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Wanted:
• Cheaper representations that need not be based on 

Boolean polynomials
– There are Boolean functions whose best representations 

via Boolean polynomials are very expensive…
• Practical implementation of these representations

Implementation of Boolean functions

Approach:
• Find implementations for simple Boolean functions
• Compose these to implement more complex functions
à leads to hierarchical models
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Examples of simple Boolean functions...
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0 1 1
1 0 1
1 1 0
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i1
i2

i1
i2

i1

i1
i2

i1
i2

i1
i2

NOT
0 1
1 0

0 0 0
0 1 0
1 0 0
1 1 1

AND2
0 0 0
0 1 1
1 0 1
1 1 1

OR2
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NAND2
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1 0 0
1 1 0

NOR2
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also:
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Short excursion: Transistors

• A transistor can be seen as a voltage-controlled switch:
– Gate g controls the conductivity between source and sink

• n-type transistor:
– transmits, if gate is 1
– disconnects, if gate is 0

• p-type transistor:
– transmits, if gate is 0
– disconnects, if gate is 1

4

p-type transistor n-type transistor

sink sink

sourcesource



• CMOS = Complementary Metal Oxide Semiconductor

• CMOS uses n-type as well as 
“complementary” p-type transistors

Short excursion: MOS transistors
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Short excursion: CMOS inverter (1/3)

p-type transistor

n-type transistor

[0 V, 5 V]

5 V = logical 1

0 V = logical 0
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Short excursion: CMOS inverter (2/3)

p-type transistor

n-type transistor

5 V = logical 1

5 V = logical 1

0 V = logical 0

transmits

disconnects

0 V = logical 0
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Short excursion: CMOS inverter (3/3)

p-type transistor

n-type transistor

0 V = logical 0

5 V = logical 1

0 V = logical 0

disconnects

transmits

5 V = logical 1
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Short excursion: CMOS NAND

Output is 0 iff
there is a transmitting path from 0 to the output,
i.e., iff both n-type transistors transmit,
a = b = 1, 
then NAND(a, b) = 0

Output is 1 iff
there is a transmitting path from 1 to the output,
i.e., iff one of the p-type transistors transmits,
a = 0 or b = 0, 
then NAND(a, b) = 1
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• In this way, implementations of all required  
basic operations are designed.

These comprise the cells of a cell library.

• More complex functions: 
“Composition” of these basic operations

Implementation of Boolean functions
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Implementation of Boolean functions:
Example of a Boolean function f Î B8, 2

2. Which Boolean function is
computed by a given circuit?

• Concrete simulation
• Symbolic simulation

1. How to model circuits
mathematically?

Questions:

Syntax

Sem
antics
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Intuitively:
A circuit is a directed graph with some 
additional properties.

Modeling circuits
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• A cell library BIB Í Bn contains basic operations 
corresponding to basic gates

• A 5-tuple C = (Xn, G, type, IN, Ym) is called circuit
with n inputs and m outputs (for library BIB) iff
– Xn = (x1, ..., xn) is a finite sequence of inputs.

– G = (V, E) is a directed acyclic graph (DAG) with 
{0, 1} ∪ {x1, ..., xn} Í V and E Í V x V.

– The set I = V \ ({0, 1} ∪ (x1, ..., xn)) is called the 
set of gates. 

Modeling circuits (1/3)

Circuits System Architecture, Jan Reineke 13



• The mapping type : I → BIB assigns a cell type 
type(v) ∊ BIB to each gate v ∊ I.

• For each gate v ∊ I with type(v) ∊ Bk

we have indeg(v) = k.
For v ∊ V \ I = {0, 1} ∪ {x1, ..., xn} we have indeg(v) = 0.

Modeling circuits (2/3)
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• The mapping IN : I → V* determines the order 
of the incoming edges, i.e., if indeg(v) = k then 
IN(v) = (v1, ..., vk) with ∀1≤i≤k: (vi, v) ∊ E.

• The sequence Yn = (y1, ..., yn) designates the
nodes yi ∊ V as the circuit’s outputs.

Modeling circuits (3/3)
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Example circuit

x1 x2 x3 x4 x5 x6 x7 x8

y1 y2

g1 g2 g3

g4 g5 g6

g7 g8

= g7 = g8

Gates:
I = {g1, g2, g3, g4, g5, g6, g7, g8}

Inputs:
X = (x1, x2, x3, x4, x5, x6, x7, x8)

Outputs:
Y = (g7, g8)

Edges of the graph:
E = {(x1,g7), (x2,g1), (x3,g1), (x4,g2)

(x5,g2), (x6,g3), (x7,g3), (x8,g5), 
(x8,g6), (g1,g4), (g2,g4), …}

Order of the incoming edges:
IN(g1)=(x2, x3)
IN(g4)=(g1, g2) ...

Types of gates:
type(g1) = type(g4) = XOR2

type(g2) = type(g6) = AND2 ... 16



• Let C = (Xn, G, typ, IN, Ym) be a circuit for the 
cell library BIB. 

• Let a = (a1, …, an) ∊ Bn be an input valuation.
• A valuation FC,a : V → {0, 1} for all nodes v ∊ V is given 

via the following definitions:
– FC,a(xi) = ai ∀1£ i £ n
– FC,a(0) = 0, FC,a(1) = 1
– If v ∊ I with 

type(v) = g ∊ Bk and IN(v) = (v1, …, vk), 
then

FC,a(v) := g(FC,a(v1), …, FC,a(vk)).

Semantics of circuits (1/2)

Why is FC,a(v) 
well-defined?

Because the underlying
graph G is acyclic!



• Then (FC,a(y1), …, FC,a(ym)) is the output valuation of 
the circuit under the input valuation a = (a1, …, an).

• The computation of FC,a under the input valuation a
is called simulation of C under valuation a.

Semantics of circuits (2/2)
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Example: Simulation

1 0 0 0 0 0 0 0

1 0

g1 g2 g3

g4 g5 g6

g7 g8

a =

0 0 0

0 0 0
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Definition:
The function computed at a node v

y(v) : Bn → B
is defined as

y(v)(a) := FC,a(v)
for an arbitrary a ∊ Bn.

Which Boolean function does a 
circuit compute?

Definition:
The function computed by circuit C is

fC := (y(y1), ..., y(ym))
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• Symbolic simulation does not simulate a circuit for fixed 
Boolean inputs. Rather it simulates the circuit on 
Boolean variables.

• In this way it determines the Boolean expression 
representing the Boolean function computed by a circuit

Symbolic simulation
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Example: Symbolic simulation

x1 x2 x3 x4 x5 x6 x7 x8

x2⊗ x3 x4∧ x5 x6∨ x7

(x2 ⊗ x3) ⊗ (x4 ∧ x5)
x8’ ∧ x4 ∧ x5 x8 ∧ (x6∨ x7)

(x8’ ∧ x4 ∧ x5) ∨
(x8 ∧ (x6∨ x7))

x1 ∨ (x2 ⊗ x3) ⊗ (x4 ∧ x5)
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What are reasonable measures of
(a) Cost and 
(b) Speed 

of circuits?

Brainstorming: Cost and Speed

x1 x2 x3 x4 x5 x6 x7 x8

y2y1
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Definition (Cost):

The hardware cost C(C) of a circuit C is its 
number of gates|I| = |V \ ({0, 1} ∪ (x1, ..., xn))|.

Cost of circuits

Remark:
• Circuits are defined based on a cell library BIB 
à Cost depends on the choice of the library.

• If not stated otherwise, in the following we will use the
standard library STD:
STD := {NOT, AND, OR, EXOR, NAND, NOR}
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Speed of a circuit

Definition (Depth):

The depth depth(C) of a circuit C is the maximal 
number of gates on a path from an arbitrary
input xi to an arbitrary output yj of C.

Remark:
• Depth is only a reasonable indicators of a circuit’s 

speed if the switching speed of each gate in the library 
is approximately the same.
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Example: Cost and depth of circuits

x1 x2 x3 x4 x5 x6 x7 x8

y2y1

Cost: 8

Depth: 3

Circuits System Architecture, Jan Reineke 26



In hierarchical circuits,
subcircuits are represented by symbols.

The corresponding (“flat”) circuit is obtained by 
replacing the symbols by their defining subcircuits.

Hierarchical circuits
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EXOR

EXOR

Example Hierarchical circuits

x1

x2

x3

EXOR

EXOR

x1

x2

x3Circuits 28



Every circuit computes a Boolean function.

Circuits vs Boolean functions

But can every Boolean function be computed by
a circuit?
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Circuits vs Boolean functions

Theorem:

Let f Î Bn,m.

Then there is a circuit that computes f.

Lemma:

For every Boolean function fÎ Bn,1 there
is a Boolean expression that describes f.

Reminder:
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Lemma:

For every Boolean expression e Î BE(Xn) 
there is a circuit C = (Xn, G, typ, IN, Ym),
such that y(e) = fC.

Circuits vs Boolean expressions

Proof:
By induction over the structure of the Boolean expression.
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Recapitulation: Boolean expressions
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Definition:
The set BE(Xn) of fully parenthesized Boolean 
expressions over Xn is the smallest subset of A*, 
inductively defined as follows:
• The elements 0 and 1 are Boolean expressions
• The variables x1, ..., xn are Boolean expressions
• Let g and h be Boolean expressions. Then so is

their Disjunction (g + h),
their Conjunction (g × h),
and their Negation (~g).



Circuits vs Boolean functions

Proof:

Case 1: f Î Bn= Bn,1. $e Î BE(Xn), that computes f.

The theorem then directly follows from the previous lemma.

Case 2: f Î Bn,m, m ≥ 2.
Interpret f : Bn,m = Bn ® Bm as a sequence of functions (f1, ..., fm) with fi : Bn® B.

Construct a circuit for each fi.

Compose the circuits (see the following illustration).
Circuits 33

Theorem:

Let f Î Bn,m.

Then there is a circuit that computes f.



Construction of a circuit for a Boolean 
function from Bn,m.

....

x1 x2 ...    xn

... ...

f1 fmf2 ...

C1 C2 Cm
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Given:
Function exor16 ∊ B16 with

Example: Generalized EXOR

= 1 if number of xi with xi = 1 is odd

Wanted:
Circuit implementation for exor16.

Assumption: exor2 is an element of our cell library.
Observations:
1. exor16 can be constructed from several ⊗ = exor2.
2. ⊗ is an associative operation!

𝑒𝑥𝑜𝑟!" 𝑥!, … , 𝑥!" = )
#$!

!"

𝑥# mod2
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Generalized EXOR

Implementation of exor4:

Depth: 3
Cost: 3

x1 x2     x3   x4  

Can we do better?

Idea: Make use of associativity:
𝑥1⊗ 𝑥2 ⊗ 𝑥3 ⊗ 𝑥4 = ((𝑥1⊗ 𝑥2) ⊗ (𝑥3⊗𝑥4))

(((𝑥1⊗ 𝑥2) ⊗ 𝑥3) ⊗ 𝑥4)
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Generalized EXOR

Better implementation of exor4:

Depth: 2
Cost: 3

x1 x2   x3 x4  

((𝑥1⊗ 𝑥2) ⊗ (𝑥3⊗𝑥4))
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Generalized EXOR

Better implementation of exor8:

(((𝑥1⊗ 𝑥2) ⊗ (𝑥3⊗𝑥4)) ⊗ (((𝑥5⊗ 𝑥6) ⊗ (𝑥7⊗𝑥8))

x1 x2   x3 x4  x5 x6   x7 x8  

Depth: 3
Cost: 7



Better implementation of exor16:

Generalized EXOR

x1x2     x3 x4      x5x6       x7x8              x9x10 x11x12  x13x14   x15x16

Depth: 4
Cost: 15

How do cost and depth depend on n for exorn?
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Implementation of exor2n:

Recursive construction of 
generalized EXOR

depth(exor2n) = depth(exorn)+1
depth(exor1) = 0
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x1 … xn xn+1 … x2n

C(exor2n) = 2·C(exorn)+1
C(exor1) = 0

→ depth(exorn) = log2 n

→ C(exorn) = n-1

Exorn

… …

Exorn



Lemma:

The function x1 ◦ x2 … ◦ xn can be implemented 
using ◦ gates with 2 inputs in a circuit of 
depth élog2 nù.

Efficient implementation of
arbitrary associative operations

Proof by induction over n.
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Question: How large is the smallest Boolean 
polynomial of exor16? 

Two-level normal form of EXOR16

Question: How large it the smallest Boolean 
polynomial for exorn? 

Answer: 215 monomials with 16 literals each!

Answer : 2n-1 monomials with n literals each!

Exponentially higher cost than
the multi-level implementation! 
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Define the cost C(E) of a Boolean expression E to 
be the number of operations in the expression.

Cost of the implementation of
Boolean expressions via circuits
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Reusing subcircuits can sometimes help reduce
the cost.

Theorem:

For every Boolean expression e Î BE(Xn) 
there is a circuit C = (Xn, G, typ, IN, Ym),
such that y(e) = fC and C(C) ≤ C(E).

Follows from proof of earlier lemma.



Cost of the implementation of 
Boolean functions via circuits

Proof sketch:
(Cost:) A function f Î Bn has at most 2n minterms.
Every minterm can be implemented using 2n-1 gates.
The disjunction of all minterms can be implemented using
at most 2n-1 gates.

(Depth:) Every minterm can be implemented in depth élog2 nù+1.
The disjunction can be implemented in depth n (= log2 2n).

Theorem:

For every f Î Bn there is a circuit C implementing f, 
s.t. C(C) ≤ n2n+1-1 and depth(C) ≤ n+élog2 nù+1.
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Optimal Boolean polynomials can be much 
larger than corresponding multi-level circuits:
exponential differences are possible!

Summary
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Circuits implement arbitrary
Boolean functions from Bn,m.



There are algorithms to compute 
optimal multi-level circuits
• harder than computing minimal polynomials

• mostly heuristics, i.e., not guaranteed to be optimal

• not covered in this course
• Here: Circuits for special functions, 

in particular arithmetic

Outlook
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