(Two-level) Logic Synthesis
 Quine/McCluskey algorithm

Becker/Molitor, Chapter 7.3

Jan Reineke
Universität des Saarlandes

Algorithm to compute a minimal polynomial

1. Quine/McCluskey's algorithm to compute all prime implicants
2. Solution of the "covering problem", i.e., selecting a subset of the prime implicants, such that their disjunction is a polynomial for f that has minimal cost.

Quine's algorithm

```
Quine-Prime-Implicants(f: B}\mp@subsup{}{}{n}-> B
begin
    L
    i:= 1
    Prime(f) := \varnothing
    while (L
    loop
        L
                //Comment: L
        P
        Prime(f):= Prime(f)\cupP
        i:=i+1
        pool
        return Prime(f)\cup Li-1
end
```


Improvement by McCluskey

Compare only those monomials

- that contain the same variables, and
- whose number of positive literals differs by one.

Can be achieved as follows:

- Partition L_{i} into classes L_{i}^{M} with $M \subseteq\left\{x_{1}, \ldots x_{n}\right\}$ and $|M|=n-i$. $L_{i}{ }^{M}$ contains the implicants of L_{i} whose literals are M.
- Order the monomials in $L_{i}{ }^{M}$ according to their number of positive literals.

Quine-McCluskey algorithm: Example

Need to only compare monomials from adjacent blocks!

Quine-McCluskey algorithm: Example

Quine-McCluskey algorithm: Example

Quine-McCluskey algorithm: Example

0000	000.
0001	
0100	[$\{11, x 3, x 4\}$.
1000	$L_{1}{ }^{\{x 1, x\rangle, 44\}}$:
0011	0.00
1010	0-11
1100	
0111	
1101	
1110	

Quine-McCluskey algorithm: Example

$L_{0}{ }^{\{x 1, x 2, x 3, x 4\}}$:	$L_{1}\{x 1, x 2, x 3\}$:
0000	000.
0001	$L_{1}\{x 1, x 3, x 4\}$
0100	
1000	
0011	0.00
0101	
1001	0-11
1010	
1100	
0111	
1101	
1110	
Cannot be as they are	plified, adjacent.

Quine-McCluskey algorithm: Example

 ... some steps later

Quine-McCluskey algorithm: Example

All implicants from $L_{1}{ }_{1}\{1, \times 2, x 4\}$ are covered by surfaces that are implicants $\Rightarrow \operatorname{Prime}(\mathrm{f})=\varnothing$.

Quine-McCluskey algorithm: Example

All implicants from $L_{1}{ }^{M}$ are covered by surfaces that are implicants $\Rightarrow \operatorname{Prime}(\mathrm{f})=\varnothing$.

Quine-McCluskey algorithm: Example

$$
\begin{array}{ll}
L_{2}{ }^{[x 1, x 2]}: & \left.L_{2}\{x 1, x\}\right]: \\
& \frac{0-0 .}{1-0 .}
\end{array}
$$

The marked 2D implicants are not part of 3D implicants.
So they are prime! $\Rightarrow \operatorname{Prime}(\mathrm{f})=\left\{x_{1}{ }^{\prime} x_{4}, x_{1} x_{4}{ }^{\prime}\right\}$

Quine-McCluskey algorithm: Example

$$
\begin{array}{ll}
L_{2}{ }^{\{x 1, x 2\}}: & \left.L_{2}\{x 1, x\}\right\} \\
& \frac{0-0-}{1-0 .}
\end{array}
$$

The marked 2D implicants are covered by a 3D implicant. So they are not prime! $\Rightarrow \operatorname{Prime}(\mathrm{f})=\left\{x_{1}{ }^{\prime} x_{4}, x_{1} x_{4}{ }^{\prime}\right\}$

Quine-McCluskey algorithm: Example

Correctness of Quine-McCluskey

```
Quine-Prime-Implicants(f: \(\left.\mathrm{B}^{n} \rightarrow \mathrm{~B}\right)\)
begin
    \(L_{0}:=\operatorname{Minterm}(f)\)
    \(i:=1\)
    Prime(f) := \(\varnothing\)
    while \(\left(L_{i-1} \neq \varnothing\right)\) and \((i \leq n)\)
    loop
        \(L_{i}:=\left\{m| | m \mid=n-i, m \cdot x\right.\) and \(m \cdot x^{\prime}\) are in \(L_{i-1}\) for some \(\left.x\right\}\)
                \(/ /\) Comment: \(L_{i}\) contains all implicants of \(f\) of length \(n-i\)
        \(P_{i}:=\left\{m \mid m \in L_{i-1}\right.\) and \(m\) is not covered by any \(\left.m^{\prime} \in L_{i}\right\}\)
        \(\operatorname{Prime}(f):=\operatorname{Prime}(f) \cup P_{i}\)
        \(i:=i+1\)
        pool
        return \(\operatorname{Prime}(f) \cup L_{i-1}\)
end
```


Correctness of Quine's algorithm

Theorem:

After any iteration i , for $\mathrm{i}=0,1, \ldots$, n , we have:
(1) L_{i} contains all implicants with exactly n-i literals
(2) Prime(f) contains the prime implicants of f with at least $\mathrm{n}-\mathrm{i}+1$ literals

Theorem:

After any iteration i , for $\mathrm{i}=0,1, \ldots, \mathrm{n}$, we have:

 (1) L_{i} contains all implicants with exactly n-i literals (2) Prime(f) contains the prime implicants of f with at least $\mathrm{n}-\mathrm{i}+1$ literalsProof of (1): (by induction over i:) [We initially ignore the optimized termination condition $L_{i} \neq \varnothing$] Induction base ($\mathrm{i}=0$):

Then, $L_{i}=L_{0}=\operatorname{Minterm}(\mathrm{f})$.
From the Theorem on Implicants, it follows immediately that the implicants with n literals (if there are exactly n variables) correspond to the minterms (there cannot be any implicants with $n+1$ literals).
Induction step ($\mathrm{i}+1$):
From the Theorem on Implicants we know that for each implicant m with $n-(i+1)=n-i-1$ literals, there must be implicants $m \cdot x$ and $m \cdot x$ with n-i literals. Due to our inductive hypothesis, those implicants must be contained L_{i}. Thus, each implicant m with $n-(i+1)=n-i-1$
literals must be contained in L_{i+1} after the assignment to L_{i+1}.

Theorem:

After any iteration i , for $\mathrm{i}=0,1, \ldots, \mathrm{n}$, we have:

 (1) L_{i} contains all implicants with exactly n-i literals (2) Prime(f) contains the prime implicants of f with at least $\mathrm{n}-\mathrm{i}+1$ literalsProof of (2): (by induction over i :) [We initially ignore the optimized termination condition $L_{i} \neq \varnothing$] We assume (1) to be proven based on the previous proof.
Induction base ($\mathrm{i}=0$):
Then $\operatorname{Prime}(\mathrm{f})=\varnothing$.
As there are only n variables, there cannot be any implicants nor prime implicants with $n+1$ literals. And thus Prime $(\mathrm{f})=\varnothing$ is correct.
Induction step ($\mathrm{i}+1$):
By definition, prime implicants are maximal implicants. If an implicant is non-maximal, then, in particular, there are larger implicants that contain exactly one literal less. An implicant is declared prime by the algorithm, if no such larger implicant exists.

Termination condition: If the termination condition applies, i.e. if we have $L_{i}=\varnothing$, then L_{i} would also have been empty in all future iterations, had the loop not terminated.

Complexity of the algorithm

Lemma:

There are 3^{n} distinct monomials in n variables.

Proof

For every monomial m and every variable x among the n variables exactly one of the following 3 possibilities applies:

- m contains neither the positive nor the negative literal of x
- m contains the positive literal x
- m contains the negative literal x^{\prime}

Complexity of the algorithm

Theorem (Complexity of the Quine-McCluskey algorithm):

 The runtime of the algorithm is in $O\left(n^{2} 3^{n}\right)$ and $\mathrm{O}\left(\log ^{2} \mathrm{~N} \cdot \mathrm{~N}^{\log 3}\right)$, where $\mathrm{N}=2^{\mathrm{n}}$ is the size of the truth table.Proof

- Each of the (maximally) 3^{n} monomials is compared with at most n other monomials throughout the algorithm. (Why?)
- Given a monomial $m \cdot x$. Searching for $m \cdot x^{\prime}$ in L_{i} can be performed in $O(n)$ using appropriate data structures.

Part 2 follows by simple calculation:

$$
\begin{aligned}
& 3^{\mathrm{n}}=\left(2^{\log 3)^{n}=\left(2^{n}\right)^{\log 3}=N^{\log 3}, \text { and }}\right. \\
& \mathrm{n}^{2}=(\log \mathrm{N})^{2}=\log ^{2} \mathrm{~N} .
\end{aligned}
$$

The matrix covering problem

Given the set of prime implicants Prime (f) of f.

Wanted:

A cost-optimal subset M of Prime(f), such that the disjunction of the monomials in M describes the function f .

The matrix covering problem: Formalization

Let us define a Boolean matrix PIT(f), the prime implicant table of f :

- The rows correspond to the prime implicants Prime(f) of f
- The columns correspond to the minterms of f
- Let $\min (\alpha)$ be an arbitrary minterm of f.

Then, for each prime implicant m, we have:
$\operatorname{PIT}(f)[m, \min (\alpha)]=\psi(\mathrm{m})(\alpha)$.
So the table entry at $[\mathrm{m}, \min (\alpha)]$ is 1 , if and only if, $\min (\alpha)$ describes a node of the subcube m.

Wanted:
A cost-optimal subset M of Prime(f), such that every column of $\operatorname{PIT}(\mathrm{f})$ is covered,
i.e. $\forall \alpha \in \operatorname{ON}(f) \exists m \in M$ with $\operatorname{PIT}(f)[m, \min (\alpha)]=1$.

The matrix covering problem:

Example

$\operatorname{Prime}(f)=\left\{x_{1}{ }^{\prime} x_{4}, x_{1} x_{4}{ }^{\prime}, x_{3}{ }^{\prime}\right\}$

Which subset of the prime implicants solves the matrix covering problem?

Prime implicant table PIT(f):

	0	1	3	4	5	7	8	9	10	12	13

\Rightarrow All prime implicants are essential!

The matrix covering problem: Another example!

Prime implicant table PIT(f):

	3	5	7	9	11	13
$\{7,5\}$		1	1			1
$\{5,13\}$		1				1
$\{13,9\}$				1		1
$\{9,11\}$				1	1	
$\{11,3\}$	1				1	
$\{3,7\}$	1		1			

No prime implicant is essential!

$$
\operatorname{Prime}(f)=\{\{7,5\},\{5,13\},\{13,9\}\{9,11\},\{11,3\},\{3,7\}\}
$$

First reduction rule

Definition:

A prime implicant m of f is called essential, if there is a minterm $\min (\alpha)$ of f, that is only covered by m. Formally:

- $\operatorname{PIT}(f)[m, \min (\alpha)]=1$
- $\operatorname{PIT}(f)\left[m^{\prime}, \min (\alpha)\right]=0 \quad$ for all other prime implicants m^{\prime} of f

Lemma:

Every minimal polynomial of f contains all essential prime implicants of f.

1. Reduction Rule:

Remove from the prime implicant table PIT(f) all essential prime implicants and all minterms that are covered by these prime implicants.

First reduction rule: Example

First reduction rule: Example

Covering problem after the application of the first reduction rule:

	9	10	11	12	13	1	4	15	16		17
5	1										1
6		1									1
7			1								
8				1							
9	1				1						
10		1									1
11			1					1			
12				1					1		
13					1	1		1			

The matrix does not contain any further essential rows!

Second reduction rule

Definition:
Let A be a Boolean matrix.
Column j of matrix A dominates column i of matrix A, if $A[k, i] \leq A[k, j]$ for every row k.
Benefit for our problem:
If minterm w^{\prime} of f dominates another minterm w of f, then we do not need to further consider w^{\prime}, as w has to be covered and covering w guarantees that w^{\prime} will also be covered. Every prime implicant p in $\operatorname{PIT}(f)$ that covers w also covers w^{\prime}.

2. Reduction Rule:

Remove all minterms from the prime implicant table PIT(f) that dominate another minterm in PIT(f).

Second reduction rule: Example

Column 17 dominates Column 10
=> Column 17 can be deleted!

Third reduction rule

Definition:
 Let A be a Boolean matrix.
 Row i of matrix A dominates Row j of matrix A, if $A[i, k] \geq A[j, k]$ for every column k.

Benefit for our problem:
If prime implicant m dominates another prime implicant m^{\prime}, then we do not need to further consider m^{\prime}, if $\operatorname{cost}\left(m^{\prime}\right) \geq \operatorname{cost}(m)$ holds.
(Convince yourself that the last condition is required.)

3. Reduction Rule
 Remove all prime implicants from the prime implicant table PIT(f) that are dominated by other prime implicants that are not more expensive.

Third reduction rule: Example

Let's assume that rows 5 to 12 have the same cost.

Third reduction rule

Covering problem after the application of the third reduction rule:

Note that the first reduction rule is now applicable again, as rows $9,10,11,12$ are essential.
\rightarrow The resulting matrix is empty
\rightarrow The minimal polynomial is $1+2+3+4+9+10+11+12$
... does not contain the row with the maximal number of ones!

Cyclic covering problems

Definition:
A prime implicant table is called reduced if none of the three reduction rules is applicable.
If a reduced table is non-empty, the remaining problem is called a cyclic covering problem.

Prime implicant table $\operatorname{PIT}(f)$:

	3	5	7	9	11	13	
$\{7,5\}$		1	1				
$\{5,13\}$		1				1	
$\{13,9\}$				1		1	
$\{9,11\}$				1	1		
$\{11,3\}$	1			1			
$\{3,7\}$	1		1				

Approaches to solve the cyclic covering problem:

- heuristic approaches
- Petrick's method

Petrick's method

Method:

1. Translate the PIT into a conjunctive normal form that contains all covering possibilities.
2. "Multiply" these out.

	1	2	3	4		
1	1	1				
2			1	1		
3	1		1			
4		1		1		
5	1		1	\vdots		
6		1	1			

The minimal covering is given by the monomial that corresponds to ... is translated into: $(1+3+5)(1+4+6)(2+3+6)(2+4+5)$ the selection of prime implicants of minimal cost.

$$
\begin{gathered}
=(1+1 \cdot 4+1 \cdot 6+1 \cdot 3+3 \cdot 4+3 \cdot 6+1 \cdot 5+4 \cdot 5+5 \cdot 6)^{*} \\
\quad(2+2 \cdot 4+2 \cdot 5+2 \cdot 3+3 \cdot 4+3 \cdot 5+2 \cdot 6+4 \cdot 6+5 \cdot 6)
\end{gathered}
$$

$=1 \cdot 2+1 \cdot 2 \cdot 4+1 \cdot 2 \cdot 5+1 \cdot 2 \cdot 3+1 \cdot 3 \cdot 4+\ldots+3 \cdot 4+\ldots+5 \cdot 6$
assuming the same cost for all prime implicants $1 \cdot 2,3 \cdot 4$ and $5 \cdot 6$ are minimal

Summary, Outlook

Theorem (Quine):
Every minimal polynomial p of a Boolean function f consists only of prime implicants of f.

Quine/McCluskey algorithm

1. Compute all prime implicants

- Cleverly group the implicants

2. Search for cost-optimal covering

- Reduction rules:
- essential prime implicants
- dominated rows
- dominated columns

Outlook: Multi-level circuits

