
(Two-level) Logic Synthesis
Quine/McCluskey algorithm

Becker/Molitor, Chapter 7.3

Jan Reineke
Universität des Saarlandes

System Architecture, Jan ReinekeQuine/McCluskey 1

1. Quine/McCluskey’s algorithm
to compute all prime implicants

2. Solution of the “covering problem”, i.e.,
selecting a subset of the prime implicants, such
that their disjunction is a polynomial for f that
has minimal cost.

Algorithm to compute a
minimal polynomial

Quine/McCluskey System Architecture, Jan Reineke 2

Quine’s algorithm

Quine-Prime-Implicants(f: Bn --> B)
begin

L0 := Minterm(f)
i := 1
Prime(f) := Æ
while (Li-1 ≠ Æ) and (i ≤ n)
loop
Li := {m | |m|=n-i, m×x and m×x' are in Li-1 for some x}

//Comment: Li contains all implicants of f of length n-i
Pi := {m | m Î Li-1 and m is not covered by any m' Î Li}
Prime(f) := Prime(f) È Pi

i:=i+1
pool
return Prime(f) È Li-1

end

Quine/McCluskey System Architecture, Jan Reineke 3

Compare only those monomials
• that contain the same variables, and
• whose number of positive literals differs by one.

Can be achieved as follows:
• Partition Li into classes Li

M with M Í {x1,...xn} and |M|=n-i.
Li

M contains the implicants of Li whose literals are M.
• Order the monomials in Li

M according to their number of
positive literals.

Improvement by McCluskey

Quine/McCluskey System Architecture, Jan Reineke 4

Quine-McCluskey algorithm: Example

L0
{x1,x2,x3,x4}:

0 0 0 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
1 0 1 0
1 1 0 0
0 1 1 1
1 1 0 1
1 1 1 0

0110

0100

0000

0010

1110

1100

1000

1010

0111

0101

0001

0011

1111

1101

1001

1011

Need to only compare monomials
from adjacent blocks!

stands for x1'x2'x3'x4'

stands for x1x2'x3'x4

Quine/McCluskey System Architecture, Jan Reineke 5

Quine-McCluskey algorithm: Example

0110

0100

0000

0010

1110

1100

1000

1010

0111

0101

0001

0011

1111

1101

1001

1011

L0
{x1,x2,x3,x4}:

0 0 0 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
1 0 1 0
1 1 0 0
0 1 1 1
1 1 0 1
1 1 1 0

L1
{x1,x2,x3}:

0 0 0 -

Quine/McCluskey System Architecture, Jan Reineke 6

Quine-McCluskey algorithm: Example

L1
{x1,x3,x4}:

0 - 0 0
0110

0100

0000

0010

1110

1100

1000

1010

0111

0101

0001

0011

1111

1101

1001

1011

L1
{x1,x2,x3}:

0 0 0 -
L0

{x1,x2,x3,x4}:

0 0 0 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
1 0 1 0
1 1 0 0
0 1 1 1
1 1 0 1
1 1 1 0

Quine/McCluskey System Architecture, Jan Reineke 7

Quine-McCluskey algorithm: Example

L1
{x1,x3,x4}:

0 - 0 0
0110

0100

0000

0010

1110

1100

1000

1010

0111

0101

0001

0011

1111

1101

1001

1011

L1
{x1,x2,x3}:

0 0 0 -

............

0 - 1 1

L0
{x1,x2,x3,x4}:

0 0 0 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
1 0 1 0
1 1 0 0
0 1 1 1
1 1 0 1
1 1 1 0

Quine/McCluskey System Architecture, Jan Reineke 8

Quine-McCluskey algorithm: Example

............

0 - 1 1

L1
{x1,x3,x4}:

0 - 0 0
0110

0100

0000

0010

1110

1100

1000

1010

0111

0101

0001

0011

1111

1101

1001

1011

L1
{x1,x2,x3}:

0 0 0 -

Cannot be simplified,
as they are not adjacent.

L0
{x1,x2,x3,x4}:

0 0 0 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
1 0 1 0
1 1 0 0
0 1 1 1
1 1 0 1
1 1 1 0

Quine/McCluskey System Architecture, Jan Reineke 9

Quine-McCluskey algorithm: Example
... some steps later

0110

0100

0000

0010

1110

1100

1000

1010

0111

0101

0001

0011

1111

1101

1001

1011

L1
{x1,x2,x4}:

0 0 - 1

1 0 - 0

0 1 - 1

1 1 - 0

L1
{x2,x3,x4}:

- 0 0 0

- 0 0 1

- 1 0 0

- 1 0 1

L1
{x1,x2,x3}:

0 0 0 -

0 1 0 -

1 0 0 -

1 1 0 -

L1
{x1,x3,x4}:

0 - 0 0

0 - 0 1

1 - 0 0

0 - 1 1

1 - 0 1

1 - 1 0

All minterms of f are covered by edges that are
implicants Þ Prime(f) = Æ.

Quine/McCluskey System Architecture, Jan Reineke 10

Quine-McCluskey algorithm: Example

0110

0100

0000

0010

1110

1100

1000

1010

0111

0101

0001

0011

1111

1101

1001

1011

L1
{x1,x2,x3}:

0 0 0 -

0 1 0 -

1 0 0 -

1 1 0 -

L1
{x1,x3,x4}:

0 - 0 0

0 - 0 1

1 - 0 0

0 - 1 1

1 - 0 1

1 - 1 0

All implicants from L1
{x1,x2,x4} are covered by surfaces

that are implicants Þ Prime(f) = Æ.

L1
{x1,x2,x4}:

0 0 - 1

1 0 - 0

0 1 - 1

1 1 - 0

L1
{x2,x3,x4}:

- 0 0 0

- 0 0 1

- 1 0 0

- 1 0 1

Quine/McCluskey System Architecture, Jan Reineke 11

Quine-McCluskey algorithm: Example

0110

0100

0000

0010

1110

1100

1000

1010

0111

0101

0001

0011

1111

1101

1001

1011

L1
{x1,x2,x4}:

0 0 - 1

1 0 - 0

0 1 - 1

1 1 - 0

L1
{x2,x3,x4}:

- 0 0 0

- 0 0 1

- 1 0 0

- 1 0 1

L1
{x1,x2,x3}:

0 0 0 -

0 1 0 -

1 0 0 -

1 1 0 -

L1
{x1,x3,x4}:

0 - 0 0

0 - 0 1

1 - 0 0

0 - 1 1

1 - 0 1

1 - 1 0

All implicants from L1
M are covered by surfaces

that are implicants Þ Prime(f) = Æ.

Quine/McCluskey System Architecture, Jan Reineke 12

Quine-McCluskey algorithm: Example

0110

0100

0000

0010

1110

1100

1000

1010

0111

0101

0001

0011

1111

1101

1001

1011

L2
{x1,x2}:

L2
{x1,x4}:

0 - - 1

1 - - 0

L2
{x2,x4}:

L2
{x1,x3}:

0 - 0 -

1 - 0 -

L2
{x2,x3}:

- 0 0 -

- 1 0 -

L2
{x3,x4}:

- - 0 0

- - 0 1

The marked 2D implicants are not part of
3D implicants.
So they are prime! Þ Prime(f) = {x1'x4 , x1 x4'}

Quine/McCluskey System Architecture, Jan Reineke 13

Quine-McCluskey algorithm: Example

The marked 2D implicants are covered by a 3D implicant.
So they are not prime! Þ Prime(f) = {x1'x4 , x1x4'}

0110

0100

0000

0010

1110

1100

1000

1010

0111

0101

0001

0011

1111

1101

1001

1011

L2
{x1,x2}:

L2
{x1,x4}:

0 - - 1

1 - - 0

L2
{x2,x4}:

L2
{x1,x3}:

0 - 0 -

1 - 0 -

L2
{x2,x3}:

- 0 0 -

- 1 0 -

L2
{x3,x4}:

- - 0 0

- - 0 1

Quine/McCluskey System Architecture, Jan Reineke 14

Quine-McCluskey algorithm: Example

0110

0100

0000

0010

1110

1100

1000

1010

0111

0101

0001

0011

1111

1101

1001

1011

L3
{x1}:

L3
{x3}:

- - 0 -

L3
{x2}:

L3
{x4}:

à Prime(f) = {x1'x4 , x1 x4', x3'}

Quine/McCluskey System Architecture, Jan Reineke 15

Correctness of Quine-McCluskey

Quine/McCluskey System Architecture, Jan Reineke 16

Quine-Prime-Implicants(f: Bn --> B)
begin

L0 := Minterm(f)
i := 1
Prime(f) := Æ
while (Li-1 ≠ Æ) and (i ≤ n)
loop
Li := {m | |m|=n-i, m×x and m×x‘ are in Li-1 for some x}

//Comment: Li contains all implicants of f of length n-i
Pi := {m | m Î Li-1 and m is not covered by any m' Î Li}
Prime(f) := Prime(f) È Pi

i:=i+1
pool
return Prime(f) È Li-1

end

Theorem:
After any iteration i, for i=0, 1, ..., n, we have:

(1) Li contains all implicants with exactly n-i literals
(2) Prime(f) contains the prime implicants of f with at

least n-i+1 literals

Correctness of Quine’s algorithm

Quine/McCluskey System Architecture, Jan Reineke 17

Theorem:
After any iteration i, for i=0,1, ..., n, we have:
(1) Li contains all implicants with exactly n-i literals
(2) Prime(f) contains the prime implicants of f with

at least n-i+1 literals

Proof of (1): (by induction over i:) [We initially ignore the optimized termination condition Li ¹Æ]

Induction base (i=0):
Then, Li = L0 = Minterm(f).
From the Theorem on Implicants, it follows immediately that the implicants with

n literals (if there are exactly n variables) correspond to the minterms (there cannot be any
implicants with n+1 literals).
Induction step (i+1):

From the Theorem on Implicants we know that for each implicant m with n-(i+1)=n-i-1
literals, there must be implicants m×x and m×x' with n-i literals. Due to our inductive

hypothesis, those implicants must be contained Li. Thus, each implicant m with n-(i+1)=n-i-1
literals must be contained in Li+1 after the assignment to Li+1.

Quine/McCluskey System Architecture, Jan Reineke 18

Theorem:
After any iteration i, for i=0,1, ..., n, we have:
(1) Li contains all implicants with exactly n-i literals
(2) Prime(f) contains the prime implicants of f with

at least n-i+1 literals

Proof of (2): (by induction over i:) [We initially ignore the optimized termination condition Li ¹Æ]
We assume (1) to be proven based on the previous proof.
Induction base (i=0):

Then Prime(f) = Æ.
As there are only n variables, there cannot be any implicants nor prime implicants with

n+1 literals. And thus Prime(f) = Æ is correct.
Induction step (i+1):

By definition, prime implicants are maximal implicants. If an implicant is non-maximal,
then, in particular, there are larger implicants that contain exactly one literal less. An implicant
is declared prime by the algorithm, if no such larger implicant exists.

Quine/McCluskey 19

Termination condition: If the termination condition applies, i.e. if we have Li = Æ, then Li

would also have been empty in all future iterations, had the loop not terminated.

Proof

For every monomial m and every variable x among the n variables

exactly one of the following 3 possibilities applies:

• m contains neither the positive nor the negative literal of x

• m contains the positive literal x

• m contains the negative literal x'

Complexity of the algorithm

Lemma:

There are 3n distinct monomials in n variables.

Quine/McCluskey System Architecture, Jan Reineke 20

Complexity of the algorithm

Theorem (Complexity of the Quine-McCluskey algorithm):
The runtime of the algorithm is in O(n23n) and
O(log2N×Nlog 3), where N=2n is the size of the truth table.

Proof
• Each of the (maximally) 3n monomials is compared with at most n other monomials

throughout the algorithm. (Why?)
• Given a monomial m×x. Searching for m×x' in Li can be performed in O(n) using

appropriate data structures.

Part 2 follows by simple calculation:
3n = (2log 3)n = (2n)log 3 = Nlog 3, and
n2 = (log N)2 = log2N.

Quine/McCluskey System Architecture, Jan Reineke 21

Given the set of prime implicants Prime(f) of f.

Wanted:
A cost-optimal subset M of Prime(f), such that the
disjunction of the monomials in M describes the
function f.

The matrix covering problem

Quine/McCluskey System Architecture, Jan Reineke 22

Let us define a Boolean matrix PIT(f), the prime implicant table of f:

• The rows correspond to the prime implicants Prime(f) of f
• The columns correspond to the minterms of f

• Let min(a) be an arbitrary minterm of f.
Then, for each prime implicant m, we have:

PIT(f)[m, min(a)] = y(m)(a).
So the table entry at [m, min(a)] is 1, if and only if,

min(a) describes a node of the subcube m.

The matrix covering problem:
Formalization

Wanted:

A cost-optimal subset M of Prime(f),
such that every column of PIT(f) is covered,

i.e. "a Î ON(f) $m Î M with PIT(f)[m, min(a)]=1.

Quine/McCluskey System Architecture, Jan Reineke 23

Matrix-Überdeckungsproblem:
Beispiel

Prime(f) = {x1'x4, x1x4', x3'}

0110

0100

0000

0010

1110

1100

1000

1010

0111

0101

0001

0011

1111

1101

1001

1011

Þ All prime implicants are essential!

Prime implicant table PIT(f):

0 1 3 4 5 7 8 9 10 12 13 14
x1'x4 1 1 1 1
x1x4' 1 1 1 1
x3' 1 1 1 1 1 1 1 1

The matrix covering problem:
Example

Which subset of the prime
implicants solves the matrix
covering problem?

Quine/McCluskey System Architecture, Jan Reineke 24

The matrix covering problem:
Another example!

Prime(f) = {{7,5},{5,13},{13,9}{9,11},{11,3},{3,7}}

6

4

0

2

14

12

8

10

7

3

15

13

9

11

Prime implicant table PIT(f):

3 5 7 9 11 13
{7,5} 1 1
{5,13} 1 1
{13,9} 1 1
{9,11} 1 1
{11,3} 1 1
{3,7} 1 1

No prime implicant is essential!

Quine/McCluskey System Architecture, Jan Reineke 25

Definition:
A prime implicant m of f is called essential, if there is a minterm min(a) of f,

that is only covered by m. Formally:
– PIT(f)[m,min(a)]=1
– PIT(f)[m',min(a)]=0 for all other prime implicants m' of f

First reduction rule

Lemma:
Every minimal polynomial of f contains all essential prime implicants of f.

1. Reduction Rule:
Remove from the prime implicant table PIT(f) all essential prime implicants
and all minterms that are covered by these prime implicants.

Quine/McCluskey System Architecture, Jan Reineke 26

First reduction rule: Example

essential

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 1 1
2 1 1
3 1 1
4 1 1
5 1 1 1
6 1 1 1
7 1 1
8 1 1
9 1 1
10 1 1 1
11 1 1
12 1 1
13 1 1 1 1

Quine/McCluskey System Architecture, Jan Reineke 27

First reduction rule: Example

Covering problem after the application of the first reduction rule:

9 10 11 12 13 14 15 16 17
5 1 1
6 1 1
7 1
8 1
9 1 1
10 1 1 1
11 1 1
12 1 1
13 1 1 1 1

The matrix does not
contain any further
essential rows!

Quine/McCluskey System Architecture, Jan Reineke 28

Definition:
Let A be a Boolean matrix.
Column j of matrix A dominates column i of matrix A,

if A[k,i] ≤ A[k,j] for every row k.

Second reduction rule

2. Reduction Rule:
Remove all minterms from the prime implicant table PIT(f)
that dominate another minterm in PIT(f).

Benefit for our problem:
If minterm w' of f dominates another minterm w of f, then we do not need to further
consider w', as w has to be covered and covering w guarantees that w' will also be covered.
Every prime implicant p in PIT(f) that covers w also covers w'.

29

Second reduction rule: Example

9 10 11 12 13 14 15 16 17
5 1 1
6 1 1
7 1
8 1
9 1 1
10 1 1 1
11 1 1
12 1 1
13 1 1 1 1

Column 17 dominates Column 10
=> Column 17 can be deleted!

Quine/McCluskey System Architecture, Jan Reineke 30

Definition:
Let A be a Boolean matrix.
Row i of matrix A dominates Row j of matrix A,
if A[i,k] ≥ A[j,k] for every column k.

Third reduction rule

3. Reduction Rule
Remove all prime implicants from the prime implicant table PIT(f)
that are dominated by other prime implicants
that are not more expensive.

Benefit for our problem :
If prime implicant m dominates another prime implicant m',
then we do not need to further consider m', if cost(m') ≥ cost(m) holds.

(Convince yourself that the last condition is required.)

Quine/McCluskey 31

9 10 11 12 13 14 15 16
5 1
6 1
7 1
8 1
9 1 1
10 1 1
11 1 1
12 1 1
13 1 1 1 1

Third reduction rule: Example

Let’s assume that rows 5 to 12 have the same cost.

are dominated

Quine/McCluskey System Architecture, Jan Reineke 32

Third reduction rule

Covering problem after
the application of the
third reduction rule:

9 10 11 12 13 14 15 16
9 1 1
10 1 1
11 1 1
12 1 1
13 1 1 1 1

Note that the first reduction rule is now applicable again,
as rows 9, 10, 11, 12 are essential.

à The resulting matrix is empty
à The minimal polynomial is 1+2+3+4+9+10+11+12

... does not contain the row with the maximal number of ones!

Quine/McCluskey System Architecture, Jan Reineke 33

Definition:
A prime implicant table is called
reduced if none of the three
reduction rules is applicable.
If a reduced table is non-empty,
the remaining problem is called
a cyclic covering problem.

Cyclic covering problems

Prime implicant table PIT(f):

3 5 7 9 11 13
{7,5} 1 1
{5,13} 1 1
{13,9} 1 1
{9,11} 1 1
{11,3} 1 1
{3,7} 1 1

Approaches to solve the cyclic covering problem:
• heuristic approaches
• Petrick‘s method

Quine/McCluskey System Architecture, Jan Reineke 34

Method:
1. Translate the PIT into a

conjunctive normal form
that contains all
covering possibilities.

2. “Multiply” these out.

The minimal covering is given by
the monomial that corresponds to
the selection of prime implicants
of minimal cost.

Petrick’s method

1 2 3 4
1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 1

... is translated into:
(1+3+5)(1+4+6)(2+3+6)(2+4+5)

= (1+1⋅4+1⋅6+1⋅3+3⋅4+3⋅6+1⋅5+4⋅5+5⋅6)*
(2+2⋅4+2⋅5+2⋅3+3⋅4+3⋅5+2⋅6+4⋅6+5⋅6)

= 1⋅2+1⋅2⋅4+1⋅2⋅5+1⋅2⋅3+1⋅3⋅4+...+3⋅4+...+5⋅6

assuming the same cost for all prime implicants
1⋅2, 3⋅4 and 5⋅6 are minimal

required to
cover column 4

Quine/McCluskey System Architecture, Jan Reineke 35

Quine/McCluskey algorithm
1. Compute all prime implicants
– Cleverly group the implicants

2. Search for cost-optimal covering
– Reduction rules:

• essential prime implicants
• dominated rows
• dominated columns

Outlook: Multi-level circuits

Summary, Outlook

Quine/McCluskey System Architecture, Jan Reineke 36

Theorem (Quine):
Every minimal polynomial p of a Boolean function f consists
only of prime implicants of f.

