Multi-level Logic: Combinatorial Circuits

Becker/Molitor, Chapter 8.1

Jan Reineke Universität des Saarlandes

Implementation of Boolean functions

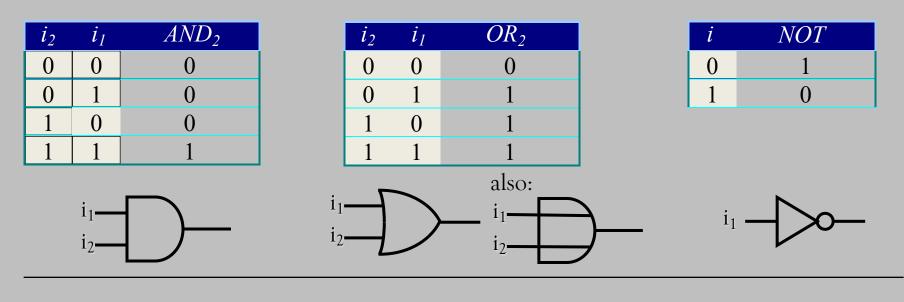
Wanted:

- Cheaper representations that need not be based on Boolean polynomials
 - There are Boolean functions whose best representations via Boolean polynomials are very expensive...
- Practical implementation of these representations

Approach:

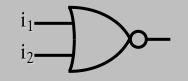
- Find implementations for simple Boolean functions
- Compose these to implement more complex functions
 → leads to hierarchical models

Examples of simple Boolean functions...

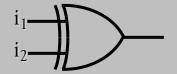


<i>i</i> ₂	i_{I}	$NAND_2$
0	0	1
0	1	1
1	0	1
1	1	0

<i>i</i> ₂	<i>i</i> 1	NOR_2
0	0	1
0	1	0
1	0	0
1	1	0

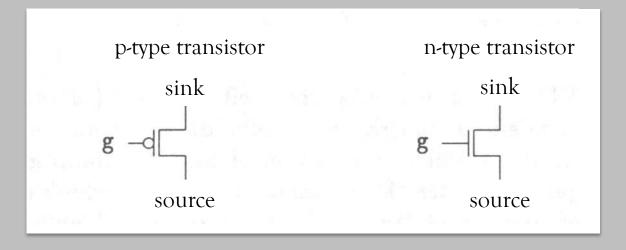


<i>i</i> ₂	i_1	XOR_2
0	0	0
0	1	1
1	0	1
1	1	0



Circuits

Short excursion: Transistors

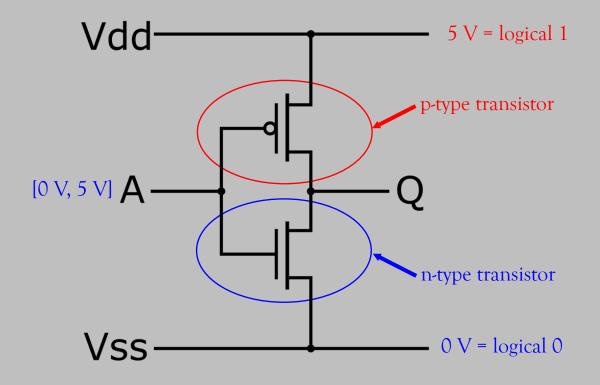


- A transistor can be seen as a voltage-controlled switch:
 - Gate g controls the conductivity between source and sink
- n-type transistor:
 - transmits, if gate is 1
 - disconnects, if gate is 0
- p-type transistor:
 - transmits, if gate is 0
 - disconnects, if gate is 1

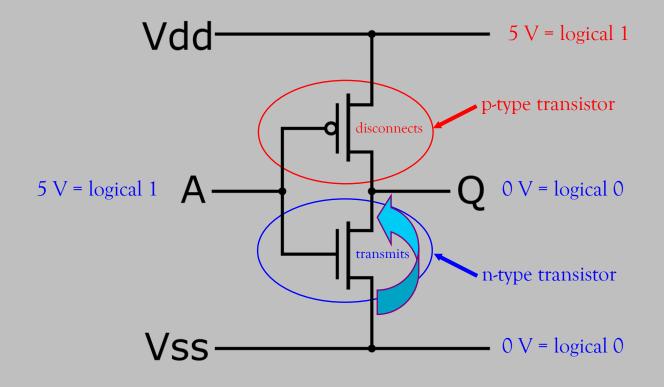
Short excursion: MOS transistors

- CMOS = Complementary Metal Oxide Semiconductor
- CMOS uses n-type as well as "complementary" p-type transistors

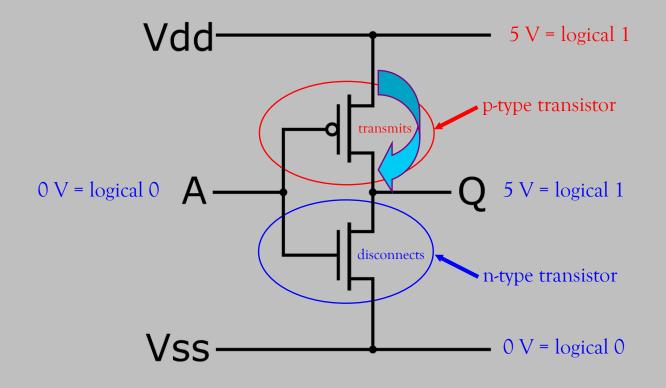
Short excursion: CMOS inverter (1/3)



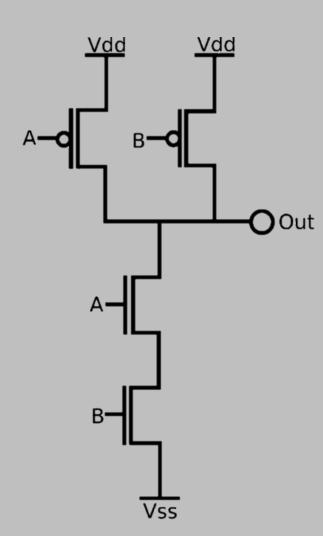
Short excursion: CMOS inverter (2/3)



Short excursion: CMOS inverter (3/3)



Short excursion: CMOS NAND



Output is 0 *iff* there is a transmitting path from 0 to the output, i.e., *iff* both n-type transistors transmit, a = b = 1, then NAND(a, b) = 0

Output is 1 iff

there is a transmitting path from 1 to the output, i.e., *iff* **one** of the p-type transistors transmits, a = 0 or b = 0, then NAND(a, b) = 1

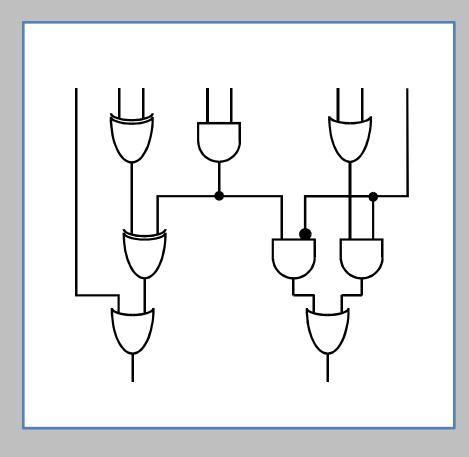
Implementation of Boolean functions

• In this way, implementations of all required **basic operations** are designed.

These comprise the cells of a **cell library**.

More complex functions:
 "Composition" of these basic operations

Implementation of Boolean functions: Example of a Boolean function $f \in \mathbf{B}_{8, 2}$



Questions:

- 1. How to model circuits mathematically?
- 2. Which Boolean function is computed by a given circuit?
- Concrete simulation
- Symbolic simulation

Syntax

Semantics

Modeling circuits

Intuitively:

A **circuit** is a **directed graph** with some additional properties.

Modeling circuits (1/3)

- A cell library $BIB \subseteq B_n$ contains basic operations corresponding to basic gates
- A 5-tuple C = $(X_n, G, type, IN, Y_m)$ is called **circuit** with **n** inputs and **m** outputs (for library BIB) *iff*

 $-X_n = (x_1, ..., x_n)$ is a finite sequence of inputs.

- G = (V, E) is a directed acyclic graph (DAG) with {0, 1} \cup {x₁, ..., x_n} \subseteq V and E \subseteq V x V.
- The set $I = V \setminus (\{0, 1\} \cup (x_1, ..., x_n))$ is called the set of gates.

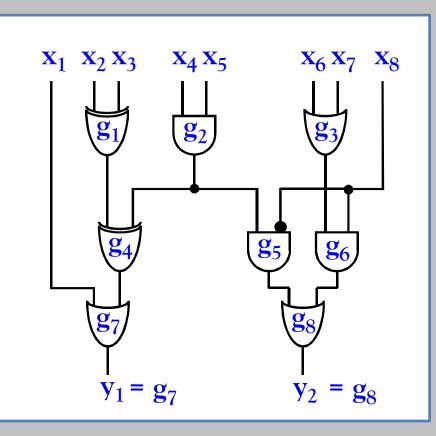
Modeling circuits (2/3)

- The mapping type : $I \rightarrow BIB$ assigns a cell type type(v) $\in BIB$ to each gate $v \in I$.
- For each gate $v \in I$ with $type(v) \in \mathbf{B}_k$ we have indeg(v) = k. For $v \in V \setminus I = \{0, 1\} \cup \{x_1, ..., x_n\}$ we have indeg(v) = 0.

Modeling circuits (3/3)

- The mapping IN : I → V* determines the order of the incoming edges, i.e., if indeg(v) = k then IN(v) = (v₁, ..., v_k) with ∀1≤i≤k: (v_i, v) ∈ E.
- The sequence $Y_n = (y_1, ..., y_n)$ designates the nodes $y_i \in V$ as the circuit's outputs.

Example circuit



Types of gates: $type(g_1) = type(g_4) = XOR_2$ $type(g_2) = type(g_6) = AND_2 \dots$

Inputs: $\chi = (x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)$ Outputs: $Y = (g_7, g_8)$ Gates: $I = \{g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8\}$ Edges of the graph: $E = \{(x_1, g_7), (x_2, g_1), (x_3, g_1), (x_4, g_2)\}$ $(x_5,g_2), (x_6,g_3), (x_7,g_3), (x_8,g_5),$ $(x_8,g_6), (g_1,g_4), (g_2,g_4), \ldots \}$

Order of the incoming edges: $IN(g_1)=(x_2, x_3)$ $IN(g_4)=(g_1, g_2) \dots$

Semantics of circuits (1/2)

- Let $C = (X_n, G, typ, IN, Y_m)$ be a circuit for the cell library BIB.
- Let $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbf{B}^n$ be an **input valuation**.
- A valuation $\Phi_{C,\alpha}: V \to \{0, 1\}$ for all nodes $v \in V$ is given via the following definitions:

$$-\Phi_{\mathrm{C},\alpha}(x_i) = \alpha_i \forall 1 \le i \le n$$

$$-\Phi_{C,\alpha}(0) = 0, \Phi_{C,\alpha}(1) = 1$$

- If $v \in I$ with

 $type(v) = g \in \mathbf{B}_k \text{ and } IN(v) = (v_1, ..., v_k),$

then

 $\Phi_{\mathrm{C},\alpha}(v) := \mathrm{g}(\Phi_{\mathrm{C},\alpha}(v_1), ..., \Phi_{\mathrm{C},\alpha}(v_k)).$

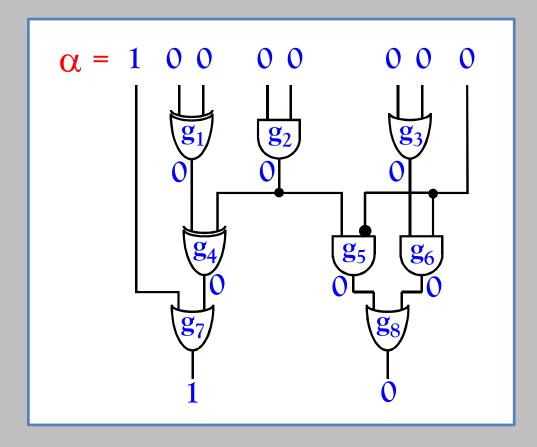
Why is $\Phi_{C,\alpha}(v)$ well-defined?

Because the underlying graph G is **acyclic**!

Semantics of circuits (2/2)

- Then $(\Phi_{C,\alpha}(y_1), ..., \Phi_{C,\alpha}(y_m))$ is the **output valuation** of the circuit under the **input valuation** $\alpha = (\alpha_1, ..., \alpha_n)$.
- The computation of $\Phi_{C,\alpha}$ under the input valuation α is called **simulation** of C under valuation α .

Example: Simulation



Which Boolean function does a circuit compute?

Definition: The function computed at a node v $\psi(v): B^n \to B$ is defined as $\psi(v)(\alpha) := \Phi_{C,\alpha}(v)$ for an arbitrary $\alpha \in B_n$.

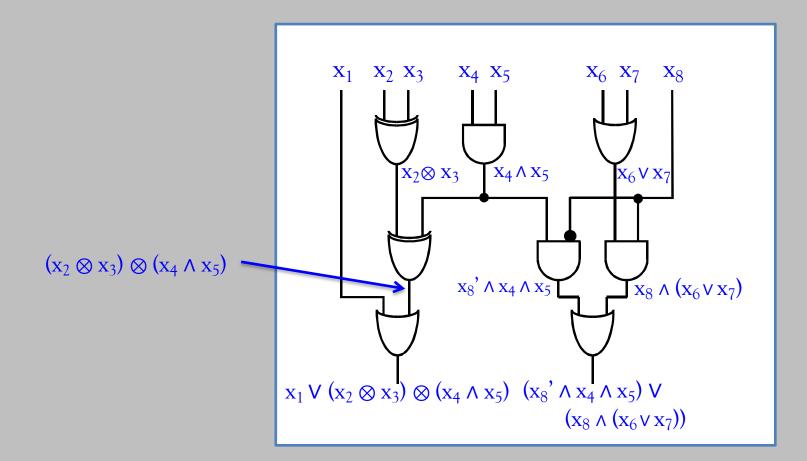
Definition:

The function computed by circuit C is $f_C := (\psi(y_1), ..., \psi(y_m))$

Symbolic simulation

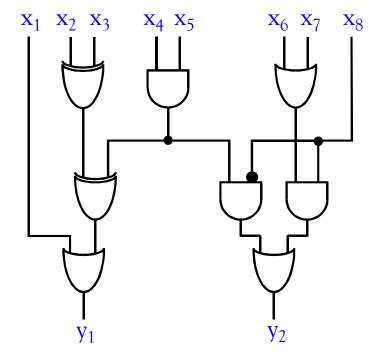
- Symbolic simulation does not simulate a circuit for fixed Boolean inputs. Rather it simulates the circuit on Boolean variables.
- In this way it determines the **Boolean expression** representing the **Boolean function** computed by a circuit

Example: Symbolic simulation



Brainstorming: Cost and Speed

What are reasonable measures of (a) Cost and (b) Speed of circuits?



Cost of circuits

Definition (Cost):

The hardware cost C(C) of a circuit C is its number of gates $|I| = |V \setminus (\{0, 1\} \cup (x_1, ..., x_n))|$.

Remark:

- Circuits are defined based on a cell library BIB
 → Cost depends on the choice of the library.
- If not stated otherwise, in the following we will use the standard library STD:

STD := {NOT, AND, OR, EXOR, NAND, NOR}

Speed of a circuit

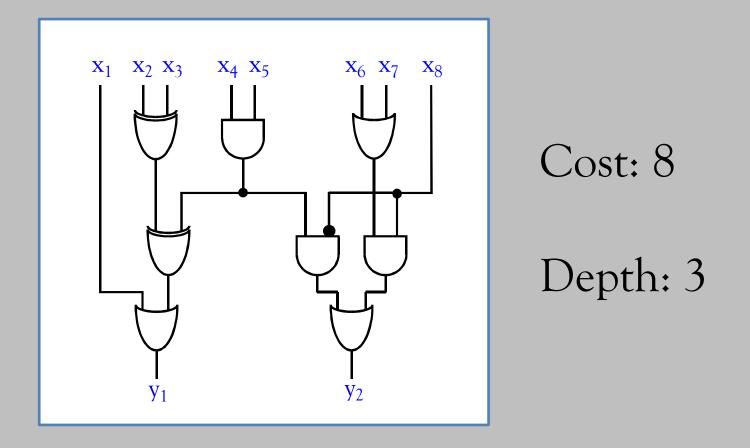
Definition (Depth):

The depth depth(C) of a circuit C is the maximal number of gates on a path from an arbitrary input x_i to an arbitrary output y_i of C.

Remark:

• Depth is only a reasonable indicators of a circuit's speed if the switching speed of each gate in the library is approximately the same.

Example: Cost and depth of circuits



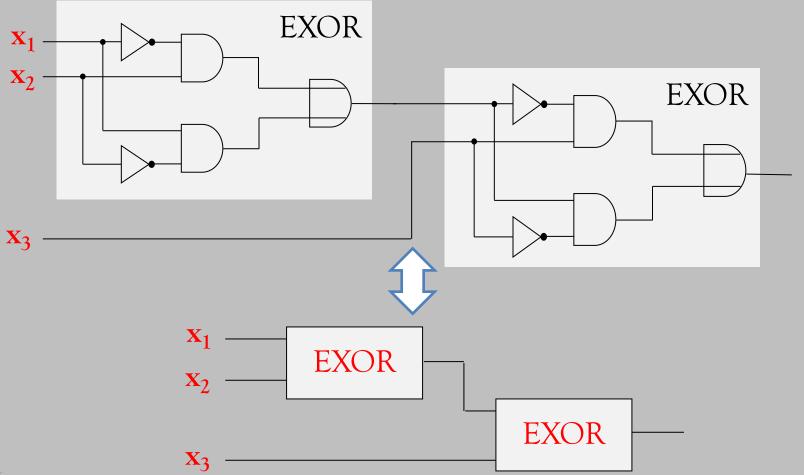
Hierarchical circuits

In hierarchical circuits,

subcircuits are represented by symbols.

The corresponding ("flat") circuit is obtained by replacing the symbols by their defining subcircuits.

Example Hierarchical circuits



Circuits vs Boolean functions

Every circuit computes a Boolean function.

But can **every** Boolean function be computed by a circuit?

Circuits vs Boolean functions

Theorem: Let $f \in B_{n,m}$. Then there is a circuit that computes f.

Reminder:

Lemma:

For every Boolean function $f \in B_{n,1}$ there is a Boolean expression that describes f.

Circuits vs Boolean expressions

Lemma:

For every Boolean expression $e \in BE(X_n)$ there is a circuit $C = (X_n, G, typ, IN, Y_m)$, such that $\psi(e) = f_C$.

Proof: By induction over the structure of the Boolean expression.

Recapitulation: Boolean expressions

Definition:

The set $BE(X_n)$ of fully parenthesized Boolean expressions over X_n is the smallest subset of A^* , inductively defined as follows:

- The elements 0 and 1 are Boolean expressions
- The variables $x_1, ..., x_n$ are Boolean expressions
- Let g and h be Boolean expressions. Then so is their Disjunction (g + h), their Conjunction (g · h), and their Negation (~g).

Circuits vs Boolean functions

Theorem:

Let $f \in B_{n,m}$.

Then there is a circuit that computes **f**.

Proof:

Case 1: $f \in B_n = B_{n,1}$. $\exists e \in BE(X_n)$, that computes f.

The theorem then directly follows from the previous lemma.

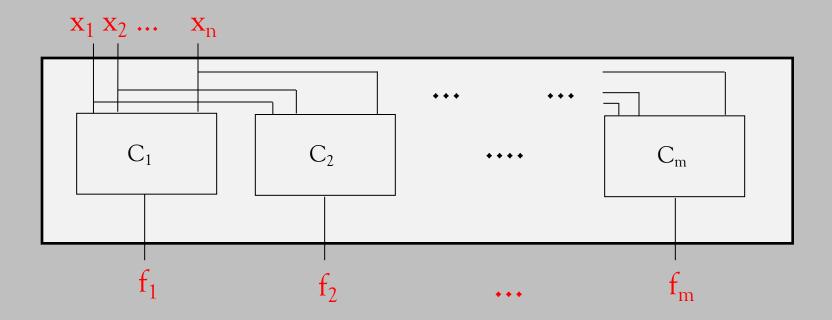
Case 2: $f \in B_{n,m}$, $m \ge 2$. Interpret $f : B_{n,m} = B^n \to B^m$ as a sequence of functions $(f_1, ..., f_m)$ with $f_i : B_n \to B$.

Construct a circuit for each f_i.

Compose the circuits (see the following illustration).

Circuits

Construction of a circuit for a Boolean function from $B_{n,m}$.



Example: Generalized EXOR

Given:

Function
$$\operatorname{exor}_{16} \in \mathbf{B}_{16}$$
 with
 $\operatorname{exor}_{16}(x_1, \dots, x_{16}) = \left(\sum_{i=1}^{16} x_i\right) \mod 2 = 1$ if number of x_i with $x_i = 1$ is odd

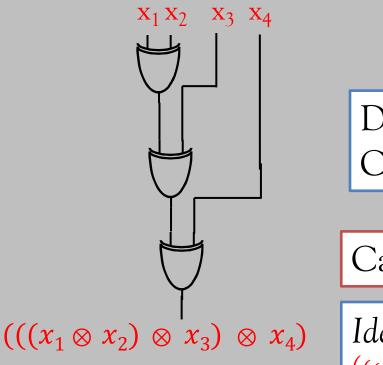
Wanted:

Circuit implementation for $exor_{16}$.

Assumption: exor₂ is an element of our cell library. Observations:

- 1. $exor_{16}$ can be constructed from several $\bigotimes = exor_2$.
- 2. \otimes is an associative operation!

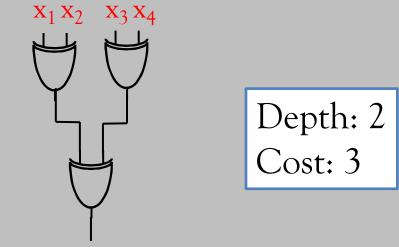
Implementation of exor₄:



Can we do better?

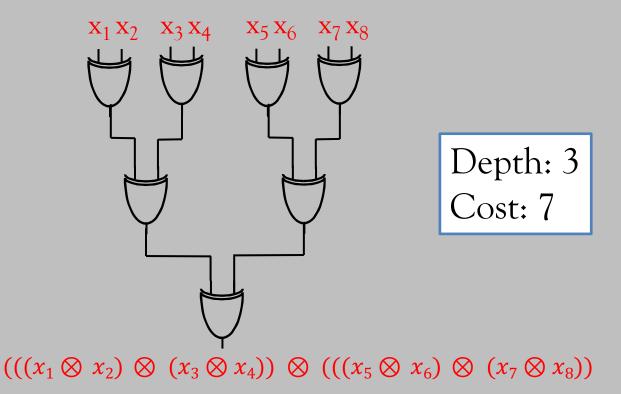
Idea: Make use of associativity: $((x_1 \otimes x_2) \otimes x_3) \otimes x_4) = ((x_1 \otimes x_2) \otimes (x_3 \otimes x_4))$

Better implementation of exor₄:

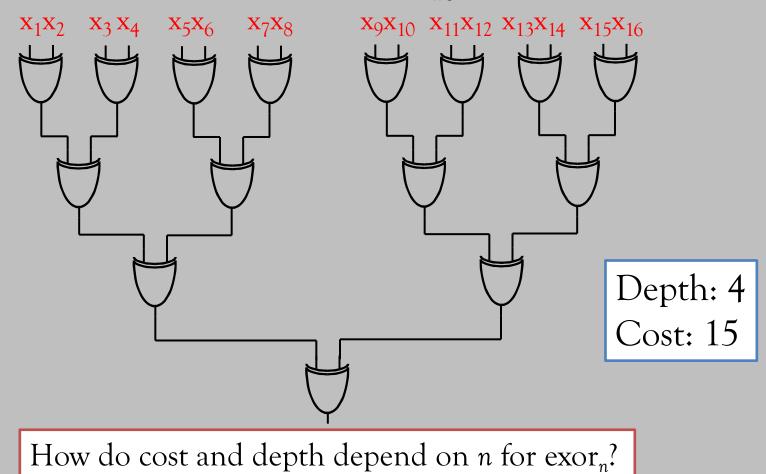


 $((x_1 \otimes x_2) \otimes (x_3 \otimes x_4))$

Better implementation of exor₈:

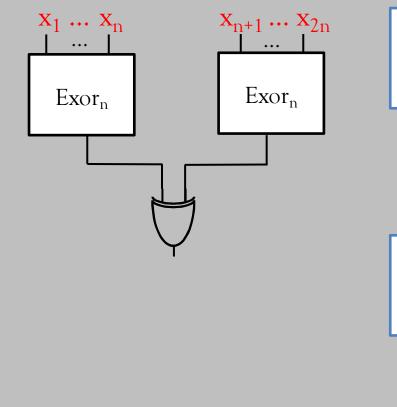


Better implementation of exor₁₆:



Recursive construction of generalized EXOR

Implementation of exor_{2n}:



$$depth(exor_{2n}) = depth(exor_{n})+1$$
$$depth(exor_{1}) = 0$$

$$\rightarrow$$
 depth(exor_n) = log₂ n

$$C(exor_{2n}) = 2 \cdot C(exor_n) + 1$$
$$C(exor_1) = 0$$

$$\rightarrow C(exor_n) = n-1$$

Efficient implementation of **arbitrary** associative operations

Lemma:

The function $x_1 \circ x_2 \dots \circ x_n$ can be implemented using \circ gates with 2 inputs in a circuit of depth $\lfloor \log_2 n \rfloor$.

Proof by induction over **n**.

Two-level normal form of $EXOR_{16}$

Question: How large is the smallest Boolean polynomial of $exor_{16}$?

Answer: 2¹⁵ monomials with 16 literals each!

Question: How large it the smallest Boolean polynomial for $exor_n$?

Answer: 2^{n-1} monomials with *n* literals each!

Exponentially higher cost than the multi-level implementation!

Cost of the implementation of Boolean expressions via circuits

Define the cost C(E) of a Boolean expression E to be the number of operations in the expression.

Theorem:

For every Boolean expression $e \in BE(X_n)$ there is a circuit $C = (X_n, G, typ, IN, Y_m)$, such that $\psi(e) = f_C$ and $C(C) \leq C(E)$.

Follows from proof of earlier lemma.

Reusing subcircuits can sometimes help reduce the cost.

Cost of the implementation of Boolean functions via circuits

Theorem:

For every $f \in \mathbf{B}_n$ there is a circuit C implementing f, s.t. $C(C) \le n2^{n+1}$ -1 and depth(C) $\le n+\lfloor \log_2 n \rfloor+1$.

Proof sketch:

(Cost:) A function $f \in B_n$ has at most 2^n minterms. Every minterm can be implemented using 2n-1 gates. The disjunction of all minterms can be implemented using at most 2^n -1 gates.

(Depth:) Every minterm can be implemented in depth $\lceil \log_2 n \rceil + 1$. The disjunction can be implemented in depth n (= $\log_2 2^n$).

Circuits *implement* arbitrary Boolean functions from $B_{n,m}$.

Optimal Boolean polynomials can be much larger than corresponding multi-level circuits: **exponential differences** are possible!

Outlook

There are **algorithms** to compute **optimal multi-level circuits**

- harder than computing minimal polynomials
- mostly heuristics, i.e., not guaranteed to be optimal
- not covered in this course
- *Here*: Circuits for special functions, in particular arithmetic