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1. Quine/McCluskey’s algorithm 
to compute all prime implicants

2. Solution of the “covering problem”, i.e., 
selecting a subset of the prime implicants, such 
that their disjunction is a polynomial for f that 
has minimal cost.

Algorithm to compute a 
minimal polynomial
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Quine’s algorithm

Quine-Prime-Implicants(f: Bn --> B)
begin

L0 := Minterm(f)
i := 1
Prime(f) := Æ
while (Li-1 ≠ Æ) and (i ≤ n)
loop
Li := {m | |m|=n-i, m×x and m×x' are in Li-1 for some x}

//Comment: Li contains all implicants of f of length n-i
Pi := {m | m Î Li-1 and m is not covered by any m' Î Li}
Prime(f) := Prime(f) È Pi

i:=i+1
pool
return Prime(f) È Li-1 

end
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Compare only those monomials
• that contain the same variables, and
• whose number of positive literals differs by one.

Can be achieved as follows:
• Partition Li into classes Li

M with M Í {x1,...xn} and |M|=n-i. 
Li

M contains the implicants of Li whose literals are M.
• Order the monomials in Li

M according to their number of 
positive literals.

Improvement by McCluskey
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Quine-McCluskey algorithm: Example

L0
{x1,x2,x3,x4}:

0 0 0 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
1 0 1 0
1 1 0 0
0 1 1 1
1 1 0 1
1 1 1 0
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0111 

0101 

0001 

0011 

1111 

1101 

1001 

1011 

Need to only compare monomials
from adjacent blocks!

stands for x1'x2'x3'x4'

stands for x1x2'x3'x4
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Quine-McCluskey algorithm: Example
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1001 

1011 

L0
{x1,x2,x3,x4}:

0 0 0 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
1 0 1 0
1 1 0 0
0 1 1 1
1 1 0 1
1 1 1 0

L1
{x1,x2,x3}:

0 0 0 -
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Quine-McCluskey algorithm: Example

L1
{x1,x3,x4}:

0 - 0 0
0110 

0100 

0000 

0010 

1110 

1100 

1000 

1010 

0111 

0101 

0001 

0011 

1111 

1101 

1001 

1011 

L1
{x1,x2,x3}:

0 0 0 -
L0

{x1,x2,x3,x4}:

0 0 0 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
1 0 1 0
1 1 0 0
0 1 1 1
1 1 0 1
1 1 1 0
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Quine-McCluskey algorithm: Example

L1
{x1,x3,x4}:

0 - 0 0
0110 

0100 

0000 

0010 

1110 

1100 

1000 

1010 

0111 

0101 

0001 

0011 

1111 

1101 

1001 

1011 

L1
{x1,x2,x3}:

0 0 0 -

............

0 - 1 1

L0
{x1,x2,x3,x4}:

0 0 0 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
1 0 1 0
1 1 0 0
0 1 1 1
1 1 0 1
1 1 1 0
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Quine-McCluskey algorithm: Example

............

0 - 1 1

L1
{x1,x3,x4}:

0 - 0 0
0110 

0100 

0000 

0010 

1110 

1100 

1000 

1010 

0111 

0101 

0001 

0011 

1111 

1101 

1001 

1011 

L1
{x1,x2,x3}:

0 0 0 -

Cannot be simplified,
as they are not adjacent.

L0
{x1,x2,x3,x4}:

0 0 0 0
0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 1
0 1 0 1
1 0 0 1
1 0 1 0
1 1 0 0
0 1 1 1
1 1 0 1
1 1 1 0
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Quine-McCluskey algorithm: Example
... some steps later

0110 

0100 

0000 

0010 

1110 

1100 

1000 

1010 

0111 

0101 

0001

0011 

1111 

1101 

1001 

1011 

L1
{x1,x2,x4}:

0 0 - 1

1 0 - 0

0 1 - 1

1 1 - 0

L1
{x2,x3,x4}:

- 0 0 0

- 0 0 1

- 1 0 0

- 1 0 1

L1
{x1,x2,x3}:

0 0 0 -

0 1 0 -

1 0 0 -

1 1 0 -

L1
{x1,x3,x4}:

0 - 0 0

0 - 0 1

1 - 0 0

0 - 1 1

1 - 0 1

1 - 1 0

All minterms of f are covered by edges that are
implicants Þ Prime(f) = Æ.
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Quine-McCluskey algorithm: Example

0110 

0100 

0000 

0010 

1110 

1100 

1000 

1010 

0111 

0101 

0001 

0011 

1111 

1101 

1001 

1011 

L1
{x1,x2,x3}:

0 0 0 -

0 1 0 -

1 0 0 -

1 1 0 -

L1
{x1,x3,x4}:

0 - 0 0

0 - 0 1

1 - 0 0

0 - 1 1

1 - 0 1

1 - 1 0

All implicants from L1
{x1,x2,x4} are covered by surfaces

that are implicants Þ Prime(f) = Æ.

L1
{x1,x2,x4}:

0 0 - 1

1 0 - 0

0 1 - 1

1 1 - 0

L1
{x2,x3,x4}:

- 0 0 0

- 0 0 1

- 1 0 0

- 1 0 1
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Quine-McCluskey algorithm: Example

0110 

0100 

0000 

0010 

1110 

1100 

1000 

1010 

0111 

0101 

0001

0011 

1111 

1101 

1001 

1011 

L1
{x1,x2,x4}:

0 0 - 1

1 0 - 0

0 1 - 1

1 1 - 0

L1
{x2,x3,x4}:

- 0 0 0

- 0 0 1

- 1 0 0

- 1 0 1

L1
{x1,x2,x3}:

0 0 0 -

0 1 0 -

1 0 0 -

1 1 0 -

L1
{x1,x3,x4}:

0 - 0 0

0 - 0 1

1 - 0 0

0 - 1 1

1 - 0 1

1 - 1 0

All implicants from L1
M are covered by surfaces

that are implicants Þ Prime(f) = Æ.
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Quine-McCluskey algorithm: Example

0110 

0100 

0000 

0010 

1110 

1100 

1000 

1010 

0111 

0101 

0001 

0011 

1111 

1101 

1001 

1011 

L2
{x1,x2}:

L2
{x1,x4}:

0 - - 1

1 - - 0

L2
{x2,x4}:

L2
{x1,x3}:

0 - 0 -

1 - 0 -

L2
{x2,x3}:

- 0 0 -

- 1 0 -

L2
{x3,x4}:

- - 0 0

- - 0 1

The marked 2D implicants are not part of
3D implicants. 
So they are prime! Þ Prime(f) = {x1'x4 , x1 x4'}
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Quine-McCluskey algorithm: Example

The marked 2D implicants are covered by a 3D implicant. 
So they are not prime!  Þ Prime(f) = {x1'x4 , x1x4'}

0110 

0100 

0000 

0010 

1110 

1100 

1000 

1010 

0111 

0101 

0001 

0011 

1111 

1101 

1001 

1011 

L2
{x1,x2}:

L2
{x1,x4}:

0 - - 1

1 - - 0

L2
{x2,x4}:

L2
{x1,x3}:

0 - 0 -

1 - 0 -

L2
{x2,x3}:

- 0 0 -

- 1 0 -

L2
{x3,x4}:

- - 0 0

- - 0 1
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Quine-McCluskey algorithm: Example

0110 

0100 

0000 

0010 

1110 

1100 

1000 

1010 

0111 

0101 

0001 

0011 

1111 

1101 

1001 

1011 

L3
{x1}:

L3
{x3}:

- - 0 -

L3
{x2}:

L3
{x4}:

à Prime(f) = {x1'x4 , x1 x4', x3'}
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Correctness of Quine-McCluskey
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Quine-Prime-Implicants(f: Bn --> B)
begin

L0 := Minterm(f)
i := 1
Prime(f) := Æ
while (Li-1 ≠ Æ) and (i ≤ n)
loop
Li := {m | |m|=n-i, m×x and m×x‘ are in Li-1 for some x}

//Comment: Li contains all implicants of f of length n-i
Pi := {m | m Î Li-1 and m is not covered by any m' Î Li}
Prime(f) := Prime(f) È Pi

i:=i+1
pool
return Prime(f) È Li-1 

end



Theorem:
After any iteration i, for i=0, 1, ..., n, we have:

(1) Li contains all implicants with exactly n-i literals
(2) Prime(f) contains the prime implicants of f with at 

least n-i+1 literals

Correctness of Quine’s algorithm
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Theorem:
After any iteration i, for i=0,1, ..., n, we have:
(1) Li contains all implicants with exactly n-i literals
(2) Prime(f) contains the prime implicants of f with 

at least n-i+1 literals

Proof of (1): (by induction over i:) [We initially ignore the optimized termination condition Li ¹Æ]

Induction base (i=0):
Then, Li = L0 = Minterm(f). 
From the Theorem on Implicants, it follows immediately that the implicants with

n literals (if there are exactly n variables) correspond to the minterms (there cannot be any
implicants with n+1 literals).
Induction step (i+1):

From the Theorem on Implicants we know that for each implicant m with n-(i+1)=n-i-1 
literals, there must be implicants m×x and m×x' with n-i literals. Due to our inductive

hypothesis, those implicants must be contained Li. Thus, each implicant m with n-(i+1)=n-i-1 
literals must be contained in Li+1 after the assignment to Li+1.
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Theorem:
After any iteration i, for i=0,1, ..., n, we have:
(1) Li contains all implicants with exactly n-i literals
(2) Prime(f) contains the prime implicants of f with 

at least n-i+1 literals

Proof of (2): (by induction over i:) [We initially ignore the optimized termination condition Li ¹Æ]
We assume (1) to be proven based on the previous proof.
Induction base (i=0):

Then Prime(f) = Æ. 
As there are only n variables, there cannot be any implicants nor prime implicants with

n+1 literals. And thus Prime(f) = Æ is correct.
Induction step (i+1):

By definition, prime implicants are maximal implicants. If an implicant is non-maximal, 
then, in particular, there are larger implicants that contain exactly one literal less. An implicant
is declared prime by the algorithm, if no such larger implicant exists.
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Termination condition: If the termination condition applies, i.e. if we have Li = Æ, then Li

would also have been empty in all future iterations, had the loop not terminated.



Proof

For every monomial m and every variable x among the n variables 

exactly one of the following 3 possibilities applies:

• m contains neither the positive nor the negative literal of x

• m contains the positive literal x

• m contains the negative literal x'

Complexity of the algorithm

Lemma:

There are 3n distinct monomials in n variables.
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Complexity of the algorithm

Theorem (Complexity of the Quine-McCluskey algorithm):
The runtime of the algorithm is in O(n23n) and
O(log2N×Nlog 3), where N=2n is the size of the truth table.

Proof
• Each of the (maximally) 3n monomials is compared with at most n other monomials

throughout the algorithm. (Why?)
• Given a monomial m×x. Searching for m×x' in Li can be performed in O(n) using

appropriate data structures.

Part 2 follows by simple calculation:
3n = (2log 3)n = (2n)log 3 = Nlog 3, and
n2 = (log N)2 = log2N.
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Given the set of prime implicants Prime(f) of f.

Wanted:
A cost-optimal subset M of Prime(f), such that the 
disjunction of the monomials in M describes the 
function f.

The matrix covering problem
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Let us define a Boolean matrix PIT(f), the prime implicant table of f:

• The rows correspond to the prime implicants Prime(f) of f
• The columns correspond to the minterms of f

• Let min(a) be an arbitrary minterm of f.
Then, for each prime implicant m, we have:

PIT(f)[m, min(a)] = y(m)(a).
So the table entry at [m, min(a)] is 1, if and only if, 

min(a) describes a node of the subcube m.

The matrix covering problem:
Formalization

Wanted:

A cost-optimal subset M of Prime(f),
such that every column of PIT(f) is covered,

i.e. "a Î ON(f) $m Î M with PIT(f)[m, min(a)]=1.
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Matrix-Überdeckungsproblem:
Beispiel

Prime(f) = {x1'x4, x1x4', x3'}

0110 

0100 

0000 

0010 

1110 

1100 

1000 

1010 

0111 

0101 

0001 

0011 

1111 

1101 

1001 

1011 

Þ All prime implicants are essential!

Prime implicant table PIT(f):

0  1  3  4  5  7  8  9 10 12 13 14 
x1'x4 1  1      1  1
x1x4'                                1      1    1       1
x3'           1  1      1  1      1   1       1   1

The matrix covering problem:
Example

Which subset of the prime 
implicants solves the matrix
covering problem?
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The matrix covering problem:
Another example!

Prime(f) = {{7,5},{5,13},{13,9}{9,11},{11,3},{3,7}}

6 

4 

0

2 

14

12 

8 

10 

7 

3 

15 

13

9 

11

Prime implicant table PIT(f):

3 5  7   9 11 13 
{7,5} 1  1      
{5,13} 1 1       
{13,9} 1 1
{9,11} 1 1
{11,3} 1 1
{3,7} 1 1                             

No prime implicant is essential!  
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Definition:
A prime implicant m of f is called essential, if there is a minterm min(a) of f, 

that is only covered by m. Formally:
– PIT(f)[m,min(a)]=1
– PIT(f)[m',min(a)]=0 for all other prime implicants m' of f

First reduction rule

Lemma:
Every minimal polynomial of f contains all essential prime implicants of f.

1. Reduction Rule:
Remove from the prime implicant table PIT(f) all essential prime implicants
and all minterms that are covered by these prime implicants.
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First reduction rule: Example

essential

1  2   3  4  5   6  7  8  9   10   11   12   13   14   15  16   17
1 1               1
2 1                1
3 1                1
4                          1               1
5                              1               1 1
6 1                 1 1
7                                       1                   1
8 1                      1
9 1                        1
10                                                    1                         1                  1
11 1 1
12 1                        1    
13 1    1     1    1
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First reduction rule: Example

Covering problem after the application of the first reduction rule:

9   10  11   12   13   14   15   16   17
5 1 1
6 1 1
7                        1
8 1
9 1                        1
10                1                         1 1
11 1 1
12 1                         1    
13 1    1     1     1

The matrix does not
contain any further
essential rows!
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Definition:
Let A be a Boolean matrix.
Column j of matrix A dominates column i of matrix A, 

if A[k,i] ≤ A[k,j] for every row k.

Second reduction rule

2. Reduction Rule:
Remove all minterms from the prime implicant table PIT(f)
that dominate another minterm in PIT(f). 

Benefit for our problem:
If minterm w' of f dominates another minterm w of f, then we do not need to further
consider w', as w has to be covered and covering w guarantees that w' will also be covered.
Every prime implicant p in PIT(f) that covers w also covers w'.

29



Second reduction rule: Example

9  10  11    12   13   14  15    16   17
5            1                                                   1
6 1 1
7                         1
8 1
9 1                        1
10                 1                        1 1
11 1                         1
12 1                          1    
13 1     1     1     1

Column 17 dominates Column 10
=> Column 17 can be deleted!
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Definition:
Let A be a Boolean matrix.
Row i of matrix A dominates Row j of matrix A,
if A[i,k] ≥ A[j,k] for every column k.

Third reduction rule

3. Reduction Rule
Remove all prime implicants from the prime implicant table PIT(f) 
that are dominated by other prime implicants
that are not more expensive.

Benefit for our problem :
If prime implicant m dominates another prime implicant m', 
then we do not need to further consider m', if cost(m') ≥ cost(m) holds.

(Convince yourself that the last condition is required.)
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9   10   11  12   13   14   15  16
5 1
6 1
7                        1
8 1
9      1                        1
10                1                         1
11 1 1
12 1                        1    
13 1     1     1    1

Third reduction rule: Example

Let’s assume that rows 5 to 12 have the same cost.

are dominated
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Third reduction rule

Covering problem after 
the application of the
third reduction rule: 

9  10  11  12  13  14  15  16
9 1                     1
10            1                      1
11 1 1
12 1                     1    
13 1    1   1    1

Note that the first reduction rule is now applicable again, 
as rows 9, 10, 11, 12 are essential.

à The resulting matrix is empty
à The minimal polynomial is 1+2+3+4+9+10+11+12

... does not contain the row with the maximal number of ones!
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Definition:
A prime implicant table is called 
reduced if none of the three 
reduction rules is applicable.
If a reduced table is non-empty, 
the remaining problem is called 
a cyclic covering problem.

Cyclic covering problems

Prime implicant table PIT(f):

3    5  7   9 11  13 
{7,5}               1  1      
{5,13}             1                  1       
{13,9}              1         1
{9,11}                      1  1
{11,3}     1           1
{3,7}         1        1                             

Approaches to solve the cyclic covering problem:
• heuristic approaches
• Petrick‘s method

Quine/McCluskey System Architecture, Jan Reineke 34



Method:
1. Translate the PIT into a 

conjunctive normal form 
that contains all 
covering possibilities.

2. “Multiply” these out.

The minimal covering is given by 
the monomial that corresponds to 
the selection of prime implicants 
of minimal cost.

Petrick’s method

1  2  3  4 
1 1  1
2 1  1
3 1      1
4 1      1
5 1          1
6 1  1

... is translated into:
(1+3+5)(1+4+6)(2+3+6)(2+4+5)

= (1+1⋅4+1⋅6+1⋅3+3⋅4+3⋅6+1⋅5+4⋅5+5⋅6)*
(2+2⋅4+2⋅5+2⋅3+3⋅4+3⋅5+2⋅6+4⋅6+5⋅6)

= 1⋅2+1⋅2⋅4+1⋅2⋅5+1⋅2⋅3+1⋅3⋅4+...+3⋅4+...+5⋅6

assuming the same cost for all prime implicants
1⋅2, 3⋅4 and 5⋅6 are minimal

required to
cover column 4 
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Quine/McCluskey algorithm
1. Compute all prime implicants
– Cleverly group the implicants

2. Search for cost-optimal covering
– Reduction rules: 

• essential prime implicants
• dominated rows
• dominated columns

Outlook: Multi-level circuits

Summary, Outlook
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Theorem (Quine):
Every minimal polynomial p of a Boolean function f consists
only of prime implicants of f.


