((𝑥1⊗ 𝑥2) ⊗ (𝑥3⊗𝑥4))

Circuits System Architecture, Jan Reineke 38

Generalized EXOR

Better implementation of exor8:

(((𝑥1⊗ 𝑥2) ⊗ (𝑥3⊗𝑥4)) ⊗ (((𝑥5⊗ 𝑥6) ⊗ (𝑥7⊗𝑥8))

x1 x2 x3 x4 x5 x6 x7 x8

Depth: 3
Cost: 7

Better implementation of exor16:

Generalized EXOR

x1x2 x3 x4 x5x6 x7x8 x9x10 x11x12 x13x14 x15x16

Depth: 4
Cost: 15

How do cost and depth depend on n for exorn?
Circuits 39

Implementation of exor2n:

Recursive construction of
generalized EXOR

depth(exor2n) = depth(exorn)+1
depth(exor1) = 0

Circuits 40

x1 … xn xn+1 … x2n

C(exor2n) = 2·C(exorn)+1
C(exor1) = 0

→ depth(exorn) = log2 n

→ C(exorn) = n-1

Exorn

… …

Exorn

Lemma:

The function x1 ◦ x2 … ◦ xn can be implemented
using ◦ gates with 2 inputs in a circuit of
depth élog2 nù.

Efficient implementation of
arbitrary associative operations

Proof by induction over n.

Circuits 41

Question: How large is the smallest Boolean
polynomial of exor16?

Two-level normal form of EXOR16

Question: How large it the smallest Boolean
polynomial for exorn?

Answer: 215 monomials with 16 literals each!

Answer : 2n-1 monomials with n literals each!

Exponentially higher cost than
the multi-level implementation!

Circuits 42

Define the cost C(E) of a Boolean expression E to
be the number of operations in the expression.

Cost of the implementation of
Boolean expressions via circuits

Circuits System Architecture, Jan Reineke 46

Reusing subcircuits can sometimes help reduce
the cost.

Theorem:

For every Boolean expression e Î BE(Xn)
there is a circuit C = (Xn, G, typ, IN, Ym),
such that y(e) = fC and C(C) ≤ C(E).

Follows from proof of earlier lemma.

Cost of the implementation of
Boolean functions via circuits

Proof sketch:
(Cost:) A function f Î Bn has at most 2n minterms.
Every minterm can be implemented using 2n-1 gates.
The disjunction of all minterms can be implemented using
at most 2n-1 gates.

(Depth:) Every minterm can be implemented in depth élog2 nù+1.
The disjunction can be implemented in depth n (= log2 2n).

Theorem:

For every f Î Bn there is a circuit C implementing f,
s.t. C(C) ≤ n2n+1-1 and depth(C) ≤ n+élog2 nù+1.

47

Optimal Boolean polynomials can be much
larger than corresponding multi-level circuits:
exponential differences are possible!

Summary

Circuits System Architecture, Jan Reineke 49

Circuits implement arbitrary
Boolean functions from Bn,m.

There are algorithms to compute
optimal multi-level circuits
• harder than computing minimal polynomials

• mostly heuristics, i.e., not guaranteed to be optimal

• not covered in this course
• Here: Circuits for special functions,

in particular arithmetic

Outlook

Circuits System Architecture, Jan Reineke 50

