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1 Simply Typed Lambda Calculus

Variables x, y ::= . . .

Runtime Terms e ::= x | λx. e | e1 e2 | e1 + e2 | n
(Runtime) Values v ::= λx. e | n

Variables and Substitution In the simply typed λ-calculus, variables and substitution are
instrumental to define how terms are evaluated (called the operational semantics). During
evaluation, if we apply a λ-abstraction λx. e to a value v , then the variable x is substituted
with the value v in e. For example, the term (λx. x + 1) 41 proceeds with 41 + 1 in the
next step of the evaluation.

We write e[e′/x] for the substitution operation that replaces x with e′ in e. We define
it recursively by:

y[e′/x] := e′ ifx = y

y[e′/x] := y ifx ̸= y

(λy. e)[e′/x] := λy. e ifx = y

(λy. e)[e′/x] := λy. (e[e′/x]) ifx ̸= y

(e1 e2)[e
′/x] := (e1[e

′/x]) (e2[e
′/x])

(e1 + e2)[e
′/x] := (e1[e

′/x]) + (e2[e
′/x])

n[e′/x] := n

Getting substitution right can be tricky. This definition is typically considered incorrect.
To explain what goes wrong, we have to distinguish between free and bound variables:
A variable x is bound in a term if it appears inside of a binder λx (e.g., x is bound in
λx. x+ y). All other variables are called free (e.g., y is free in λx. x+ y).

The problem with the naive definition of substitution above is called variable capturing.
Variable capturing occurs if we insert an expression with a free variable such as 2+ x into
an expression which binds the free variable. For example, if we naively substitute 2+x for
y in λx. y + x, then we obtain λx. (2 + x) + x. Since x was free in 2 + x but is bound in
λx. (2+x)+x, one speaks of variable capturing. Variable capturing is problematic, because
the programmer would have to anticipate which variables are free in function arguments.

To avoid variable capturing, a correct substitution renames bound variables where con-
flicts arise. For example, (λx. y + x)[2 + x/y] would result in λz. (2 + x) + z, such that
x remains free in the resulting term. Unfortunately, defining (and reasoning about) a
substitution operation that properly renames bound variables is oftentimes tedious, espe-
cially in proof assistants. Thus, on paper, people typically rely on Barendregt’s variable
convention [3]: all bound and free variables are distinct and this invariant is maintained
implicitly.

Since we mechanize our proofs in Coq, we cannot assume Barendregt’s variable conven-
tion. Instead, we use the (slightly broken) substitution operation above. In our use cases,
the substitution will only insert closed terms (i.e., terms without any free variables), which
avoids the problem of variable capture entirely. (In later sections, we will discuss the more
complicated DeBruijn representation, which makes it easy to define a substitution which
avoids variable capturing.)
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1.1 Operational Semantics

In order to reason about programs, we have to assign a semantics to them. In the fol-
lowing, we assign an operational semantics to programs—we describe how runtime terms
are evaluated. We distinguish three different operational semantics: structural semantics,
contextual semantics, and big-step semantics.

Structural Semantics e ≻ e′
We define a structural call-by-value, right-to-left operational semantics on our runtime
terms. This means we do not allow reduction below lambda abstraction, and we always
evaluate the right term to a value, before we start evaluating the left term.

app-struct-r
e2 ≻ e′2

e1 e2 ≻ e1 e′2

app-struct-l
e1 ≻ e′1

e1 v ≻ e′1 v
beta
(λx. e)v ≻ e[v/x]

plus-struct-l
e1 ≻ e′1

e1 +v ≻ e′1 +v

plus-struct-r
e2 ≻ e′2

e1 + e2 ≻ e1 + e′2

plus
n+m ≻ n+m

Exercise 1 Prove that the structural semantics e ≻ e′ is deterministic. That is, show
that if e ≻ e′ and e ≻ e′′, then e′ = e′′. •

Exercise 2 The semantics e ≻ e′ is a call-by-value semantics, meaning arguments are
evaluated to values before they are inserted into lambda abstractions. The call-by-value ap-
proach is used by many programming languages (e.g., Java, C, Standard ML, and OCaml).
Alternatively, one can defer the evaluation of function arguments and, instead, insert their
unevaluated form directly into lambda abstractions. This style of operational semantics is
called call-by-name semantics and is followed by some functional languages (e.g., Haskell).
The core rule of this semantics is:

cbn-beta
(λx. e) e′ ≻cbn e[e

′/x]

a) Complete the definition of e ≻cbn e
′ and give one expression, which evaluates to different

values under call-by-name and call-by-value semantics.
Hint: For call-by-name, the left side of an application has to be evaluated first.

b) Prove that e ≻cbn e
′ is deterministic.

•

Big-Step Semantics e ↓ v
Sometimes, it will be convenient to use so-called big-step semantics. Whereas the (small-
step) structural semantics describes step by step how an expression executes, the big-step
semantics directly relates expressions to their final value.

literal
n ↓ n

lambda
λx. e ↓ λx. e

app
e1 ↓ λx. e e2 ↓ v2 e[v2/x] ↓ v

e1 e2 ↓ v

plus
e1 ↓ n1 e2 ↓ n2
e1 + e2 ↓ n1 + n2
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Exercise 3 Prove that the big-step and the small-step semantics e ≻ e′ are equivalent:

e ↓ v iff e ≻∗ v •

Exercise 4 The evaluation order for e ≻ e′ is right-to-left. We are now going to consider
left-to-right evaluation order.

a) Define a semantics e ≻ltr e
′, which evaluates expressions in left-to-right order.

b) Pick terms e and e′ such that e ≻ltr e
′ but not e ≻ e′.

c) Show that both are equivalent if we evaluate to values.
Hint: It suffices to show e ≻∗

ltr v iff e ↓ v .

d) Think of the programming languages you have encountered in your past. Is it in one
of them possible to obtain different results, depending on left-to-right or right-to-left
evaluation order?

•

Contextual Semantics
The structural semantics e ≻ e′ has two kinds of rules: (1) rules such as app-struct-l,
which descend into the term to find the next subterm to reduce (which is called a redex ) and
(2) rules such as beta and plus, which reduce redexes. Next, we define a third operational
semantics, the contextual operational semantics e1 ; e2, which separates the search for
the redex (i.e., structurally descending in the term) from the reduction. While separating
redex search and reduction does not have any immediate benefits for us at the moment, it
will lead to more elegant reasoning principles later on.

For the contextual semantics, we first define evaluation contexts:

Evaluation Contexts K ::= • | K v | e K | K +v | e+K

Evaluation contexts are expressions with a hole (e.g., •+41), which describe where in the
expression the next redex can be found. We can fill the hole with an expression using the
following function:

Context Filling K[e]

•[e] := e

(K v)[e] := (K[e])v

(e ′K)[e] := e ′(K[e])

(K +v)[e] := K[e] +v

(e′ +K)[e] := e′ +K[e]

Base reduction and contextual reduction e1 ;b e2 and e1 ; e2

beta
(λx. e)v ;b e[v/x]

plus
n+m;b n+m

ctx
e1 ;b e2

K[e1] ; K[e2]
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Lemma 1 (Context Lifting). If e1 ; e2, then K[e1] ; K[e2].

Proof. Assume that e1 ; e2. By inversion, there exist K ′, e′1, e
′
2 such that e′1 ;b e

′
2 and

e1 = K ′[e′1] and e2 = K ′[e′2]. To construct a proof of K[K ′[e′1]] ; K[K ′[e′2]], we essentially
need to compose the two contexts in order to apply ctx.

We define a context composition operation in the following. We can then close this
proof by Lemma 2.

Context Composition K1 ◦K2

• ◦K2 := K2

(K v) ◦K2 := (K ◦K2)v

(e ′K) ◦K2 := e ′(K ◦K2)

(K +v) ◦K2 := (K ◦K2) +v

(e′ +K) ◦K2 := e′ + (K ◦K2)

Lemma 2. K1[K2[e]] = (K1 ◦K2)[e]

Proof. By induction on K1.

Exercise 5 Prove that the structural and the contextual semantics are equivalent:

e ≻ e′ iff e; e′ •

1.2 The Untyped λ-calculus

Before we start to integrate types into our calculus (in Section 1.3), we first examine
the untyped version of the lambda calculus. The untyped lambda calculus, even without
addition and natural numbers, is quite expressive computationally—it is Turing complete!
We will now explore its computational power in the fragment e ::= x | λx. e | e1 e2. The
slogan is: All you need are lambdas, variables, and beta reduction.

Let us try to define some simple terms:

I := λx. x F := λx, y. x S := λx, y. y ω := λx. xx Ω := ωω

I computes the identity function, while F and S evaluate to their first or second argument,
respectively. ω and Ω are more interesting. ω applies its argument to itself, and Ω applies
ω to itself. So let us try out what happens when we evaluate Ω.

Ω = ωω = (λx. xx)ω ≻ (xx)[ω/x] = ωω = Ω

As it turns out, Ω reduces to itself! Thus, there are terms in the untyped lambda calculus
such as Ω which diverge (i.e., their reduction chains do not terminate).

Scott encodings We can not only write diverging terms, but we can also encode inductive
data types in the untyped lambda calculus. For example, we can encode natural numbers
in their Peano representation (i.e., with the constructors 0 and S) as lambda terms. The
basic idea is to interpret natural numbers as “case distinctions”. That is, each number will
be an abstraction with two arguments, s and f , the cases. If the number is 0, then it will
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return the argument s. If the number is Sn, then it will return the result of f applied to
the predecessor n.

zero := λs, f. s succ(n) := λs, f. f n

Note that here, the n in the definition of succ is a lambda term.
Following this principle, we can define an encoding function that defines the encoding

of a number as a lambda term:

enc(0) = zero

enc(Sn) = succ(enc(n))

Let us write down a few numbers:

enc(0) = zero = λs, f. s

enc(1) = succ(zero) = λs, f. f (λs, f. s)

enc(2) = succ(succ(zero)) = λs, f. f (λs, f. f (λs, f. s))

We can use this representation, known as the Scott encoding, to compute with natural
numbers. That is, since we can do a case analysis on the numbers by definition, we can
distinguish them and compute different results depending on the case. For example, the
function pred = λn. n zero I computes the predecessor of a Scott encoded natural number.

Exercise 6 Define a function on Scott encoded natural numbers which returns the identity
for 0 and diverges for every other number. •

Exercise 7 (Scott encoding of Booleans and Pairs) Similar to numbers, there are
Scott encodings for all first-order inductive data types (e.g., pairs and lists). These
encodings allow us to work with structured data in the untyped lambda calculus. Define
a Scott encoding for Booleans and pairs. •

If we want to define slightly more interesting functions on our numbers such as addition
add n m, we run into a problem. The naive definition of addition would be:

add := λn,m. n m (λn′. Succ(add n′ m)) where Succ := λn, s, f. f n

Unfortunately, this definition is broken! The term that we want to define, add, occurs in
its own definition on the right hand side. To fix this problem, we are now going to develop
a mechanism to add recursion to the untyped lambda calculus.

Recursion To enable recursion, we define a recursion operator fix (sometimes called fix-
point combinator or Y -combinator). The idea of fix is that given a template λf, x. e of
the recursive function that we want to define (where f can be used for recursive calls in
e), the expression fix (λf, x. e) v reduces to e[fix (λf, x. e)/f ][v/x], so it replaces x by the
argument and f by the recursive function. More precisely, the desired reduction behavior
of fix is

fix(λf, x. e)v ≻∗ e[fix (λf, x. e)/f ][v/x]
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We will define fix below. Beforehand, let us explore how we can define recursive func-
tions such as add with fix. We define add as add := fix(λa, n. λm. n m (λn′. Succ(a n′ m))).
With this definition, we have:

add n m ≻∗ (λm. n m (λn′. Succ(add n′ m))) m

≻ n m (λn′. Succ(add n′ m))

as desired. In fact, we can prove that add has the desired computational behavior:

Lemma 3. add (enc(n)) (enc(m)) ≻∗ enc(n+m)

To define fix, we will abstract over the template and assume it is some abstract value F .
That is, we will define the operator fix such that fix F v ≻∗ F (fix F ) v . If F is a template
of the form λf, x. e, then F (fix F ) v reduces in two more steps to e[fix (λf, x. e)/f ][v/x].

The definition of fix F (where fix is parametric in F ) consists of two parts:

fix F := λx. fix′ fix′ F x

fix′ := λf, F. F (λx. f f F x)

The idea is that fix is defined using a term fix′, which relies on self-application (like Ω)
to implement recursion. So we provide fix′ with itself, the template F , and the function
argument x. In the definition of fix′, we are given fix′ as f and the template F . The
argument for x is omitted to get the right reduction behavior (as we will see below). Given
these arguments, we want to apply the template F to fix F . What this means in the scope
of fix′ is that we apply F to the term λx. f f F x.

With this definition, fix F has the right reduction behavior:

fix F v = (λx. fix′ fix′ F x) v

≻ fix′ fix′ F v

≻ (λF. F (λx. fix′ fix′ F x)) F v

≻ F (λx. fix′ fix′ F x) v

= F (fix F ) v

With first-order inductive data types and recursion, one can define basic arithmetic
operations (e.g., addition, multiplication) and build up larger programs. In fact, we have
now seen all the basic building blocks that are needed to prove that the untyped lambda
calculus is Turing complete (which we will not do in this course).

1.3 Typing

We now extend our language with a type system. We distinguish between source terms,
containing type information, and runtime terms, which we have used in the previous sec-
tions.

Types A,B ::= int | A→ B

Variable Contexts Γ ::= ∅ | Γ, x : A

Source Terms E ::= x | λx : A. E | E1 E2 | E1 + E2 | n
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Church-style typing Γ ⊢ E : A

Typing on source terms amounts to checking whether a source term is properly annotated.

var
x : A ∈ Γ

Γ ⊢ x : A

lam
Γ, x : A ⊢ E : B

Γ ⊢ λx : A. E : A→ B

app
Γ ⊢ E1 : A→ B Γ ⊢ E2 : A

Γ ⊢ E1 E2 : B

plus
Γ ⊢ E1 : int Γ ⊢ E2 : int

Γ ⊢ E1 + E2 : int

int
Γ ⊢ n : int

Curry-style typing Γ ⊢ e : A
Typing on runtime terms amounts to assigning a type to a term (if possible).

var
x : A ∈ Γ

Γ ⊢ x : A

lam
Γ, x : A ⊢ e : B

Γ ⊢ λx. e : A→ B

app
Γ ⊢ e1 : A→ B Γ ⊢ e2 : A

Γ ⊢ e1 e2 : B

plus
Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

int
Γ ⊢ n : int

Exercise 8 (Typing Uniqueness) Prove that Church typing is unique:

if Γ ⊢ E : A and Γ ⊢ E : B, then A = B

Does the same hold for Curry typing? Prove it or give a counter example. •

For our language, the connection between Church-style typing and Curry-style typing
can be stated easily with the help of a type erasure function. Erase takes source terms and
turns them into runtime terms by erasing the type annotations in lambda abstractions.

Type Erasure Erase(·)

Erase(x) := x

Erase(λx : A. E) := λx.Erase(E)

Erase(E1 E2) := Erase(E1)Erase(E2)

Erase(E1 + E2) := Erase(E1) + Erase(E2)

Erase(n) := n

Lemma 4 (Erasure). If ⊢ E : A, then ⊢ Erase(E) : A.

Exercise 9 Prove the Erasure lemma. •

Type Inference infer Γ E

Source terms in the simply-typed λ-calculus contain enough typing information for us to
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infer their types automatically.

infer Γ x = Γ[x]

infer Γ n = Some int

infer Γ (λx : A. E) = Some (A→ B) if infer (Γ, x : A) E = Some B

infer Γ (λx : A. E) = None if infer (Γ, x : A) E = None

infer Γ (E1 E2) = Some B if infer Γ E1 = Some (A→ B)

and infer Γ E2 = Some A

infer Γ (E1 E2) = None otherwise

infer Γ (E1 + E2) = Some int if infer Γ E1 = Some int

and infer Γ E2 = Some int

infer Γ (E1 + E2) = None otherwise

Exercise 10 Prove that the function infer is correct. That is, show the correspondence:

infer Γ E = SomeA iff Γ ⊢ E : A •

1.4 Type Safety

We now turn to the traditional property to prove usefulness of a type system: type safety.

Statement 5 (Type Safety). If ⊢ e : A and e ≻⋆ e′, then e′ is progressive.

Here, we call the following terms progressive:

Definition 6 (Progressive Terms). A (runtime) term e is progressive if either it is a value
or there exists e′ s.t. e; e′.

To prove type safety, we first have to prove a sequence of intermediate results about
our type system.

Lemma 7 (Weakening for Curry-style typing). If Γ1 ⊢ e : A and Γ1 ⊆ Γ2, then Γ2 ⊢ e : A.

Proof. By induction on Γ1 ⊢ e : A for arbitrary Γ2.

Lemma 8 (Preservation of Typing under Substitution).
If Γ, x : A ⊢ e : B and ⊢ e′ : A, then Γ ⊢ e[e′/x] : B.

Proof. By induction on e for arbitrary B and Γ.

Lemma 9 (Canonical forms). If ⊢ v : A, then:

– if A = int, then v = n for some n

– if A = A1 → A2 for some A1, A2, then v = λx. e for some x, e

Proof. By inversion.

Theorem 10 (Progress). If ⊢ e : A, then e is progressive.
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Proof Sketch. By induction on ⊢ e : A. We discuss the case of application. Let ⊢ e1 : B →
A and ⊢ e2 : B. By induction e1 and e2 are progressive. We distinguish three cases:

a) Let e1 and e2 be values. Then by Lemma 9 e1 = λx. e for some x and e. Thus, by beta
we have e1e2 ; e[e2/x].

b) Let e1 ; e′1 and e2 be a value. Then e1 e2 ; e′1 e2 by Lemma 1 with K := (• e2).

c) Let e2 ; e′2. Then e1 e2 ; e1 e
′
2 by Lemma 1 with K := (e1 •).

To complete the proof of type safety, we still need one important property of our type
system: preservation (see Theorem 14). For the proof of preservation, we define the notion
of contextual typing ⊢ K : A⇒ B, which expresses that a context is of type B if filled with
an expression of type A. As for many other mathematical concepts, there are two ways
to define contextual typing: For years, Derek used an intensional definition of contextual
typing, meaning a definition with inductive rules similar to typing rules from which valid
context typings can be derived. In the following, we are going to use the more concise
extensional definition of Jules Jacobs, where we take the property that we want from
contextual typing as the definition.

Contextual typing ⊢ K : A⇒ B

⊢ K : A⇒ B := ∀e. ⊢ e : A ⇒⊢ K[e] : B

Lemma 11 (Decomposition). If ⊢ K[e] : A, then there exists B s.t.

⊢ K : B ⇒ A and ⊢ e : B.

Proof. By induction on K.

Lemma 12 (Composition). If ⊢ K : B ⇒ A and ⊢ e : B, then ⊢ K[e] : A.

Proof. By definition. This would be an induction for the intensional definition of contextual
typing.

Lemma 13 (Base preservation). If ⊢ e : A and e;b e
′, then ⊢ e′ : A.

Proof. By cases on e;b e
′:

Case 1: beta, e = (λx. e1)v and e′ = e1[v/x]. It remains to show that ⊢ e1[v/x] : A. By
inversion on ⊢ e : A we have ⊢ λx. e1 : A0 → A and ⊢ v : A0 for some A0. By inversion
on ⊢ λx. e1 : A0 → A we have x : A0 ⊢ e1 : A. By Lemma 8, we have ⊢ e1[v/x] : A.

Case 2: plus, e = n+m and e′ = n+m. By inversion on ⊢ e : A, we have A = int. We
establish ⊢ n+m : int by int.

Theorem 14 (Preservation). If ⊢ e : A and e; e′, then ⊢ e′ : A.

Proof. Invert e; e′ to obtain K, e1, e′1 s.t. e = K[e1] and e′ = K[e′1] and e1 ;b e
′
1.

By Lemma 11, there exists B s.t. ⊢ K : B ⇒ A and ⊢ e1 : B.
By Lemma 13, from ⊢ e1 : B and e1 ;b e

′
1, we have ⊢ e′1 : B.

By Lemma 12, from ⊢ e′1 : B and ⊢ K : B ⇒ A, we have ⊢ K[e′1] : A, so we are done.
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Corollary 15 (Type Safety). If ⊢ e : A and e;⋆ e′, then e′ is progressive.

Exercise 11 We call an expression e safe if for any expression e′ s.t. e ;⋆ e′, e′ is
progressive. If e is closed and well-typed, by Type Safety we know that e must be safe. Is
there a closed expression that is safe, but not well-typed? In other words, is there a closed
expression e that is safe but there is no type A s.t. ⊢ e : A? Give one example if there is
such an expression, otherwise prove their non-existence. •

Exercise 12 (Products and Sums) From logic, you know the connectives conjunction
(∧) and disjunction (∨). The corresponding constructs in programming are products and
sums. In the following, we will extend our lambda calculus with support for products and
sums. Let us start by extending the syntax of the language and the type system:

Types A,B ::= . . . | A×B | A+B

Source Terms E ::= . . . | ⟨E1, E2⟩ | π1 E | π2 E
| injA+B

1 E | injA+B
2 E

| (caseE0 of E1 | E2 end)

Runtime Terms e ::= . . . | ⟨e1, e2⟩ | π1 e | π2 e
| inj1 e | inj2 e | (case e0 of e1 | e2 end)

(Runtime) Values v ::= . . . | ⟨v1,v2⟩ | inj1 v | inj2 v

The structural operational semantics of products and sums is given by:

. . .

prod-struct-l
e1 ≻ e′1

⟨e1,v2⟩ ≻ ⟨e′1,v2⟩

prod-struct-r
e2 ≻ e′2

⟨e1, e2⟩ ≻ ⟨e1, e′2⟩

proj-struct
e ≻ e′

πi e ≻ πi e′
proj
πi ⟨v1,v2⟩ ≻ vi

inj-struct
e ≻ e′

inji e ≻ inji e
′

case-struct
e0 ≻ e′0

case e0 of e1 | e2 end ≻ case e′0 of e1 | e2 end

case-inj
case inji v of e1 | e2 end ≻ ei v

and their typing rules are given by:

. . .

prod
Γ ⊢ E1 : A Γ ⊢ E2 : B

Γ ⊢ ⟨E1, E2⟩ : A×B

proj
Γ ⊢ E : A1 ×A2

Γ ⊢ πi E : Ai

inj
Γ ⊢ E : Ai

Γ ⊢ injA1+A2
i E : A1 +A2

case
Γ ⊢ E0 : B + C Γ ⊢ E1 : B → A Γ ⊢ E2 : C → A

Γ ⊢ caseE0 of E1 | E2 end : A

We can define a bit of syntactic sugar for our convenience:

match e0 of inj1 x1. e1 | inj2 x2. e2 end := case e0 of (λx1.e1) | (λx2.e2) end

In this exercise, you will extend the contextual operational semantics and the type
safety proof for products and sums.

a) Extend the typing rules for runtime terms (Curry-style).
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b) Extend the statement of the canonical forms lemma.

c) Extend the definition of evaluation contexts K.

d) Extend the definition of context filling K[e].

e) Extend the definition of the base reduction ;b.

f) Extend the definition of the big-step semantics.

g) Extend the proof of progress for the new cases.

h) Extend the proof of composition and decomposition for the new cases.

i) Extend the proof of base preservation. Note how we only need to extend the proof of
base preservation: the proof of preservation itself does not change.

Note that the proofs for the old cases do not change. •

Exercise 13 (Binary operators) Our simple calculus has only a single operator: binary
addition. In this exercise, we are going to add additional binary operators: multiplication
× as well as subtraction −.

It turns out that the operational semantics and typing rules for binary operators follow
a very similar pattern. Thus, it will be useful to setup a bit of shared machinery. We define
the binary operators as follows and adapt the expressions of our language with a common
expression for all binary operators:

o : O ::= + | × | −
Runtime Terms e ::= . . . | n | e1 o e2

We can define a common rule for the contextual semantics, where we have a function for
evaluating the binary operators (returning an option, in case the operator is not applicable
to the two operands), where we leave it to you to define bin_eval.

binop
bin_eval v1 v2 = Some(v)

v1 o v2 ;b v

For extending the typing rules and the proofs of progress and preservation, it will
similarly pay off to set up some shared structure. We define a separate typing judgment for
binary operators, making it general enough to extend it with non-integer binary operators
in the future (e.g., for binary operators on Booleans):

plus
int ; int ⊢binop + : int

mul
int ; int ⊢binop × : int . . .

Then, we need just a single typing rule for binary operators:

binop
Γ ⊢ E1 : A1 Γ ⊢ E2 : A2 A1 ;A2 ⊢binop o : A

Γ ⊢ E1oE2 : A

It is your task to fill out the remaining details by following the steps outlined above.
Concretely, perform the following steps for each of the exercises:
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a) Extend the definition of the base reduction ;b. For that, complete the definition of
bin_eval.

b) Extend the definition of evaluation contexts K.

c) Extend the definition of context filling K[e] and context composition K1 ◦K2.

d) Extend the typing rules for runtime terms (Curry-style) and define the new typing
judgment ⊢binop.

e) Extend the statement of the canonical forms lemma.

f) Extend the statement of the substitutivity lemma (preservation of typing under sub-
stitution).

g) Extend the proof of progress for the new cases.

h) Extend the proof of base preservation. Note how we only need to extend the proof of
base preservation: the proof of preservation itself does not change.

i) Extend the definition of the big-step semantics.

You will note that the proofs for the existing constructs of the language do not change.
•

1.5 Termination

In this section, we want to prove that every well-typed term eventually reduces to a value.

Statement 16 (Termination). If ⊢ e : A, then there exists v s.t. e;∗ v .

We define the notion of “semantically good” expressions and values.

Value Relation VJAK

VJintK := {n | n ∈ Z}
VJA→ BK := {λx. e | ∀v .v ∈ VJAK⇒ e[v/x] ∈ EJBK}

Expression Relation EJAK

EJAK := {e | ∃v . e ↓ v ∧v ∈ VJAK}

Context Relation GJΓK

∅ ∈ GJ∅K
γ ∈ GJΓK v ∈ VJAK
γ[x 7→ v ] ∈ GJΓ, x : AK

Above, we have discussed substitution of a single variable. For the definition of semantic
typing, we need parallel substitution: the action of substituting multiple free variables by
values from a map γ.

15 Draft of February 14, 2022



Substitution γ(e)

γ(x) :=

{
v if γ(x) = v

x ow.

γ(n) := n

γ(λx. e) := λx. (γ[x 7→ ⊥]) e
γ(e1 e2) := γ(e1) γ(e2)

γ(e1 + e2) := γ(e1) + γ(e2)

We can now define a semantic typing judgment.

Semantic Typing Γ ⊨ e : A

Γ ⊨ e : A := ∀γ ∈ GJΓK. γ(e) ∈ EJAK

Lemma 17 (Value Inclusion). If e ∈ VJAK, then e ∈ EJAK.

Theorem 18 (Semantic Soundness). If Γ ⊢ e : A, then Γ ⊨ e : A.

Proof. By induction on Γ ⊢ e : A, and then using the compatibility lemmas of the semantic
typing (see Lemma 19, Lemma 20, and Lemma 21). The compatibility lemmas state that
we can derive the rules of syntactic typing for semantic typing. As such, the semantic
typing is compatible with the syntactic typing. In these semantic soundness proofs, for
each syntactic rule, the inductive hypotheses give us the semantic premises of the rule. We
then only need to apply the corresponding compatibility lemma to close the case.

Compatibility lemmas for var, lam, and app are Lemma 19, Lemma 20, and Lemma 21,
respectively. We omit the compatibility lemmas for int and plus.

Lemma 19 (Compatibility with var). If x : A ∈ Γ then Γ ⊨ x : A.

Proof.

We have: To show:
x : A ∈ Γ Γ ⊨ x : A

Suppose γ ∈ GJΓK γ(x) ∈ EJAK
γ(x) ∈ VJAK
We conclude by value inclusion (Lemma 17).

Lemma 20 (Compatibility with lam). If Γ, x : A ⊨ e : B then Γ ⊨ λx. e : A→ B.
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Proof.

We have: To show:
Γ, x : A ⊨ e : B Γ ⊨ λx. e : A→ B

Suppose γ ∈ GJΓK γ(λx. e) ∈ EJA→ BK
λx. (γ[x 7→ ⊥])(e) ∈ EJA→ BK

By Lemma 17, to show λx. (γ[x 7→ ⊥])(e) ∈ VJA→ BK
Suppose v ∈ VJAK ((γ[x 7→ ⊥])e)[v/x] ∈ EJBK
Let γ′ := γ[x 7→ v ], so γ′(e) = γ[x 7→ v ](e)

= γ[x 7→ ⊥][x 7→ v ](e)

= (γ[x 7→ ⊥](e))[v/x]
γ′(e) ∈ EJBK

From γ ∈ GJΓK and v ∈ VJAK, have γ′ ∈ GJΓ, x : AK
We are done by using the assumption Γ, x : A ⊨ e : B.

Lemma 21 (Compatibility with app). If Γ ⊨ e1 : A→ B and Γ ⊨ e2 : A then Γ ⊨ e1 e2 : B.

Proof.

We have: To show:
Γ ⊨ e1 : A→ B

Γ ⊨ e2 : A Γ ⊨ e1 e2 : B
Suppose γ ∈ GJΓK γ(e1 e2) ∈ EJBK

γ(e1) γ(e2) ∈ EJBK
From assumptions,
there exist x, e′, v2 s.t. γ(e1) ↓ λx. e ∈ VJA→ BK and γ(e2) ↓ v2 ∈ VJAK.
So e[v2/x] ∈ EJBK
∃v . e[v2/x] ↓ v ∈ VJBK
By app, γ(e1) γ(e2) ↓ v ∈ VJBK, so we are done

Exercise 14 In the value relation, we define the set of “good” function values as:
VJA→ BK := {λx. e | ∀v .v ∈ VJAK⇒ e[v/x] ∈ EJBK}

If we instead define the set as:
VJA→ BK := {v | ∀v ′.v ′ ∈ VJAK⇒ v v ′ ∈ EJBK}

does the proof of semantic soundness still go through? •

Corollary 22 (Termination). If ∅ ⊢ e : A, then there exists v s.t. e ↓ v .

Proof. By Theorem 18, we have ∅ ⊨ e : A. Pick γ to be the identity, which clearly is in
GJ∅K. Hence e ∈ EJAK. By definition then, ∃v . e ↓ v .

Exercise 15 Extend the termination proof, which requires extending the semantic sound-
ness proof, to cover products and sums.

•
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Exercise 16 (Call-by-name Termination) Recall the call-by-name small-step seman-
tics e ≻cbn e

′. The corresponding big-step semantics is defined as:

n ↓cbn n λx. e ↓cbn λx. e
e1 ↓cbn n e2 ↓cbn m
e1 + e2 ↓cbn n+m

e1 ↓cbn λx. e e[e2/x] ↓cbn v
e1 e2 ↓cbn v

To prove that expressions terminate under call-by-name evaluation, we can setup a
similar logical relation to the one for call-by-value evaluation:

VJintK := {n | n ∈ Z}
VJA→ BK :=

{
λx. e

∣∣ ∀e′. e′ ∈ EJAK⇒ e[e′/x] ∈ EJBK
}

EJAK := {e | ∃v . e ↓cbn v ∧v ∈ VJAK}
GJ∅K := {γ | γ = ∅}

GJΓ, x : AK := {γ[x 7→ e] | γ ∈ GJΓK ∧ e ∈ EJAK}
Γ ⊨ e : A := ∀γ ∈ GJΓK. γ(e) ∈ EJAK

Prove that all well-typed, closed terms terminate under call-by-name evaluation. That
is, show that if ⊢ e : A, then e ↓cbn v for some v .

•
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2 System F: Polymorphism and Existential Types

We extend the STLC with polymorphism and existential types. Polymorphism is widespread
in modern (functional) programming languages, while existential types serve as a way of
creating data abstraction, with a rough correspondence to modules in ML-like languages.

2.1 System F

Types A,B ::= . . . | ∀α. A | ∃α. A | α
Type Variable Contexts ∆ ::= ∅ | ∆, α

Source Terms E ::= . . . | Λα. E | E ⟨A⟩ | pack [A,E] as ∃α. B
| unpackE as [α, x] inE′

Runtime Terms e ::= . . . | Λ. e | e ⟨⟩ | pack e | unpack e as x in e′
(Runtime) Values v ::= . . . | Λ. e | packv

Evaluation Contexts K ::= . . . | K ⟨⟩ | packK | unpackK as x in e

Contextual operational semantics e1 ;b e2

bigBeta
(Λ. e) ⟨⟩;b e

unpack
unpack (packv) as x in e;b e[v/x]

Because we now deal with type variables, we have to deal with a new kind of contexts:
type variable contexts. The typing judgments will now carry both a type variable context
and “normal” variable context. All the existing typing rules remain valid, with the type
variable context being the same in all premises and the conclusion of the typing rules.
However, for the typing rule for lambdas, we have to make sure that the argument type is
actually well-formed in the current typing context.

Type Well-Formedness ∆ ⊢ A

FV(A) ⊆ ∆

∆ ⊢ A

Church-style typing ∆ ; Γ ⊢ E : A

. . .

lam
∆ ⊢ A ∆ ; Γ, x : A ⊢ E : B

∆ ; Γ ⊢ λx : A. E : A→ B

bigLam
∆, α ; Γ ⊢ E : A

∆ ; Γ ⊢ Λα. E : ∀α. A

bigApp
∆,Γ ⊢ E : ∀α. B ∆ ⊢ A
∆ ; Γ ⊢ E ⟨A⟩ : B[A/α]

pack
∆ ⊢ A ∆ ; Γ ⊢ E : B[A/α] (∆ ⊢ ∃α. B)

∆ ; Γ ⊢ pack [A,E] as ∃α. B : ∃α. B

unpack
∆ ; Γ ⊢ E : ∃α. B ∆, α ; Γ, x : B ⊢ E′ : C ∆ ⊢ C

∆ ; Γ ⊢ unpackE as [α, x] inE′ : C
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Curry-style typing ∆ ; Γ ⊢ e : A

. . .

lam
∆ ⊢ A ∆ ; Γ, x : A ⊢ e : B

∆ ; Γ ⊢ λx. e : A→ B

app
∆ ; Γ ⊢ e1 : A→ B ∆ ; Γ ⊢ e2 : A

∆ ; Γ ⊢ e1 e2 : B

bigLam
∆, α ; Γ ⊢ e : A

∆ ; Γ ⊢ Λ. e : ∀α. A

bigApp
∆,Γ ⊢ e : ∀α. B ∆ ⊢ A

∆ ; Γ ⊢ e ⟨⟩ : B[A/α]

pack
∆ ⊢ A ∆ ; Γ ⊢ e : B[A/α]

∆ ; Γ ⊢ pack e : ∃α. B

unpack
∆ ; Γ ⊢ e : ∃α. B ∆, α ; Γ, x : B ⊢ e′ : C ∆ ⊢ C

∆ ; Γ ⊢ unpack e as x in e′ : C

The problem with named binders In the above definition of System F, we have used
strings (e.g., α, β, γ, . . .) for the type variables. While this approach is very intuitive for
humans, it causes trouble when we attempt to mechanize System F in Coq. The issue is
once again variable capturing (see Section 1). The substitution on types A[B/α] has the
same problems as the substitution on terms e[e′/x]: if we define A[B/α] naively, then it
incurs variable capturing if the type we insert contains free variables (e.g., α in α→ α).

For the term substitution e[e′/x] variable capturing was not a problem, because we
usually insert closed expressions e′. As it turns out, for our type substitution variable
capturing will be a problem. To see why, consider the following example:

Ecapt := Λβ. (Λα.Λβ. λx : α→ β. x)⟨β⟩

Intuitively, Ecapt should have type ∀β, β′. (β → β′) → (β → β′), since the inner
(Λα. · · · ) ⟨β⟩ “cancel each other out”. Unfortunately, if we attempt to type check Ecapt, it
is not as simple.

...

β ; ∅ ⊢ Λα.Λβ. λx : α→ β. x : ∀α, β. (α→ β)→ (α→ β)

β ; ∅ ⊢ (Λα.Λβ. λx : α→ β. x)⟨β⟩ : Asubst
Asubst = (∀β. (α→ β)→ (α→ β))[β/α]

∅ ; ∅ ⊢ Ecapt : ∀β. Asubst

In this derivation, Asubst will be the result of (∀β. (α → β) → (α → β))[β/α]. A
capture avoiding substitution would replace the bound variable β with another variable
(e.g., β′), resulting in Asubst = ∀β′. (β → β′)→ (β → β′). In contrast, a capture incurring
substitution such as the one we defined on terms in Section 1 will not do any renaming.
Thus, it would result in Asubst = ∀β. (β → β)→ (β → β).

While capture-avoiding substitution is very easy for humans, it is extremely tedious to
mechanize. When reasoning formally, in Coq, we will thus avoid this tedium, by switching
to a variable representation that is easier to mechanize but arguably harder to read for
humans: De Bruijn indices.
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2.2 De Bruijn representation

In De Bruijn representation, variables are not strings that are bound at a binder (e.g.,
λx, Λα, ∃α, and ∀α). Instead, variables are natural numbers which indicate to which
binder they refer. More precisely, they explain how many binders we need to “skip” (going
up the syntax tree) until we reach the binder for the variable. This abstract idea is best
understood with a few examples:

• The type ∀α. α → α is represented as ∀. 0̂ → 0̂. When looking for the binding occur-
rence of the variable α, we have to skip 0 binders, as the single type quantifier binds
it.

• The type ∀α, β. α → β is represented as ∀. ∀. 1̂ → 0̂. When looking for the binding
occurrence of α, we have to skip the quantifier introducing β.

• The type ∀α. (∃β. α→ β)→ α is represented as ∀. (∃. 1̂→ 0̂)→ 0̂. Note that the term
structure is important: the first occurrence of α is replaced by 1̂, as it sits below an
additional quantifier, while the second occurrence is not below further binders.

In De Bruijn representation, our types are:

A,B ::= . . . | ∀. A | ∃. A | n̂

Exercise 17 (De Bruijn) In this exercise, you will get some practice with translating
between the different representations.

(a) Translate the following types using named binders to their De Bruijn representation.

• ∀α. α
• ∀α. α→ α

• ∀α, β. α→ (β → α)→ α

• ∀α. (∀β. β → α)→ (∀β, δ. β → δ → α)

• ∀α, β. (β → (∀α. α→ β))→ α

(b) Translate the following types in De Bruijn representation to a named representation.
You may choose names arbitrarily, but without conflicts, so ensure that translating the
resulting types back to De Bruijn representation would produce the original type again.

• ∀. ∀. 0̂
• ∀. (∀. 1̂→ 0̂)

• ∀. ∀. (∀. 1̂→ 0̂)

• ∀. (∀. 0̂→ 1̂)→ ∀. 0̂→ 1̂→ 0̂

•

Exercise 18 (Named to De Bruijn) Write a function, which translates types in named
representation to types in De Bruijn representation. Test your function on the examples
from Exercise 17.
Hint: Define a function debruijn m A where m is a map keeping track of which De Bruijn
indices the free variables in A point to. You will need to update this map as you move
underneath binders. •
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Exercise 19 (DeBruijn to Named) If we attempt to define a function which maps
types in De Bruijn representation to their named counterparts, we are faced with a decision.
There are multiple different named types which map to the same De Bruijn representation.
Give two named types that have the same De Bruijn representation. •

Substitution Let us now turn to substitution on types in De Bruijn representation. The
substitution operation that we want for System F, denoted A[σ], replaces the free variables
in A with the types given by the parallel substitution σ. (We will derive a unary substitu-
tion A[B/ ] corresponding to A[B/α] from A[σ] subsequently.) Defining A[σ] can be done
mechanically (i.e., its definition follows a concrete recipe), but it can get a bit hairy. Thus,
we use a tool in Coq, called Autosubst [9], which defines A[σ] for us and provides us with
tactics to reason about it. To understand in principle what is going on and how De Bruijn
types work, we sketch how one can define the capture avoiding, parallel substitution A[σ].

As a stepping stone, we define a broken, capture incurring substitution operation A[σ]:

n̂[σ] := σ(n)

int[σ] := int

(A→ B)[σ] := A[σ]→ B[σ]

(∀. A)[σ] := ∀. A[⇑ σ]
(∃. A)[σ] := ∃. A[⇑ σ]

⇑ σ := 0̂.σ

(A.σ) 0 := A

(A.σ) (n+ 1) := σ(n)

For variables, we simply look up in the map σ which type should be inserted for n. The
interesting cases are binders. For binders such as ∀. A, we must change the substitution:
we want the variable 0̂ in A to remain unchanged, since it is bound to the quantifier ∀.
For all other variables, we need to shift the substitution: 0̂ outside of the binder ∀ is 1̂

inside of the binder, so we need to replace 1̂ with σ(0) and not with σ(1). That is what
the lifting operation ⇑ σ does. ⇑ σ uses the so-called cons A.σ to map 0̂ to itself and
shift the substitution σ. To see that this makes sense, consider the following example:
(∀. 0̂ → 1̂ → 2̂)[bool.int.unit. . . .]. If we compute the substitution, then we obtain the
desired result ∀. 0̂→ bool→ int (and not ∀. bool→ int→ unit or ∀. 0̂→ int→ unit).

As teased above, this substitution still has one fundamental flaw: it is capture incurring.
For example, if we apply the identity substitution id(n) := n̂ to ∀. 0̂→ 1̂, then one would
intuitively expect the result ∀. 0̂→ 1̂. However, if we compute (∀. 0̂→ 1̂)[id] for the broken
substitution above, we obtain ∀. 0̂→ 0̂, which is clearly wrong! The problem is that when
we move underneath a binder (here ∀), we do not account for the free variables in the types
in σ. For example, if σ = id inserts 0̂ for 0 outside of the binder, then it needs to insert 1̂

for 1 underneath the binder.
Thus, to make A[σ] capture avoiding, we rename all the variables in the substitution σ

as soon as we move underneath a binder: if they previously referred to n, then they should
refer to n+ 1 underneath the binder. In the definition of A[σ], this change is reflected by
changing ⇑ σ:

⇑ σ := 0̂.(ren S σ) where (ren δ σ)(n) := ren δ (σ n) and S n := n+ 1

The renaming operation on types (with a map δ from variables to variables) is defined
analogously to substitution by:

22 Draft of February 14, 2022



ren δ n̂ := δ̂(n)

ren δ int := int

ren δ (A→ B) := ren δ A→ ren δ B

ren δ (∀. A) := ∀. ren (⇑ren δ) A
ren δ (∃. A) := ∃. ren (⇑ren δ) A

⇑ren δ := 0.(S ◦ δ)
(n.δ) 0 := n

(n.δ) (m+ 1) := δ(m)

(δ ◦ δ′) n := δ(δ′n)

Note that, when we move underneath a binder with ⇑ren, the variable renaming leaves
the variable 0̂ unchanged and increases all the renamed variables (coming from δ). That
is, it shifts δ by one (through the cons) and increases its results by one (through the S).
The former is required to replace the right variables underneath the binder and the latter
to not screw up which binder the (free) variables in δ refer to.

Given the capture avoiding parallel substitution A[σ], we can derive a single point
substitution A[B/ ] := A[B.id] needed for the type system. In the type system, we often
want to replace the variable of a binder with a type (e.g., in the case of bigApp)—that
is what A[B/ ] does! It replaces the variable 0̂ with A and decreases all other variables
in A since the binder ∀ has been removed. To see that this makes sense, consider the
rule bigApp for the example E ⟨int⟩. If ∆ ; Γ ⊢ E : ∀. 0̂ → 1̂, then we have the desired
∆ ; Γ ⊢ E ⟨int⟩ : int→ 0̂ since (0̂→ 1̂)[int/ ] = (0̂→ 1̂)[int.id] = int→ 0̂.

Exercise 20 (De Bruijn Terms) For terms, we have opted for a named representation
(i.e., with strings as variables and binders which carry a variable). Define a De Bruijn
representation of the terms and define a capture avoiding substitution operation on them.
•

2.3 System F with De Bruijn types

In the rest of these notes, we will pretend to work in ordinary System F with named
binders, because it significantly improves readability. However, since doing the same in
Coq is not an option (due to the broken type substitution), we will use a version System
F with De Bruijn types in Coq. In the following, we make precise what System F with De
Bruijn types looks like.

Types A,B ::= . . . | ∀. A | ∃. A | n̂
Type Variable Contexts ∆ := N

Source Terms E ::= . . . | Λ. E | E ⟨A⟩ | pack [A,E] as ∃. B
| unpackE as [x] inE′

Runtime Terms e ::= . . . | Λ. e | e ⟨⟩ | pack e | unpack e as x in e′
(Runtime) Values v ::= . . . | Λ. e | packv

Evaluation Contexts K ::= . . . | K ⟨⟩ | packK | unpackK as x in e

Contextual operational semantics e1 ;b e2

bigBeta
(Λ. e) ⟨⟩;b e

unpack
unpack (packv) as x in e;b e[v/x]
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With De Bruijn types, our type variable contexts become natural numbers. Since
binders use successive numbers, we just have to keep track of a bound on the maximum
type variable used.

Type Well-Formedness ∆ ⊢ A

wf-int
∆ ⊢ int

wf-lam
∆ ⊢ A ∆ ⊢ B

∆ ⊢ A→ B

wf-tvar
n < ∆

∆ ⊢ n̂

wf-tforall
1 + ∆ ⊢ A
∆ ⊢ ∀. A

wf-texists
1 + ∆ ⊢ A
∆ ⊢ ∃. A

In the typing judgments, we have to take a bit of care when introducing new type
variables to the context. We introduce new type variables when we move underneath a
type binder (i.e., ∃. or ∀. ). As with substitution, when we move underneath a binder,
we must be careful to not screw up the mapping between free variables and the binders
they refer to (in this case in the context Γ). That is, the variable 0̂ will now point to the
binder we just moved under, and all other variables have to be increased by one. We do
the increase with the operation ↑ A := ren S A and lift it to typing contexts ↑ Γ pointwise.

Church-style typing ∆ ; Γ ⊢ E : A

. . .

lam
∆ ⊢ A ∆ ; Γ, x : A ⊢ E : B

∆ ; Γ ⊢ λx : A. E : A→ B

bigLam
1 + ∆; ↑ Γ ⊢ E : A

∆ ; Γ ⊢ Λ. E : ∀. A

bigApp
∆,Γ ⊢ E : ∀. B ∆ ⊢ A
∆ ; Γ ⊢ E ⟨A⟩ : B[A/ ]

pack
1 + ∆ ⊢ A ∆ ; Γ ⊢ E : A[B/ ] ∆ ⊢ B

∆ ; Γ ⊢ pack [B,E] as ∃. A : ∃. A

unpack
∆ ; Γ ⊢ E : ∃. A 1 + ∆ ; (↑ Γ), x : A ⊢ E′ :↑ B ∆ ⊢ B

∆ ; Γ ⊢ unpackE as [x] inE′ : B

Curry-style typing ∆ ; Γ ⊢ e : A

. . .

lam
∆ ⊢ A ∆ ; Γ, x : A ⊢ e : B

∆ ; Γ ⊢ λx. e : A→ B

app
∆ ; Γ ⊢ e1 : A→ B ∆ ; Γ ⊢ e2 : A

∆ ; Γ ⊢ e1 e2 : B

bigLam
1 + ∆; ↑ Γ ⊢ e : A
∆ ; Γ ⊢ Λ. e : ∀. A

bigApp
∆,Γ ⊢ e : ∀. B ∆ ⊢ A

∆ ; Γ ⊢ e ⟨⟩ : B[A/ ]

pack
1 + ∆ ⊢ A ∆ ; Γ ⊢ e : A[B/ ] ∆ ⊢ B

∆ ; Γ ⊢ pack e : ∃. A

unpack
∆ ; Γ ⊢ e : ∃. A 1 + ∆ ; (↑ Γ), x : A ⊢ e′ :↑ B ∆ ⊢ B

∆ ; Γ ⊢ unpack e as x in e′ : B
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2.4 Type Safety

In this section, we prove type safety for System F. In the exercises, you will extend the
proofs to also cover existential types. As already stated above, we will continue to work
with named binders on paper from now on, and only use De Bruijn indices when working
formally in Coq.

Theorem 23 (Progress). Theorem 10 remains valid: If ⊢ e : A, then e is progressive.

Proof. Remember we are doing induction on ⊢ e : A.

Case 1: bigLam, e = Λ. e1. e is a value.

Case 2: bigApp, e = v ⟨⟩ and ⊢ v : ∀α. B.
v = Λ. e′ for some e′ by inversion (or canonical forms), and e; e′ by bigBeta, ctx.

Case 3: bigApp, e = e′ ⟨⟩ where e′ is not a value.
By inversion and induction, we have that e′ is progressive and hence there exists e′′ s.t.
e′ ; e′′. Thus we have e; e′′ ⟨⟩.

Case 4: pack, unpack. See Exercise 21.

Lemma 24 (Type Substitution).

If ∆, α ; Γ ⊢ e : A and ∆ ⊢ B, then ∆ ; Γ[B/α] ⊢ e : A[B/α].

Technically speaking, we must update the composition and decomposition lemmas to
handle the new evaluation contexts. However, we will omit this trivial proof.

Theorem 25 (Preservation).

Theorem 14 remains valid: If ⊢ e : A and e; e′, then ⊢ e′ : A.

Proof. The proof of preservation remains the same. We only need to update the proof for
base preservation (Lemma 13).

We have: To show:
Case: bigBeta
Have e = (Λ. e1) ⟨⟩ and e′ = e1 ⊢ e1 : B[C/α]

By inversion on ⊢ e : A, have ⊢ Λ. e1 : ∀α. B s.t. A = B[C/α], ⊢ C.
By another inversion, have α ; ∅ ⊢ e1 : B.
We are done by type substitution.
Case: unpack
See Exercise 21.

Exercise 21 Extend the proofs of progress and preservation to handle existential types.
•

Exercise 22 (Universal Fun) For this and the following exercises, we are working in
System F with products and sums.

a) Define the type of function composition, and implement it.
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b) Define a function swapping the first two arguments of any other function, and give its
type.

c) Given two functions of type A→ A′ and B → B′, it is possible to “map” these functions
into products, obtaining an function A × B → A′ × B′. Write down such a mapping
function and its type.

d) Do the same with sums.

•

Exercise 23 (Existential Fun) In your first semester at UdS, when you learned ML,
you may have seen a signature very similar to this one:

signature ISET = sig
type set
val empty : set
val singleton: int -> set
val union : set -> set -> set
val subset : set -> set -> bool

end

Assume we have a primitive type bool in our language, with two literals for true and false.
We also need a corresponding conditional if e0 then e1 else e2. Assume that besides addition,
we also have subtraction and the comparison operators (=, ̸=, <, ≤, >, ≥) on integers.
Furthermore, assume we can write arbitrary recursive functions with fixA,B f x. e. The
typing rule is

rec
Γ, f : A→ B, x : A ⊢ E : B

Γ ⊢ fixA,B f x. e : A→ B

For example, the Fibonacci function could be written as follows:

fixint,int fib x. if x ≤ 1 then x else fib ((x− 2)) + fib (x− 1)

This term has type int→ int. Finally, assume that the language has record types. Records
are, syntactically, a bit of a mouthful:

Types A ::= · · · | {(lab : A)∗}
Runtime Terms e ::= · · · | {(lab := e)∗} | e.lab
(Runtime) Values v ::= · · · | {(lab := v)∗}
Eval. Contexts K ::= · · · | {(lab := v)∗, lab := K, (lab := e)∗} | K.lab

but their typing and primitive reduction rules are quite similar to those for the unit type
and binary products:

record
∆ ; Γ ⊢ e1 : A1 · · · ∆ ; Γ ⊢ en : An

∆ ; Γ ⊢ {lab1 := e1, . . . , labn := en} : {lab1 : A1, . . . , labn : An}

project
{lab1 := v1, . . . , labn := vn}.labi ;b vi when 1 ≤ i ≤ n
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Here, the metavariable lab ranges over a denumerable set of labels (disjoint from variables
and type variables), and the notation (X)∗ denotes a finite list X1, X2, . . . , Xn of X’s.
The record v := {add := λx. λy. x + y, sub := λx. λy. x − y, neg := λx. 0 − x}, for
example, comprises components v .add, v .sub, and v .neg implementing integer addition,
subtraction, and negation functions. We presuppose that the components of any record
have distinct labels. Thus, {a := true, b := {a := false}} is syntactically well-formed but
{a := true, a := false} is not, due to the repetition of label a.

Now, let’s do some programming with existential types.

a) Define a type AISET that corresponds to the signature ISET given above.

b) Define an implementation of AISET, with the operations actually doing what you would
intuitively expect. Notice that you don’t have lists, so you will have to find some other
representation of finite sets. (The tricky part of this exercise is making sure that the
subset check is a terminating function.)

c) Define a type AISETE that extends type AISET with a function that tests if two sets are
equal. Define a function of type AISET → AISETE that transforms any arbitrary imple-
mentation of AISET into an implementation of AISETE, by adding an implementation of
the equality function.

•

2.5 Church encodings

System F allows us to encode other types using universal types. These encodings are called
Church encodings.

The empty type

0 := ∀α. α

The unit type

1 := ∀α. α→ α

() := Λ. λx. x

Booleans

bool := ∀α. α→ α→ α

true := Λ. λt. λf. t

false := Λ. λt. λf. f

ifC v thenv1 elsev2 := v ⟨C⟩v1 v2
ifC e then e1 else e2 := (e ⟨1→ C⟩ (λ(). e1) (λ(). e2)) ()

The C type in ifC e then e1 else e2 denotes the type of e1 and e2, which is the return
type of the expression. Also note that e1 and e2 are “hidden” under a lambda abstraction
to maintain a call-by-value semantics.
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Statement 26. if false then e1 else e2 ;
⋆ e2.

Proof.

if false then e1 else e2 := ((Λ. λt. λf. f) ⟨1→ C⟩ (λ(). e1) (λ(). e2)) ()
; ((λt. λf. f) (λ(). e1) (λ(). e2)) ()

;⋆ (λ(). e2) ()

; e2

Product types

A×B := ∀α. (A→ B → α)→ α

⟨v1,v2⟩ := Λα. λp : A→ B → α. pv1 v2

⟨e1, e2⟩ := let x2 = e2 in let x1 = e1 in ⟨x1, x2⟩
π1 e := e ⟨A⟩ (λx : A, y : B. x)

π2 e := e ⟨B⟩ (λx : A, y : B. y)

Church numerals

nat := ∀α. α→ (α→ α)→ α

zero := Λα. λz : α. λs : α→ α. z

n := Λα. λz : α. λs : α→ α. sn(z)

succ := λn : nat.Λα. λz : α. λs : α→ α. s (n ⟨α⟩ z s)
iterC := λn : nat. λz : C. λs : C → C. n ⟨C⟩ z s

Statement 27. iterC n z s;
⋆ result of sn(z).

Exercise 24 Define a Church encoding for sum types in System F.

a) Define the encoding of the type A+B.

b) Implement inj1 v , inj2 v , and matchv0 of inj1 x1. e1 | inj2 x2. e2 end.

c) Prove that your encoding has the same reduction behaviors as the built-in sum type.

d) Prove that your encoding also has the same typing rules as the built-in sum type.

•

Exercise 25 Lists in System F can be Church encoded as

listA := ∀α. α→ (A→ α→ α)→ α

a) Implement nil, which represents the empty list, and consv1 v2, which constructs a new
list by prepending v1 of type A to the list v2 of type listA.

b) Define the typing rules for lists, and prove that your encoding satisfies those rules.
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c) Define a function head of type list A → A + 1. head l should evaluate to inj1 v if l
evaluates to a list whose head is v , or inj2 () if l evaluates to nil. You do not need to
verify its correctness.

d) Define a function tail of type listA → listA, which computes the tail of the list. You
do not need to verify its correctness.

2.6 Termination

We extend the semantic model to handle universal and existential types. The naïve ap-
proach (i.e., quantifying over arbitrary syntactic types in the interpretation of universals
and existentials) does not yield a well-founded relation. The reason for this is that the
type substituted in for the type variable may well be larger than the original universal or
existential type. Instead, we quantify over so-called semantic types. To make this work,
we need to introduce semantic type substitutions which map type variables to semantic
types in our model (we assume that type substitutions δ are total; they may assign bogus
semantic types, like the semantic type of all closed values, for type variables we do not
care about).

Big-Step Semantics e ↓ v

bigLambda
Λ. e ↓ Λ. e

bigApp
e1 ↓ Λ. e e ↓ v

e1 ⟨⟩ ↓ v

pack
e ↓ v

pack e ↓ packv

unpack
e ↓ packv e′[v/x] ↓ v ′

unpack e as x in e′ ↓ v ′

Semantic Types τ ∈ SemType

SemType := P(CVal)
CVal := {v |v closed}

Value Relation VJAKδ

VJαKδ := δ(α)

VJintKδ := {n | n ∈ Z}
VJA→ BKδ := {(λx. e) ∈ CVal | ∀v .v ∈ VJAKδ ⇒ e[v/x] ∈ EJBKδ}
VJ∀α. AKδ := {(Λ. e) ∈ CVal | ∀τ ∈ SemType. e ∈ EJAK(δ, α 7→ τ)}
VJ∃α. AKδ := {packv | ∃τ ∈ SemType.v ∈ VJAK(δ, α 7→ τ)}

Expression Relation EJAKδ

EJAKδ := {e | ∃v . e ↓ v ∧v ∈ VJAKδ}

Context Relation GJΓKδ

crel-empty
GJΓKδ(γ)

crel-elem
GJΓKδ(γ) v ∈ VJAKδ
GJΓ, x : AKδ(γ, x 7→ v)
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Semantic Typing ∆ ; Γ ⊨ e : A

∆ ; Γ ⊨ e : A := ∀δ. ∀γ ∈ GJΓKδ. γ(e) ∈ EJAKδ

Theorem 28 (Semantic Soundness).

Theorem 18 remains valid: If ∆ ; Γ ⊢ e : A, then ∆ ; Γ ⊨ e : A.

Proof. By induction on ∆ ; Γ ⊢ e : A and then using the compatibility lemmas. The
existing cases need to be adapted to the extended model with type variable substitutions.
This is a straightforward exercise. We present the cases for universal types in Lemma 29
and Lemma 30. You will finish the cases for existential types in Exercise 26.

We write our compatibility lemmas as inference rules. This is just a notational device;
each is an implication from its premises to its conclusion.

Lemma 29 (Compatibility for type abstraction; cf. bigLam).

∆, α ; Γ ⊨ e : A

∆,Γ ⊨ Λ. e : ∀α. A

Proof.

We have: To show:
∆, α ; Γ ⊨ e : A ∆,Γ ⊨ Λ. e : ∀α. A
Suppose δ and γ ∈ GJΓKδ γ(Λ. e) ∈ EJ∀α. AKδ

By bigLambda: Λ. γ(e) ∈ VJ∀α. AKδ
Suppose τ ∈ SemType γ(e) ∈ EJAK(δ, α 7→ τ)

Have: δ′ = (δ, α 7→ τ) is a type substitution
By applying ∆, α ; Γ ⊨ e : A, we only need to show γ ∈ GJΓKδ′

To finish the proof, we make use of an auxiliary lemma which we do not prove here:

Lemma (Boring Lemma 1). If δ1 and δ2 agree on the free type variables of Γ and A, then

VJAKδ1 = VJAKδ2
GJΓKδ1 = GJΓKδ2
EJAKδ1 = EJAKδ2

Lemma 30 (Compatibility for type application; cf. bigApp).

∆ ; Γ ⊨ e : ∀α. B ∆ ⊢ A
∆,Γ ⊨ e ⟨⟩ : B[A/α]

30 Draft of February 14, 2022



Proof.

We have: To show:
∆ ; Γ ⊨ e : ∀α. B ∆,Γ ⊨ e ⟨⟩ : B[A/α]

∆ ⊢ A
Suppose δ is a type substitution, γ ∈ GJΓKδ γ(e ⟨⟩) ∈ EJB[A/α]Kδ

γ(e) ⟨⟩ ∈ EJB[A/α]Kδ
∃v̂ . γ(e) ⟨⟩ ↓ v̂ ∈ VJB[A/α]Kδ

By bigApp: ∃ê, v̂ . γ(e) ↓ Λ. ê and ê ↓ v̂ ∈ VJB[A/α]Kδ
∃ê. γ(e) ↓ Λ. ê and ê ∈ EJB[A/α]Kδ

From ∆ ; Γ ⊨ e : ∀α. B:
γ(e) ∈ EJ∀α. BKδ
γ(e) ↓ v ∈ VJ∀α. BKδ for some v
v = Λ. e′ and ∀τ ∈ SemType. e′ ∈ EJBK(δ, α 7→ τ) for some e′

Pick ê := e′ e′ ∈ EJB[A/α]Kδ
Set τ := VJAKδ and δ′ := (δ, α 7→ τ) VJAKδ ∈ SemType

EJB[A/α]Kδ = EJBKδ′

Again, to finish this proof we rely on auxiliary lemmas:

Lemma (Boring Lemma 2).

VJBK(δ, α 7→ VJAKδ) = VJB[A/α]Kδ
EJBK(δ, α 7→ VJAKδ) = EJB[A/α]Kδ

Lemma (Boring Lemma 3). If δ is a type substitution and ∆ ⊢ A, then VJAKδ ∈ SemType.

Exercise 26 Prove the compatibility lemmas for the cases of existential types. •

2.7 Free Theorems

Our model allows us to prove several theorems about specific universal types. This class
of theorems was coined “free theorems” by Wadler [10].

Example (∀α. α). We prove that there exists no term e s.t. ⊢ e : ∀α. α.

Proof.

We have: To show:
Suppose, by way of contradiction, ⊢ e : ∀α. α ⊥
Let δemp(β) := ∅ for any type variable β.
By Theorem 28, e ∈ EJ∀α. αKδemp, so e ↓ v ∈ VJ∀α. αKδemp

Pick τ = ∅, then v = Λ. e′ and e′ ∈ EJαK(δemp[α 7→ ∅])
Hence e′ ↓ v ′ ∈ ∅ for some v ′

Example (∀α. α→ α). We prove that all inhabitants of ∀α. α→ α are identity functions,
in the sense that given a closed term f of that type, for any closed value v we have f ⟨⟩v ↓ v .
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Proof.

We have: To show:
Suppose ⊢ f : ∀α. α→ α f ⟨⟩v ↓ v
Let δemp(β) := ∅ for any type variable β.
By Theorem 28, f ↓ fv ∈ VJ∀α. α→ αKδemp

Pick τ = {v}
We have fv = Λ. e′ and e′ ∈ EJα→ αK(δemp[α 7→ τ ]).
(We sometimes write this as EJτ → τK.)
From v ∈ τ , we have e′ v ∈ EJτK and thus e′ v ↓ v .
So, f ⟨⟩v ;∗ fv ⟨⟩v = (Λ. e′) ⟨⟩v ; e′ v ↓ v

Exercise 27 We consider System F with products. For each of the following types, state
a property P that holds for all inhabitants of that type (∀f : A. P ) and then prove it. Your
property should be as strong as possible.

a) ∀α, β. α→ β → α× β

b) ∀α, β. α× β → α

c) ∀α, β. α→ β

•

Exercise 28 Prove the following: Given a closed term f of type ∀α. α→ α→ α, and any
two closed values v1, v2, we have either f ⟨⟩v1 v2 ↓ v1 or f ⟨⟩v1 v2 ↓ v2. •

Exercise 29 Suppose A1, A2, and A are closed types and f is a closed term of type
∀α. (A1 → A2 → α) → α and g is a closed term of type A1 → A2 → A. Prove that if
f ⟨⟩ g ↓ v , then ∃v1,v2. g v1 v2 ↓ v . (Essentially, this means that f can do nothing but call
g with some arguments.) •

Limitation of the semantic model It is important to note that our semantic model in
its current form is not strong enough to prove that our Church encodings are faithful
encodings, in the sense that we cannot prove that our encodings of values for a type
encapsulate the behaviors we expect for those values. As an example, we look at the
encoding of bool values.

For any value v s.t. ⊢ v : bool = ∀α. α→ α→ α, we have a Free Theorem:

Statement 31 (Free Theorem for bool values). ∀v1,v2. ∃v ′.v ⟨⟩v1 v2 ↓ v ′ ∈ {v1,v2}.

Statement 31 allows us to say that (if v then v1 else v2) ↓ v ′ ∈ {v1,v2}. This result is
a bit weak: it does not guarantee that two executions of if v then v1 else v2 will evaluate
to the same value, because one execution can evaluate to v1, while the other to v2. Thus
the theorem does not allow us to distinguish true and false values. We actually want the
following stronger lemma, which encapsulates the expected behaviors of bool values.

Statement 32 (Expected behaviors of bool values).

(∀v1,v2.v ⟨⟩v1 v2 ↓ v1), or (∀v1,v2.v ⟨⟩v1 v2 ↓ v2).
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The lemma states that the application of v either always produces the first value (the
then branch), or always produces the second value (the else branch). We show that our
semantic model, which is strong enough to show Statement 31, is not strong enough to
prove Statement 32. We do this by adding an extension to our language, with which we
can build a bool value that satisfies Statement 31 but violates Statement 32.

We extend the language with an expression if0(e1, e2) which checks if the result of e1
is 0. If so, it returns 0 otherwise it returns the result of e2:

if0(0,v) ;b 0
v ̸= 0

if0(v , w) ;b w

∆ ; Γ ⊢ e1 : A ∆ ; Γ ⊢ e2 : A
∆ ; Γ ⊢ if0(e1, e2) : A

Even with the extension, type safety and the fundamental theorem still hold. However,
we can now construct the following value:

vbad := Λα. λx, y : α. if0(x, y)

We can see that vbad has type bool and satisfies Statement 31 but not Statement 32.
When instantiated with int and given the arguments 0 and 1, vbad returns 0, so the first
argument. In contrast, when instantiated with int and two arguments where the first one
is not zero, then vbad returns the second argument. For example, we have:

vbad ⟨int⟩ 0 1 ;⋆ 0 vbad ⟨int⟩ 1 0 ;⋆ 0

Thus, our semantic model does not distinguish different bool values. In order to prove
that our Church encodings are faithful encodings, we would need to extend our model to
reasoning about relational parametricity originally proposed by Reynolds [7].

2.8 Existential types and invariants

To prove that existential types can serve to maintain invariants, we introduce a new con-
struct to the language: assert. assert e gets stuck when e does not evaluate to true. This
construct is not syntactically well-typed, but semantically safe when used correctly (i.e.,
when there is some guarantee that the argument will never be false).

Source Terms E ::= . . . | assertE
Runtime Terms e ::= . . . | assert e

Evaluation Contexts K ::= . . . | assertK

Contextual operational semantics e1 ;b e2

. . .

assert-true
assert true ;b ()

We can now use the assert construct to assert invariants of our implementations of
existential types.

Consider the following signature.

BIT := ∃α. {bit : α, flip : α→ α, get : α→ bool}

33 Draft of February 14, 2022



We can implement this signature as follows.

MyBit := pack [int,
{
bit := 0, flip := λx. 1− x, get := λx. x > 0

}
] asBIT

It is not hard to see that MyBit implements the signature and behaves like a boolean,
assuming bit is always either 1 or 0. In fact, we can use Semantic Soundness (Theorem 28)
and the new assert construct to prove that this is indeed the case.

For this, we change MyBit to assert the invariant within flip and get.

MyBit := pack [int, {bit := 0, flip := λx. assert (x == 0 ∨ x == 1) ; 1− x,
get := λx. assert (x == 0 ∨ x == 1) ; x > 0}] as BIT

We encode the sequential composition e1 ; e2 as let x = e1 in e2 where x is not free in
e2. This, in turn, is encoded as (λx. e2) e1.

There is no typing rule for assert, so our new implementation is not well-typed. This is
because it is not statically obvious that the assertion will always hold. We’ll have to prove
it! So the best we can hope for is semantic safety: ⊨ MyBit : BIT.

Lemma (Semantically Safe Booleans).
MyBit ∈ VJBITK.

Proof.

We have: To show:
MyBit ∈ VJBITK

Pick τ :=
{
0, 1

}
It suffices to show

bit := 0,

flip := λx. assert (x == 0 ∨ x == 1) ; 1− x,
get := λx. assert (x == 0 ∨ x == 1) ; x > 0


∈ VJ{bit : α, flip : α→ α, get : α→ bool}K(α 7→ τ)

Thus, we are left with three cases.
Case: bit 0 ∈ VJαK(α 7→ τ) = τ

This is true, since 0 ∈
{
0, 1

}
Case: flip (λx. assert (x == 0 ∨ x == 1) ; 1− x) ∈ VJα→ αK(α 7→ τ)

Suppose v ∈ τ
(assert (v == 0 ∨v == 1) ; 1−v) ∈ EJαK(α 7→ τ)

Since v ∈ τ ,
have (assert (v == 0 ∨v == 1) ; 1−v) ; (() ; 1−v) ; 1−v ; 1− n
where v = n

1− n ∈ VJαK(α 7→ τ) = τ

We conclude since 1− n ∈ τ .
Case: get

With similar reasoning as above, we show that the assert succeeds.

Note that all our structural syntactic safety rules extend to semantic safety. In other
words, if some syntactically well-typed piece of code uses MyBit, then the entire program
will be semantically safe because every syntactic typing rule preserves the semantic safety.
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(The entire program cannot be syntactically well-typed, since it contains MyBit.) This is
essentially what we prove when we prove Semantic Soundess (Theorem 28). Thus, proving
an implementation like the one above to be semantically safe means that no code that
makes use of the implementation can break the invariant. If the entire term that contains
MyBit is semantically safe, the invariant will be maintained.

Note: It would not have been necessary to add a new primitive assert to the language.
Instead, we could have defined it as

assertE := ifE then () else 0 0

assert e := if e then () else 0 0

Clearly, these definitions have the same reduction behavior – and also the same typing
rule, i.e., none. This again explains why we have to resort to a semantic proof to show
that the bad event, the crash (here, using 0 as a function) does not occur.

Exercise 30 Consider the following existential type:

A := ∃α. {zero : α, add2 : α→ α, toint : α→ int}

and the following implementation

E := pack [int,
{
zero := 0, add2 := λx. x+ 2, toint := λx. x

}
] asA

This exercise is about proving that toint will only ever yield even numbers. To that end,
we assume the existence of a closed function even : int→ bool testing whether a number is
even. Assuming that we extended our calculus with a recursion operator, we could define
it as follows:

even := fixint,int f x.

if x = 0 then true else if x = 1 then false else if x < 0 then f (x+ 2) else f (x− 2)

a) Change E such that toint asserts evenness of the argument before it is returned.

b) Prove, using the semantic model, that your new value is safe (i.e., that its type erasure
is in VJAK). You may assume that even works as intended, but make sure you state
this assumption formally.

•

Exercise 31 Consider the following existential type, which provides an interface to any
implementation of the sum type.

SUM(A,B) := ∃α. {myinj1 : A→ α,

myinj2 : B → α,

mycase : ∀β. α→ (A→ β)→ (B → β)→ β}

Of course, we could now implement this type using the sum type that we built into the
language. But instead, we could also pick a different implementation – an implementation
that is in some sense “daring”, since it is not syntactically well-typed. However, thanks to
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the abstraction provided by existential type, we can be sure that no crash will occur at
runtime (i.e., the program will not get stuck).

We define such an implementation as follows:

MySum(A,B) := pack {myinj1 := λx. ⟨1, x⟩,
myinj2 := λx. ⟨2, x⟩,
mycase := Λ. λx, f1, f2. if π1 x == 1 then f1 (π2 x) else f2 (π2 x)}

Your task is to show that the implementation is safe: Prove that for all closed types A,
B, we have MySum(A,B) ∈ VJSUM(A,B)K. •

2.9 Contextual Equivalence and Relational Parametricity

We revisit the problem of showing that our Church encodings are full and faithful en-
codings. They are full in the sense that the encodings include all the canonical forms we
expect as elements of the type, and they are faithful in the sense that the encodings do
not include those that do not behave like one of the canonical forms.

In the particular case of bool, we want to show that our encoding of true and false

actually behaves like boolean values true and false respectively. As a plan of attack, we
want to show that if ⊢ v : bool, then v and η(v) := ifv then true else false have the same
behaviors. That is, we show that if we use v in the way boolean values are intended for to
construct another boolean, then the new expression should have the same behavior as v .

In order to define what it means to “behaves like”, we introduce contextual equivalence
and, to prove it, Reynolds’ relational parametricity [7]. Note that while we work with
System F here, the results extend also to languages with more complex features.

Program Contexts To define contextual equivalence, we define program contexts—contexts
with a hole in an arbitrary position (even underneath binders).

Program Context C ::= • | C e | e C | λx. C | Λα. C | C ⟨A⟩ | C + e | e+ C

| packC | unpackC as x in e | unpack e as x inC | · · ·

Similar to evaluation contexts, program contexts have a filling operation which plugs in an
expression for the hole C[e]. The definition is straightforward (and not spelled out here).

Exercise 32

a) Are there any evaluation contexts that are not also program contexts? If yes, give 3
examples. If no, explain why not.

b) Are there any program contexts that are not also evaluation contexts? If yes, give 3
examples. If no, explain why not.

c) Are there any contexts that are both program and evaluation contexts? If yes, give 3
examples. If no, explain why not.

•
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Program Context Typing C : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ A′)

hole
• : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ A)

lam
C : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′, x : A1 ⊢ A2)

λx. C : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ A1 → A2)

app-l
C : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ A2 → A′) ∆′ ; Γ′ ⊢ e : A2

C e : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ A′)

app-r
C : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ A2) ∆′ ; Γ′ ⊢ e : A2 → A′

e C : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ A′)

bigLam
C : (∆ ; Γ ⊢ A)⇝ (∆′, α ; Γ′ ⊢ A′)

Λα. C : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ ∀α. A′)

bigApp
C : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ ∀α. A′) ∆′ ⊢ A1

C ⟨A1⟩ : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ A′[A1/α])

pack
C : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ A′[A1/α]) ∆′ ⊢ A1

packC : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ ∃α. A′)

unpackL
C : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ ∃α. B) ∆′, α ; Γ′, x : B ⊢ e′ : D ∆′ ⊢ D

unpackC as x in e′ : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ D)

unpackR
C : (∆ ; Γ ⊢ A)⇝ (∆′, α ; Γ′, x : B ⊢ D) ∆′ ; Γ′ ⊢ e : ∃α. B ∆′ ⊢ D

unpack e as x inC : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ D)

sumL
C : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ int) ∆′ ; Γ′ ⊢ e : int

C + e : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ int)

sumR
C : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ int) ∆′ ; Γ′ ⊢ e : int

e+ C : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ int)

The judgement C : (∆ ; Γ ⊢ A) ⇝ (∆′ ; Γ′ ⊢ A′) essentially says that if ∆ ; Γ ⊢ e : A,
then ∆′ ; Γ′ ⊢ C[e] : A′. However, in contrast to program contexts K, we define the
judgement intensionally (i.e., as an inductive definition) this time. The reason for the
different definition will become clear below.
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Contextual Equivalence ∆ ; Γ ⊢ e1 ≡ctx e2 : A

∆ ; Γ ⊢e1 ≡ctx e2 : A :=

∀C : (∆ ; Γ ⊢ A)⇝ (∅ ; ∅ ⊢ int). ∃n. C[e1] ↓ n ∧ C[e2] ↓ n

Logical Equivalence ∆ ; Γ ⊢ e1 ≈ e2 : A

∆ ; Γ ⊢ e1 ≈ e2 : A := ∀δ. ∀(γ1, γ2) ∈ GJΓKδ. (γ1(e1), γ2(e2)) ∈ EJAKδ

Expression Relation EJAKδ

EJAKδ := {(e1, e2) | ∃v1,v2. e1 ↓ v1 ∧ e2 ↓ v2 ∧ (v1,v2) ∈ VJAKδ}

Value Relation VJAKδ

VRel := P(CVal × CVal)

VJαKδ := δ(α)

VJintKδ := {(n, n)}
VJA→ BKδ := {(λx1. e1, λx2. e2) ∈ CVal × CVal |

∀(v1,v2) ∈ VJAKδ. (e1[v1/x1], e2[v2/x2]) ∈ EJBKδ}
VJ∀α. AKδ := {(Λ. e1,Λ. e2) ∈ CVal × CVal | ∀R ∈ VRel. (e1, e2) ∈ EJAK(δ, α 7→ R)}
VJ∃α. AKδ := {(packv1, packv2) | ∃R ∈ VRel. (v1,v2) ∈ VJAK(δ, α 7→ R)}

Context Relation GJΓKδ

GJΓKδ :=
{
(γ, γ′)

∣∣ ∀x : A ∈ Γ.(γ(x), γ′(x)) ∈ VJAKδ
}

Lemma 33 (Binary value inclusion). If (v1,v2) ∈ VJAKδ, then also (v1,v2) ∈ EJAKδ

Exercise 33 Prove the relational compatibility lemmas for variables and for type abstrac-
tion. That is prove

x : A ∈ Γ

∆ ; Γ ⊢ x ≈ x : A

and

∆, α ; Γ ⊢ e ≈ e′ : A
∆ ; Γ ⊢ Λ. e ≈ Λ. e′ : ∀α. A

•

Theorem 34 (Soundness of ≈ w.r.t. ≡ctx).

If FV(e1) ⊆ dom(Γ) and FV(e2) ⊆ dom(Γ) and ∆ ; Γ ⊢ e1 ≈ e2 : A, then ∆ ; Γ ⊢
e1 ≡ctx e2 : A.
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Proof. Suppose C : (∆ ; Γ ⊢ A)⇝ (∅ ; ∅ ⊢ int).
By compatibility (Lemma 35), ∅ ; ∅ ⊢ C[e1] ≈ C[e2] : int.
By adequacy (Lemma 36), we are done.

Lemma 35 (Compatibility).

If FV(e1) ⊆ dom(Γ) and FV(e2) ⊆ dom(Γ), and ∆ ; Γ ⊢ e1 ≈ e2 : A
and C : (∆ ; Γ ⊢ A)⇝ (∆′ ; Γ′ ⊢ A′),

then ∆′ ; Γ′ ⊢ C[e1] ≈ C[e2] : A′.

Proof. By induction on C and then using the compatibility lemmas for each case.

Lemma 36 (Adequacy). If (e1, e2) ∈ EJintK, then e1 ↓ n and e2 ↓ n for some n.

Proof. By definition.

Example 37 (Representation Independence).

BIT := ∃α. {bit : α, flip : α→ α, get : α→ bool}
IntBit := pack

{
bit := 0,flip := λx. 1− x, get := λx. x > 0

}
BoolBit := pack { bit := false, flip := λx. not x, get := λx. x }

Goal: ⊢ IntBit ≈ BoolBit : BIT.

Proof. Pick R :=
{
(0, false), (1, true)

}
.

Theorem 38 (Fundamental Property of the Logical Relations).

If Γ ⊢ e : A then Γ ⊢ e ≈ e : A.

Proof. By induction on e and the compatibility lemmas.

Now we can go back to proving that bool is a full and faithful encoding.

Theorem 39. If ⊢ e : bool, then ⊢ e ≡ctx η(e) : bool.
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Proof.

We have: To show:
⊢ e : bool ⊢ e ≡ctx η(e) : bool

By soundness (Theorem 34) ⊢ e ≈ η(e) : bool
(e, if e then true else false) ∈ EJboolK

By the fundamental property (Theorem 38) and our assumption,
(e, e) ∈ EJboolK
So e ↓ v , and (i) (v ,v) ∈ VJboolK.
Also if e then true else false ↓ b ∈ {true, false}.

(v , b) ∈ VJboolK
(v , b) ∈ VJ∀α. α→ α→ αK

Suppose R ∈ VRel, (v1,v2) ∈ R, (v ′1,v ′2) ∈ R.
(v ⟨⟩v1 v ′1, b ⟨⟩v2 v ′2) ∈ EJRK

It suffices to show (v ⟨⟩v1 v ′1, (ifv then true else false) ⟨⟩v2 v ′2) ∈ EJRK
(v ⟨⟩v1 v ′1, (v ⟨⟩ true false) ⟨⟩v2 v ′2) ∈ EJRK

Pick S := {(va,vb) | (va,vb ⟨⟩v2 v ′2) ∈ EJRK} ∈ VRel.
It suffices to show (v ⟨⟩v1 v ′1,v ⟨⟩ true false) ∈ EJSK

We apply (i).
(v1, true) ∈ VJSK

Follows from the definition of S and that (v1,v2) ∈ R.
(v ′1, false) ∈ VJSK

Follows from the definition of S and that (v ′1,v
′
2) ∈ R.

Exercise 34 Prove that our church-encodings of natural numbers in Section 2.4 are full
and faithful. That is, show that if ⊢ n : nat, then ⊢ n ≡ctx n ⟨nat⟩ zero succ : nat. •

Exercise 35 In Exercise 31, we have encoded sums as tagged pairs. Of course, we can
also define an instance of the existential type in a trivial way by using primitive sums:

SumSum(A,B) := pack {myinj1 := λx. inj1x,

myinj2 := λx. inj2x,

mycase := Λ. λx, f1, f2.match x of inj1 x1.f1 x1 | inj2 x2.f2 x2 end}

Show that the two implementations are contextually equivalent, i.e., ⊢ SumSum ≡ctx

MySum : SUM(A,B). •
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3 Recursive Types

We extend our language with recursive types. These types allow us to encode familiar
recursive data structures, as well as the recursive functions needed to program with them.
A familiar example is the type of integer lists:

list≈ 1+A× list

Since list mentions itself, it is a recursive type. We use ≈ here, because we will not define
list as the right-hand side. However, it will be isomorphic.

To support such types, we introduce a new type former and two constructs that witness
the isomorphism between recursive types and their “definition”.

Types A,B ::= . . . | µα. A
Source Terms E ::= . . . | rollµα. A E | unrollµα. A E

Runtime Terms e ::= . . . | roll e | unroll e
(Runtime) Values v ::= . . . | roll v

Evaluation Contexts K ::= . . . | rollK | unrollK

Church-style typing ∆ ; Γ ⊢ E : A

· · ·

roll
∆ ; Γ ⊢ E : A[µα. A/α]

∆ ; Γ ⊢ rollµα. A E : µα. A

unroll
∆ ; Γ ⊢ E : µα. A

∆ ; Γ ⊢ unrollµα. A E : A[µα. A/α]

Curry-style typing ∆ ; Γ ⊢ e : A

· · ·

roll
∆ ; Γ ⊢ e : A[µα. A/α]
∆ ; Γ ⊢ roll e : µα. A

unroll
∆ ; Γ ⊢ e : µα. A

∆ ; Γ ⊢ unroll e : A[µα. A/α]

Contextual operational semantics e1 ;b e2

· · ·
unroll
unroll (roll v) ;b v

Note that roll and unroll witness the isomorphism between µα. A and A[µα. A/α].
With this machinery, we are now able to define list and its constructors as follows.

list := µα. 1+ int× α
≈ (1+ int× α)[list/α]
= 1+ int× list

nil := rolllist (inj1())

cons(h, t) := rolllist (inj2⟨h, t⟩)

Exercise 36 Prove that this definition of lists enjoys the expected typing rules. •

One might wonder why we do not take list to be equivalent to its unfolding. There are
two approaches to recursive types in the literature.
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a) equi-recursive types.
This approach makes recursive types and their (potentially) infinite set of unfoldings
equivalent. While it may be more convenient for the programmer, it also substantially
complicates the metatheory of the language. The reason for this is that the notion of
equivalence has to be co-inductive to account for infinite unfoldings.

b) iso-recursive types.
This the approach we are taking here. It makes recursive types and their unfolding
isomorphic. While it may seem like it puts the burden of rolling and unrolling on
the programmer, this can be (and is) hidden in practice. It does not complicate the
metatheory (much).

Exercise 37 Extend the proof of type safety (i.e., progress and preservation) to handle
recursive types. •

3.1 Untyped Lambda Calculus

Recursive types allow us to encode the untyped λ-calculus. The key idea here is that
instead of thinking about it as “untyped”, we should rather think about it as “uni-typed”.
We will call that type D (for dynamic).

To clearly separate between the host language and the language to be encoded, we
introduce new notation for abstraction and application. The following typing and reduction
rules should be fulfilled by these constructs.

Γ, x : D ⊢ e : D
Γ ⊢ lam x. e : D

Γ ⊢ e1 : D Γ ⊢ e2 : D
Γ ⊢ app(e1, e2) : D

e2 ; e′2

app(e1, e2) ; app(e1, e
′
2)

⊢ v2 : D e1 ; e′1

app(e1,v2) ; app(e′1,v2)
app(lam x. e,v) ;⋆ e[v/x]

From the typing rule for application, it is clear that we will somehow have to convert
from D to D → D. We chose D ≈D → D, i.e.,

D := µα. α→ α.

With this, the remaining definitions are straight-forward.

lam x. e := rollD (λx : D. e)

app(e1, e2) := (unroll e1) e2

These definitions respect the typing rules given above. It remains to show that the reduc-
tion rules also hold. Here, the most interesting case is that of beta reduction.

app(lam x. e,v) = (unroll (roll (λx. e)))v ; (λx. e)v ; e[v/x]

We can now show that our language with recursive types has a well-typed divergent

42 Draft of February 14, 2022



term. To do this, we define a term Ω that reduces to itself.

ω : D := lam x. app(x, x) = roll (λx. (unroll x) x)

Ω : D := app(ω, ω) = (unroll ω) ω ; (λx. (unroll x) x) ω ; (unroll ω) ω = Ω

Exercise 38 (Keep Rollin’) Use the roll and unroll primitives introduced in class to
encode typed fixpoints. Specifically: Suppose you are given types A and B well-formed
in ∆.

Define a value form fixA,B f x. e satisfying the following:

∆ ; Γ, f : A→ B, x : A ⊢ e : B
∆ ; Γ : fixA,B f x. e : A→ B

and (when A, B closed)

(fixA,B f x. e)v ;∗ e[fixA,B f x. e/f,v/x]

•

3.2 Girard’s Typecast Operator (“J”)

We will now show that we can obtain divergence—and encode a fixed-point combinator—by
other, possibly surprising, means. We assume a typecast operator cast and a default-value
operator O with the following types and semantics. (Technically, we have to change runtime
terms and the base reduction rules to have types in them. We will not spell out that change
here.)

cast : ∀α. ∀β. α→ β O : ∀α. α

A = B

cast ⟨A⟩ ⟨B⟩v ; v

A ̸= B

cast ⟨A⟩ ⟨B⟩v ; O ⟨B⟩

O ⟨int⟩; 0 O ⟨A→ B⟩; λx.O ⟨B⟩ O ⟨∀α. A⟩; Λα.O ⟨A⟩

Again, we encode the untyped λ-calculus. This time, we pick D := ∀α. α → α. It
suffices to simulate roll and unroll from the previous section for the type D.

unrollD := λx : D. x ⟨D⟩
rollD := λf : D → D.Λα. cast ⟨D → D⟩ ⟨α→ α⟩ f

It remains to check the reduction rule for unroll (roll v).

unrollD (rollD v) ; unrollD (Λα. cast ⟨D → D⟩ ⟨α→ α⟩v)
;⋆cast ⟨D → D⟩ ⟨D → D⟩v ; v

Exercise 39 Encode the roll and unroll primitives using Girard’s cast operator. Specifi-
cally: Suppose you are given a type A s.t. ∆, α ⊢ A for some ∆.
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Encode µα. A as a type RA together with intro and elim forms roll and unroll, satisfying
the following properties, where UA := A[RA/α]:

∆ ⊢ RA

∆ ; ∅ ⊢ rollA : UA → RA

∆ ; ∅ ⊢ unrollA : RA → UA

and, if A is closed,

unrollA (rollA v) ;∗ v

•

3.3 Semantic model: Step-indexing

In this section, we want to develop a semantic model of our latest type system, including
recursive types. Clearly, we will no longer be able to use this model to show termination,
since we saw that we can now write diverging well-typed terms. However, as we saw in
in the discussion about semantic existential types in Section 2.8, a semantic model can be
helpful even if it does not prove termination: We can use it to show that ill-typed code,
like MyBit and MySum, is actually semantically well-typed and hence safe to use from
well-typed code.

However, when we try to naively define the value relation for recursive types, it becomes
immediately clear that we have a problem: The type in the recursive occurrence of VJAKδ
does not become smaller. To mitigate this, we resort to the technique of step-indexing [2, 1].
The core idea is to index our relations (in particular, VJAKδ and EJAKδ) by the “number
of steps of computation that the program may perform”. This intuition is not entirely
correct, but it is close enough.
VJAKδ is now a predicate over both a natural number k ∈ N and a closed value v .

Intuitively, (k,v) ∈ VJAKδ means that no well-typed program using v at type A will “go
wrong” in k steps (or less). This intuition also explains why we want these relations to
be monotone or downwards-closed with respect to the step-index: If (k,v) ∈ VJAKδ, then
∀j ≤ k. (j,v) ∈ VJAKδ.

We will need the new notion of a program terminating in k steps with some final term:

Step-indexed termination e↘k e′

∀e′. e ̸; e′

e↘0 e
e; e′ e′ ↘k e′′

e↘k+1 e′′

The judgment e ↘k e′ means that e reduces to e′ in k steps, and that e′ is irreducible.
Notice that, unlike the e ↓ v evaluation relation, e′ does not have to be a value. All e↘k e′
says is that e will stop computing after k steps, and it will end up in term e′. It could
either be stuck (i.e., have crashed), or arrived at a value.

When showing semantic soundness of step-indexing, we will rely on a few lemmas
stating basic properties of the reduction relations.

Exercise 40 Prove the following statements.
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Lemma 40. If K[e] is a value, then so is e.

Lemma 41. If e is not a value, and K[e] ; e′, then there exists an e′′ such that e′ = K[e′′]

and e; e′′.

Lemma 42. If K[e] ↘k e′, then there exists j ≤ k and an e′′ such that e ↘j e′′ and
K[e′′]↘k−j e′.

•

Now, we can define our semantic model.

Semantic Types τ ∈ SemType

SemType := {τ ∈ P(N× CVal) | ∀(k,v) ∈ τ. ∀j < k. (j,v) ∈ τ}
CVal := {v |v closed}

Value Relation VJAKδ

VJαKδ := δ(α)

VJintKδ := {(k, n)}
VJA→ BKδ := {(k, λx. e) | (λx. e) ∈ CVal ∧ ∀j ≤ k,v . (j,v) ∈ VJAKδ ⇒ (j, e[v/x]) ∈ EJBKδ}
VJ∀α. AKδ := {(k,Λ. e) | (Λ. e) ∈ CVal ∧ ∀τ ∈ SemType. (k, e) ∈ EJAK(δ, α 7→ τ)}
VJ∃α. AKδ := {(k, packv) | ∃τ ∈ SemType. (k,v) ∈ VJAK(δ, α 7→ τ)}
VJµα. AKδ := {(k, roll v) | ∀j < k. (j,v) ∈ VJA[µα. A/α]Kδ}

Expression Relation EJAKδ

EJAKδ :=
{
(k, e)

∣∣ ∀j < k, e′. e↘j e′ ⇒ (k − j, e′) ∈ VJAKδ
}

Context Relation GJΓKδ

GJΓKδ := {(k, γ) | ∀x : A ∈ Γ.(k, γ(x)) ∈ VJAKδ}

Semantic Typing ∆ ; Γ ⊨ e : A

∆ ; Γ ⊨ e : A := ∀δ. ∀(k, γ) ∈ GJΓKδ. (k, γ(e)) ∈ EJAKδ

Notice that the value and expression relations are defined mutually recursively by in-
duction over first the step-index, and then the type.

Furthermore, notice that the new model can cope well with non-deterministic reduc-
tions. In the old model, the assumption of determinism was pretty much built into E : We
demanded that the expression evaluates to some well-formed value. If there had been non-
determinism, then it could have happened that some non-deterministic branches diverge
or get stuck, as long as one of them ends up being a value. The new model can, in general,
cope well with non-determinism: E is defined based on all expressions satisfying ↘, i.e.,
it takes into account any way that the program could compute. We no longer care about
termination. If the program gets stuck after k steps on any non-deterministic execution,
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then it cannot be in the expression relation at step-index k+1. Since the semantic typing
demands being in the relation at all step-indices, this means that semantically well-typed
programs cannot possibly get stuck.

Definition 43 (Safety). A program e is safe if it does not get stuck, i.e., if for all k and
e′ such that e↘k e′, e′ is a value.

By this definition, clearly, all semantically well-typed programs are safe. Now that the
model no longer proves termination, safety is the primary motivation for even having a
semantic model: As we saw in section 2.8, there are programs that are not well-typed,
but thanks to the abstraction provided by existential types, they are still safe. Remember
that “getting stuck” is our way to model the semantics of a crashing program, so what this
really is all about is showing that our programs do not crash. Proving this is a worthwhile
goal even for language that lack a termination guarantee.

Exercise 41 (Monotonicity) Prove that the expression relation EJAKδ is monotone with
respect to step-indices:

• If (k, e) ∈ EJAKδ, then ∀j ≤ k. (j, e) ∈ EJAKδ.

•

The first and very important lemma we show about this semantic model is the following:

Lemma 44 (Bind).

If (k, e) ∈ EJAKδ, and ∀j ≤ k. ∀v . (j,v) ∈ VJAKδ ⇒ (j,K[v ]) ∈ EJBKδ,
then (k,K[e]) ∈ EJBKδ.

Proof.

We have: To show:
(i) (k, e) ∈ EJAKδ
(ii) ∀j ≤ k. ∀v . (j,v) ∈ VJAKδ ⇒ (j,K[v ]) ∈ EJBKδ (k,K[e]) ∈ EJBKδ
Suppose j < k, K[e]↘j e′ (k − j, e′) ∈ VJBKδ
By Lemma 42,
there exist e1 and j1 ≤ j s.t. e↘j1 e1 and K[e1]↘j−j1 e′.
By (i), (k − j1, e1) ∈ VJAKδ.
By (ii), (k − j1,K[e1]) ∈ EJBKδ.
With K[e1]↘j−j1 e′,
we get (k − j1 − (j − j1), e′) ∈ VJBKδ, so we are done.

Lemma 44 lets us zap subexpressions down to values, if we know that those subexpres-
sions are in the relation. This is extremely helpful when proving that composite terms are
semantically well-typed.

Next, we will re-prove a lemma that we already established for our initial version of
the semantic model: Closure under Expansion. It should be noted that this lemma relies
on determinism of the reduction relation.
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Lemma 45 (Closure under Expansion).
If e reduces deterministically for j steps, and if e;j e′ and (k, e′) ∈ EJAKδ,
then (k + j, e) ∈ EJAKδ.

Proof.

We have: To show:
(i) e reduces deterministically for j steps.
(ii) e;j e′

(iii) (k, e′) ∈ EJAKδ (k + j, e) ∈ EJAKδ
Suppose i < k + j and e↘i e′′ (k + j − i, e′′) ∈ VJAKδ
By (i) and (ii), e′ ↘i−j e′′.
We have i− j < k.
Thus, by (iii), (k − (i− j), e′′) ∈ VJAKδ, and we are done.

Lemma 46 (Value Inclusion). If (k, e) ∈ VJAKδ, then (k, e) ∈ EJAKδ.

Proof sketch. Then, e a value, so inverting e↘j e′ gives us j = 0 and e′ = e.

These lemmas will be extremely helpful in our next theorem.

Theorem 47 (Semantic Soundness). If ∆ ; Γ ⊢ e : A, then ∆ ; Γ ⊨ e : A.

Proof. Again, we do induction on ∆;Γ ⊢ e : A and then use the compatibility lemmas. We
prove a few compatibility lemmas in Lemma 48, Lemma 49, Lemma 50, and Lemma 51.

Lemma 48 (Compatibility for lambda abstraction; cf. lam).

∆ ⊢ A ∆ ; Γ, x : A ⊨ e : B

∆ ; Γ ⊨ λx. e : A→ B

Proof.

We have: To show:
(i) ∆ ⊢ A
(ii) ∆ ; Γ, x : A ⊨ e : B ∆ ; Γ ⊨ λx. e : A→ B

Let δ, (k, γ) ∈ GJΓKδ (k, γ(λx. e)) ∈ EJA→ BKδ
(k, λx. γ(e)) ∈ EJA→ BKδ

By value inclusion, (k, λx. γ(e)) ∈ VJA→ BKδ
Suppose j ≤ k and (j,v) ∈ VJAKδ (j, γ(e[v/x])) ∈ EJBKδ
Let γ′ := γ[x 7→ v ] (j, γ′(e)) ∈ EJBKδ

By (ii), (j, γ′) ∈ GJΓ, x : AKδ
Suppose y : C ∈ Γ, x : A (j, γ′(y)) ∈ VJCKδ
Case: y : C ∈ Γ, so y ∈ dom(γ)

We have γ′(y) = γ(y) and, by assumption, (k, γ(y)) ∈ VJCKδ.
By monotonicity, (j, γ(y)) ∈ VJCKδ.
Case: y = x and C = A

We have γ′(x) = v and, by assumption, (j,v) ∈ VJAKδ.

47 Draft of February 14, 2022



Lemma 49 (Compatibility for function application; cf. app).

∆ ; Γ ⊨ e1 : A→ B ∆ ; Γ ⊨ e2 : A

∆ ; Γ ⊨ e1 e2 : B

Proof.

We have: To show:
(i) ∆ ; Γ ⊨ e1 : A→ B

(ii) ∆ ; Γ ⊨ e2 : A ∆ ; Γ ⊨ e1 e2 : B
Let δ, (k, γ) ∈ GJΓKδ (k, γ(e1 e2)) ∈ EJBKδ

(k, (γ e1) (γ e2)) ∈ EJBKδ
(k, γ e1) ∈ EJA→ BKδ by (i)
Suppose j ≤ k, (j,v1) ∈ VJA→ BKδ (j,v1 (γ e2)) ∈ EJBKδ

by bind with K = • (γ e2)
(k, γ e2) ∈ EJAKδ by (ii)
(j, γ e2) ∈ EJAKδ by monotonicity
Suppose i ≤ j, (i,v2) ∈ VJAKδ (i,v1 v2) ∈ EJBKδ

by bind with K = v1 •
v1 = λx. e1 and (i, e1[v2/x]) ∈ EJBKδ for some e1

from (j,v1) ∈ VJA→ BKδ, (i,v2) ∈ VJAKδ, and i ≤ j
(i+ 1,v1 v2) ∈ EJBKδ

by closure under expansion with beta deterministic
We’re done by monotonicity.

Lemma 50 (Compatibility for roll; cf. roll).

∆ ; Γ ⊨ e : A[µα. A/α]

∆ ; Γ ⊨ roll e : µα. A

Proof.

We have: To show:
(i) ∆ ; Γ ⊨ e : A[µα. A/α] ∆ ; Γ ⊨ roll e : µα. A

Let δ, (k, γ) ∈ GJΓKδ (k, γ(roll e)) ∈ EJµα. AKδ
(k, roll (γ e)) ∈ EJµα. AKδ

(k, γ e) ∈ EJA[µα. A/α]Kδ by (i)
Suppose j ≤ k, (j,v) ∈ VJA[µα. A/α]Kδ (j, roll v) ∈ EJµα. AKδ

by bind with K = roll •
By value inclusion, (j, roll v) ∈ VJµα. AKδ

Suppose i < j (i,v) ∈ VJA[µα. A/α]Kδ
We’re done by monotonicity.
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Lemma 51 (Compatibility for unroll; cf. unroll).

∆ ; Γ ⊨ e : µα. A

∆ ; Γ ⊨ unroll e : A[µα. A/α]

Proof.

We have: To show:
(i) ∆ ; Γ ⊨ e : µα. A ∆ ; Γ ⊨ unroll e : A[µα. A/α]

Let δ, (k, γ) ∈ GJΓKδ (k, γ(unroll e)) ∈ EJA[µα. A/α]Kδ
(k, unroll (γ e)) ∈ EJA[µα. A/α]Kδ

(k, γ e) ∈ EJµα. AKδ by (i)
Suppose j ≤ k, (j,v) ∈ VJµα. AKδ (j, unroll v) ∈ EJA[µα. A/α]Kδ

by bind with K = unroll •
v = roll v ′ and (ii)

(
∀i < j. (i,v ′) ∈ VJA[µα. A/α]Kδ

)
for some v ′

from (j,v) ∈ VJµα. AKδ (j, unroll (roll v ′)) ∈ EJA[µα. A/α]Kδ
Case: j = 0

Trivial by definition of EJ·K.
Case: j > 0 (we’ll take a step)

By closure under expansion and unroll deterministic,
(j − 1,v ′) ∈ EJA[µα. A/α]Kδ

By value inclusion, (j − 1,v ′) ∈ VJA[µα. A/α]Kδ
We conclude by applying (ii) with i = j − 1.

Remark. Note how the case of unroll crucially depends on us being able to take a step.
From v being a safe value, we obtain that v ′ is safe for i < j steps. This is crucial to
ensure that our model is well-founded: Since the type may become larger, the step-index
has to get smaller. If we had built an equi-recursive type system without explicit coercions
for roll and unroll , we would need v ′ to be safe for j steps, and we would be stuck in the
proof. But thanks to the coercions, there is a step being taken here, and we can use our
assumption for v ′.

Exercise 42 The step-indexed value relation for the sum type is—unsurprisingly—defined
as follows:

VJA+BKδ := {(k, inj1 v) | (k,v) ∈ VJAKδ} ∪ {(k, inj2 v) | (k,v) ∈ VJBKδ}

Based on this, prove semantic soundness of the typing rules for inji and case. •

Exercise 43 Consider the following existential type describing an interface for lists:

LIST(A) := ∃α. {mynil : α,

mycons : A→ α→ α,

mylistcase : ∀β. α→ β → (A→ α→ β)→ β}

One possible implementation of this interface represents a list [v1,v2, . . . ,vn] and its
length n as nested pairs ⟨n, ⟨v1, ⟨v2, ⟨. . . , ⟨vn, ()⟩ . . .⟩⟩⟩⟩. There is no type in our language
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that can express this, but when hidden behind the above interface, this representation can
be used in a type-safe manner. The implementations of mynil and myconst are as follows:

mynil := ⟨0, ()⟩
mycons := λa, l. ⟨1 + π1 l, ⟨a, π2 l⟩⟩

a) Implement mylistcase such that

mylistcase ⟨⟩mynilv f ;∗ v

mylistcase ⟨⟩ (mycons a l)v f ;∗ f a l

where a, l, v , f are values.

You may assume an operation for testing integer equality:

∆ ; Γ ⊢ ei : int
∆ ; Γ ⊢ e1 == e2 : bool

n == n;b true
n ̸= m

n == m;b false

b) Why do we have to store the total length of the list, in addition to the bunch of nested
pairs?

c) Prove that your code never crashes. To this end, prove that for any closed A, your
implementation MyList(A) is semantically well-typed:

∀k. (k,MyList(A)) ∈ VJLIST(A)K

You will need the definition of the value relation for pairs, which goes as follows:

VJA×BKδ := {(k, ⟨v1,v2⟩) | (k,v1) ∈ VJAKδ ∧ (k,v2) ∈ VJBKδ}

•

3.4 The Curious Case of the Ill-Typed but Safe Z-Combinator

We have seen the well-typed fixpoint combinator fixA,B f x. e. In this section, we will look
at a closely-related combinator called Z. Fix an expression e and define

Z := λx. g g x

g := λr. let f = λx. r r x in λx. e

Z does not have type in our language, as it can be used to write diverging terms without
using recursive types. In this sense, it is similar to the assert instruction (assuming we
make sure that the assertion always ends up being true). However, Z is a perfectly safe
runtime expression that reduces without getting stuck:

Z v ; g g v

; (let f = λx. g g x in λx. e)v

; (λx. e[Z/f ])v

; e[Z/f,v/x]
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The way we will prove Z safe is most peculiar. At one point in the proof, we will
arrive at what seems to be a circularity: In the process of proving a certain expression
safe, the proof obligation reduces to showing that same expression to be safe. It seems like
we made no progress at all. However, the step-indices are not the same. In fact, during
the proof, we will take steps that decrease the step index of the final goal. The way out of
this conundrum is to simply assume the expression to be safe at all lower step indices, by
initiating an induction over the step-index. This technique is known as Löb induction, and
later on in the course we will see why it has earned its special name over natural induction.

To harness the full power of Löb induction, we will eventually apply it to expressions
that are functions. In these cases, our goal will often be (k, λx. e) ∈ VJA → BK. Our
Löb induction hypothesis, however, will be (k′, λx. e) ∈ EJA → BK. To make use of the
induction hypothesis, we need a way to go from EJA→ BK to VJA→ BK. This is a fairly
trivial lemma.

Exercise 44 Prove the following lemma:

Lemma 52.
If (k, λx. e) ∈ EJA→ BKδ and (λx. e) ∈ CVal ,
then (k, λx. e) ∈ VJA→ BKδ.

•

Before we get to the safety proof for Z, we first introduce yet another helpful lemma that
will make our life easier. It extracts the core of the compatibility lemma for application.

Lemma 53 (Semantic Application). If (k, e1) ∈ EJA → BKδ and (k, e2) ∈ EJAKδ, then
(k, e1 e2) ∈ EJBKδ.

Finally, we proceed with the proof of safety of Z.

Lemma 54 (Z is safe).

∆ ; Γ, f : A→ B, x : A ⊨ e : B

∆ ; Γ ⊨ Z : A→ B
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Proof.

We have: To show:
(i) ∆ ; Γ, f : A→ B, x : A ⊨ e : B ∆ ; Γ ⊨ Z : A→ B

Let δ, (k, γ) ∈ GJΓKδ (k, γ Z) ∈ EJA→ BKδ
Set g′ := λr. let f = λx. r r x in λx. γ e (k, λx. g′ g′ x) ∈ EJA→ BKδ
(ii) ∀k′ < k. (k′, λx. g′ g′ x) ∈ EJA→ BKδ)

by strong induction over k (Löb induction).
By value inclusion, (k, λx. g′ g′ x) ∈ VJA→ BKδ

Suppose j ≤ k and (j,v1) ∈ VJAKδ (j, g′ g′ v1) ∈ EJBKδ
We apply Lemma 53 and handle the goals in reverse order.
(2) (j,v1) ∈ EJAKδ
By value inclusion and assumption.
(1) (j, g′ g′) ∈ EJA→ BKδ
Have g′ g′ ; let f = λx. g′ g′ x in λx. γ e; λx. γ e[λx. g′ g′ x/f ].

By closure under expansion, (j − 2, λx. γ e[λx. g′ g′ x/f ]) ∈ EJA→ BKδ
By value inclusion, (j − 2, λx. γ e[λx. g′ g′ x/f ]) ∈ VJA→ BKδ

Suppose i ≤ j − 2, (i,v2) ∈ VJAK (i, γ e[λx. g′ g′ x/f ][v2/x]) ∈ EJBKδ
Set γ′ = γ[f 7→ λx. g′ g′ x, x 7→ v2] (i, γ′e) ∈ EJBKδ

By applying (i), (i, γ′) ∈ GJΓ, f : A→ B, x : AK
Suppose y : C ∈ Γ, f : A→ B, x : A (i, γ′(y)) ∈ VJCKδ
Case: y : C ∈ Γ

Have γ′(y) = γ(y) (i, γ(y)) ∈ VJCKδ
From (k, γ) ∈ GJΓKδ, we have (k, γ(y)) ∈ VJCKδ.
By monotonicity, we are done.
Case: y = x,C = A (i, γ′(x)) ∈ VJAKδ
Have γ′(x) = v2 (i,v2) ∈ VJAKδ
By assumption.
Case: y = f, C = A→ B (i, γ′(f)) ∈ VJA→ BKδ

(i, λx. g′ g′ x) ∈ VJA→ BKδ
By Lemma 52, (i, λx. g′ g′ x) ∈ EJA→ BKδ

We apply our Löb induction hypothesis (ii),
with k′ := i ≤ j − 2 < j ≤ k.

Essentially, what this proof demonstrates is that we can just assume our goal of the
form EJAKδ to hold, without any work—but only at smaller step-indices. So before we can
use the induction hypothesis, we have to let the program do some computation.
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4 Mutable State

In this chapter, we extend the language with references. We add the usual operations
on references: allocation, dereferencing, assignment. Interestingly, we do not need to talk
about locations (think of them as addresses) in the source terms—just like we usually do
not have raw addresses in our code. Only when we define what the allocation operation
reduces to, do we need to introduce them. Consequently, they are absent from the source
terms and do not have a typing rule in the Church-style typing relation.

Locations ℓ ::=

Heaps h ∈ Loc fin−⇀Val
Types A,B ::= . . . | ref A

Source Terms E ::= . . . | newE | !E | E1← E2

Runtime Terms e ::= . . . | ℓ | new e | ! e | e1← e2
(Runtime) Values v ::= . . . | ℓ

Evaluation Contexts K ::= . . . | newK | !K | e←K | K←v

Contextual operational semantics We need to extend our reduction relations with heaps
(also called stores in the literature), which are finite partial functions from locations to
values tracking allocated locations and their contents. We use ∅ to denote the empty heap.
Most base reduction rules lift to the new judgment in the expected way: They work for
any heap, and do not change it; for example, the rule for β-reduction now reads

h ; (λx. e)v ;b h ; e[v/x]

The base reduction rules for allocation, dereference, and assignment, however, interact
with the heap:

Base reduction h1 ; e1 ;b h2 ; e2

. . .

new
ℓ ̸∈ dom(h)

h ; newv ;b h[ℓ 7→ v ] ; ℓ

deref
h(ℓ) = v

h ; ! ℓ;b h ;v

assign
ℓ ∈ dom(h)

h ; ℓ←v ;b h[ℓ 7→ v ] ; ()

Reduction h1 ; e1 ; h2 ; e2

ctx
h ; e;b h

′ ; e′

h ;K[e] ; h′ ;K[e′]

Notice that if we say h(ℓ) = v , this implicitly also asserts that ℓ ∈ dom(h). Furthermore,
observe that new is our first non-deterministic reduction rule: There are many (in fact,
infinitely many) possible choices for ℓ.

Church-style typing ∆ ; Γ ⊢ E : A

. . .

new
∆ ; Γ ⊢ E : A

∆ ; Γ ⊢ newE : ref A

deref
∆ ; Γ ⊢ E : ref A

∆ ; Γ ⊢ !E : A

assign
∆ ; Γ ⊢ E1 : ref A ∆ ; Γ ⊢ E2 : A

∆ ; Γ ⊢ E1← E2 : 1
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The typing rules for source terms are straight-forward, as locations do not arise in the
source language.

To type runtime terms, we extend the typing rules with a heap typing context

Heap Typing Σ ::= ∅ | Σ, ℓ : ref A

tracking the types of locations. (The other rules just carry Σ around, but are otherwise
unchanged.)

Curry-style typing Σ ; ∆ ; Γ ⊢ e : A

. . .

new
Σ ; ∆ ; Γ ⊢ e : A

Σ ; ∆ ; Γ ⊢ new e : ref A

assign
Σ ; ∆ ; Γ ⊢ e1 : ref A Σ ; ∆ ; Γ ⊢ e2 : A

Σ ; ∆ ; Γ ⊢ e1← e2 : 1

deref
Σ ; ∆ ; Γ ⊢ e : ref A
Σ ; ∆ ; Γ ⊢ ! e : A

loc
ℓ : ref A ∈ Σ

Σ ; ∆ ; Γ ⊢ ℓ : ref A

4.1 Examples

Counter. Consider the following program, which uses references and local variables to
effectively hide the implementation details of a counter. This also goes to show that
even values with a type that does not even mention references, like 1 → int, can now
have external behavior that was impossible to produce previously—namely, the function
returns a different value on each invocation. Finally, the care we took previously to define
the left-to-right evaluation order using evaluation contexts now really pays off: With a
heap, the order in which expressions are reduced does matter.

p := let cnt = let x = new 0 in

λy. x← !x+ 1 ; !x

in

cnt () + cnt ()

To illustrate the operational semantics of the newly introduced operations, we investigate
the execution of this program under an arbitrary heap h:

h ; p;∗h[ℓ 7→ 0] ; (λy. ℓ← ! ℓ+ 1 ; ! ℓ) () + (λy. ℓ← ! ℓ+ 1 ; ! ℓ) () ℓ ̸∈ dom(h)

;∗h[ℓ 7→ 0] ; (λy. ℓ← ! ℓ+ 1 ; ! ℓ) () + (ℓ← 1 ; ! ℓ)

;∗h[ℓ 7→ 1] ; (ℓ← 2 ; ! ℓ) + (1)

;∗h[ℓ 7→ 2] ; (! ℓ) + 1

;∗h[ℓ 7→ 2] ; 2 + 1

; h[ℓ 7→ 2] ; 3

Exercise 45 We are (roughly) translating the following Java class into our language:

class Stack<T> {
private ArrayList<T> l;
public Stack() { this.l = new ArrayList<T>(); }

54 Draft of February 14, 2022



public void push(T t) { l.add(t); }
public T pop() {

if l.isEmpty() { return null; } else { return l.remove(l.size() - 1) }
}

}

To do so, we first translate the interface provided by the class (i.e., everything public that
is provided) into an existential type:

STACK(A) := ∃β. {new : ()→ β,

push : β → A→ (),

pop : β → 1+A}

Just like the Java class, we are going to implement this interface with lists, but we will
hide that fact and make sure clients can only use that list in a stack-like way. We assume
that a type listA of the usual, functional lists with nil, cons and listcase is provided.

Define MyStack(A) such that the following term is well-typed of type ∀α. STACK(α),
and behaves like the Java class (i.e., like an imperative stack).

Λα. pack [ref list α,MyStack(α)] as STACK(α)

(Of course, you do not have to take into account implementation details of the above Java
class.) •

Exercise 46 (Obfuscated Code) With references, our language now has a new feature:
Obfuscated code!

Execute the following program in the empty heap, and give its result. You do not have
to write down every single reduction step, but make sure the overall execution behavior is
clear.

E := let x = new (λx : int. x+ x) in

let f = (λg : int→ int. let f = !x in x← g ; f 11) in

f (λx : int. f (λy : int. x)) + f (λx : int. x+ 9)

•

Exercise 47 (Not a big Challenge) Using references, it is possible to write a (syntac-
tically) well-typed closed term that does not use roll or unroll , and that diverges. Find
such a term. •

4.2 Recursion via state

In the last chapter we have seen how to get recursion using recursive types. With state
there is, however, another way to define recursive functions. In the simply typed lambda
calculus and in system F recursion was not possible because for a recursive call a function
needed to be in its own context. The only way to achieve this is by passing the function
as an argument to itself. This could, however, not be done in a type-safe way. Recursive
types solved this problem by allowing to roll the type of a function into some recursive
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type variable α which could then be taken as an argument.

With state there is another option: We do not need to have the function in the context
at all, we just need to be able to access it via a reference. So there is no typing issue. This
does of course leave open the question of how we are going to use a reference storing our
recursive function in the recursive function we are currently trying to define. It turns out
there is a trick: First store a dummy function in the reference. Once we have defined the
function we can update the reference with the function we actually want to use. This way
we can define a function recursively computing the sum from 0 to the function argument
n like this:

let x = new λx. 0 in

let f = λn. if n = 0 then 0 else n+ (!x)(n+ (−1)) in
x← f ; f

This works well, but it is quite annoying to have to do the reference handling manually
every time. Luckily it can be factored out into a separate function. This approach to
recursion is know as Landin’s knot.

knot :=λf.

let x = new λx. 0 in

let g = f (λy. (!x) y) in

x← g ; g

We can now define the sum function from above using knot .

knot λfn. if n = 0 then 0 else n+ f (n+ (−1))

Note that in the definition of knot we are using λy. (!x) y. An obvious question is whether
we can just use !x instead, as this is already a function of the same type. Our intuition from
pure functional programming would suggest, that it should indeed be irrelevant whether we
use a function or its η-expansion. This is, however, not true in the presence of side-effects.
If we just used !x the dereference would be executed immediately and we would look up
the dummy function before it has been replaced by the actual function. The Λ-abstractions
is a guard deferring the lookup to the point when the function is being used. At that point
the dummy function will have been replaced by the correct function.

One might then ask why we do not guard the access to x by a λ in our first program.
The reason is that the access is already guarded by the outer λ in the definition of f .

Exercise 48 Write a function computing the n-th fibonacci number. Do not use recursive
types or church numerals. •

Exercise 49 In the lecture you have seen how to implement a simple counter. Give a
definition of a counter that can be reset to 0 using a function reset : 1→ 1 •

56 Draft of February 14, 2022



4.3 Type Safety

We need to do a little work to extend our proof of syntactic type safety for state.
Our contextual typing judgment must now track the types of locations:

Contextual Typing Σ ⊢ K : A⇒ B

Σ ⊢ K : A⇒ B := ∀e,Σ′.Σ ⊆ Σ′ ⇒ Σ′ ⊢ e : A ⇒ Σ′ ⊢ K[e] : B

We can now reprove composition and decomposition, with heap contexts.

Lemma 55 (Composition).
If Σ ; ∅ ; ∅ ⊢ e : B and Σ ⊢ K : B ⇒ A, then Σ ; ∅ ; ∅ ⊢ K[e] : A.

Lemma 56 (Decomposition).
If Σ ; ∅ ; ∅ ⊢ K[e] : A, then Σ ; ∅ ; ∅ ⊢ e : B and Σ ⊢ K : B ⇒ A for some B.

Our proof of preservation will require two weakening lemmas that allow us to consider
larger heap contexts.

Lemma 57 (Σ-Weakening). If Σ ; ∆ ; Γ ⊢ e : A and Σ′ ⊇ Σ, then Σ′ ; ∆ ; Γ ⊢ e : A.

Lemma 58 (Contextual Σ-Weakening).
If Σ ⊢ K : A⇒ B and Σ′ ⊇ Σ, then Σ′ ⊢ K : A⇒ B.

We need a significant change for progress and preservation to go through. Let’s begin
by adding heaps and heap contexts to our original formulation of preservation:

If Σ ; ∅ ; ∅ ⊢ e : A and h ; e; h′ ; e′,
then Σ ; ∅ ; ∅ ⊢ e′ : A.

Notice that the heap context Σ does not change: this formulation does not account for
allocation! The fix is to show that e′ is well-typed against some potentially larger heap
context Σ′:

If Σ ; ∅ ; ∅ ⊢ e : A and h ; e; h′ ; e′,
then there exists Σ′ ⊇ Σ s.t. Σ′ ; ∅ ; ∅ ⊢ e′ : A.

A problem remains. Due to dereference, we have to ensure that existing locations remain
in the heap typing, and keep their type. If we had a judgment h : Σ that somehow ties the
values in heaps to the types in heap contexts, we could formulate preservation as

If Σ ; ∅ ; ∅ ⊢ e : A and h : Σ and h ; e; h′ ; e′,
then there exists Σ′ ⊇ Σ s.t. Σ′ ; ∅ ; ∅ ⊢ e′ : A and h′ : Σ′.

and our proof would go through. So let’s define this heap typing judgment.

Heap Typing h : Σ

h : Σ := ∀ℓ : ref A ∈ Σ.Σ ; ∅ ; ∅ ⊢ h(ℓ) : A

Notice that the values stored in the heap, can use the entire heap to justify their well-
typedness. In particular, the value stored at some location ℓ can itself refer to ℓ, since it
is type-checked in a heap typing that contains ℓ.
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To reformulate progress, we assume that the initial heap is well-typed. Additionally,
we now (of course) quantify existentially over the heap that we end up with after taking a
step (just like we quantify existentially over the expression we reduce to):

Lemma 59 (Progress).
If Σ ; ∅ ; ∅ ⊢ e : A and h : Σ,
then e is a value or there exist e′, h′ s.t. h ; e; h′ ; e′.

Proof. By induction on the typing derivation of e. Existing cases remain unchanged.

Case 1: e = ℓ. ℓ is a value.

Case 2: e = new e′ and A = ref B and Σ ; ∅ ; ∅ ⊢ e′ : B. By induction, we have

Subcase 1: h ; e′ ; h′ ; e′′.
h ; e′1 ;b h

′ ; e′′1 and e′ = K[e′1] and e′′ = K[e′′1] by inversion.
Thus e = (newK)[e′1] and we have h ; e; h′ ; (newK)[e′′1] by ctx.

Subcase 2: e′ is a value.
As h is finite, we may pick ℓ ̸∈ dom(h).
Thus h ; new e′ ; h[ℓ 7→ e′] ; ℓ by new, ctx.

Case 3: e = ! e′ and Σ ; ∅ ; ∅ ⊢ e′ : ref A. By induction, we have

Subcase 1: h ; e′ ; h′ ; e′′.
h ; e′1 ;b h

′ ; e′′1 and e′ = K[e′1] and e′′ = K[e′′1] by inversion.
Thus e = (!K)[e′1] and we have h ; e; h′ ; (!K)[e′′1] by ctx.

Subcase 2: e′ is a value.
e′ = ℓ and ℓ : ref A ∈ Σ by inversion (or canonical forms) with Σ ; ∅ ; ∅ ⊢ e′ : ref A.
ℓ ∈ dom(h) by h : Σ.
Thus h ; ! e′ ; h ; h(ℓ) by deref, ctx.

Case 4: e = e1← e2 and Σ ; ∅ ; ∅ ⊢ e1 : ref B and Σ ; ∅ ; ∅ ⊢ e2 : B. By induction, we have

Subcase 1: h ; e2 ; h′ ; e′2.
h ; e3 ;b h

′ ; e′3 and e2 = K[e3] and e′2 = K[e′3] by inversion.
Thus e = (e1←K)[e3] and we have h ; e; h′ ; (e1←K)[e′3] by ctx.

Subcase 2: e2 is a value and h ; e1 ; h′ ; e′1.
h ; e3 ;b h

′ ; e′3 and e1 = K[e3] and e′1 = K[e′3] by inversion.
Thus e = (K← e2)[e3] and we have h ; e; h′ ; (K← e2)[e

′
3] by ctx.

Subcase 3: e1 and e2 are values.
e1 = ℓ and ℓ : ref B ∈ Σ by inversion (or canonical forms) with Σ ; ∅ ; ∅ ⊢ e1 : ref B.
ℓ ∈ dom(h) by h : Σ.
Thus h ; e; h[ℓ 7→ e2] ; () by assign, ctx.

Lemma 60 (Base preservation).
If Σ ; ∅ ; ∅ ⊢ e : A and h : Σ and h ; e;b h

′ ; e′,
then there exists Σ′ ⊇ Σ s.t. h′ : Σ′ and Σ′ ; ∅ ; ∅ ⊢ e′ : A.

Proof. By cases on on the reduction of h ;e. Existing cases remain mostly unchanged. (We
have h′ = h and pick Σ′ = Σ.) We leave base preservation for the new reduction rules as
an exercise.

Exercise 50 Prove base preservation for new, !, and ←. •
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Lemma 61 (Preservation).
If Σ ; ∅ ; ∅ ⊢ e : A and h : Σ and h ; e; h′ ; e′,
then there exists Σ′ ⊇ Σ s.t. h′ : Σ′ and Σ′ ; ∅ ; ∅ ⊢ e′ : A.

Proof.

We have: To show:
Σ ; ∅ ; ∅ ⊢ e : A, h : Σ, h ; e; h′ ; e′ ∃Σ′ ⊇ Σ. h′ : Σ′ ∧ Σ′ ; ∅ ; ∅ ⊢ e′ : A
h ; e1 ;b h

′ ; e′1 and e = K[e1] and e′ = K[e′1] by inversion
Σ ; ∅ ; ∅ ⊢ e1 : B and Σ ⊢ K : B ⇒ A by decomposition
Σ′ ⊇ Σ and h′ : Σ′ and Σ′ ; ∅ ; ∅ ⊢ e′1 : B by base preservation
Pick Σ′ Σ′ ; ∅ ; ∅ ⊢ K[e′1] : A

by composition, Σ′ ⊢ K : B ⇒ A

We’re done by weakening.

4.4 Weak Polymorphism and the Value Restriction

There is a problem with the combination of implicit polymorphism (as it is implemented
in ML) and references. Consider the following example program (in SML syntax).

let val x = ref nil x : ∀α. α list ref

in x := [5, 6]; x : int list ref

(hd (!x)) (7) x : (int→ int) list ref

The initial typing for x is due to implicit let polymorphism. The following typings are
valid instantiations of that type. However, the program clearly should not be well-typed,
as the last line will call an integer as a function.

The initial response to this problem is a field of research called weak polymorphism.
We do not discuss these endeavours here. Instead, we want to mention a practical solution
to the problem given by Andrew Wright in 1995 in a paper titled “Simple Impredicative
Polymorphism”. The solution is called the value restriction as it restricts implicit let
polymorphism to values. To see why this solves the problem, consider the translation of
the example above into System F with references.

let x = Λ. ref nil x : ∀α. ref (list α)
in x ⟨⟩ ← [5, 6]; x ⟨⟩ : ref (list int)

(hd (!(x ⟨⟩))) (7) x ⟨⟩ : ref (list int→ int)

We can see now why the original program could be considered well-typed. Note that
the semantics are different from what the initial program’s semantics seemed to be. In
particular, x is a thunk in the System F version, so every instantiation generates a new,
distinct, empty list.

In the case of values, however, the thunk will always evaluate to the same value. The
“intended” semantics of the original program and the semantics of the translation coincide,
so let polymorphism can be soundly applied.
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4.5 Data Abstraction via Local State

References, specifically local references, give us yet another way of ensuring data abstrac-
tion. Consider the following signature for a mutable boolean value and corresponding
implementation.

MUTBIT := {flip : 1→ 1, get : 1→ bool}
MyMutBit := let x = new 0

in {flip := λy. x← 1− !x,

get := λy. !x > 0}

As with previous examples, we would like to maintain an invariant on the value of x,
namely that its content is either 0 or 1. The abstraction provided by the local reference
will guarantee that no client code can violate this invariant. As before, we will extend the
implementation with corresponding assert statements to ensure that the program crashes if
the invariant is violated. As a consequence, by proving the program crash-free, we showed
that the invariant is maintained.

MyMutBit := let x = new 0

in {flip := λy. assert (!x == 0 ∨ !x == 1) ; x← 1− !x,

get := λy. assert (!x == 0 ∨ !x == 1) ; !x > 0}

Once we extend our semantic model to handle references, we will be able to prove that
this code is semantically well-typed, i.e., does not crash—and as a consequence, we know
that the assertions will always hold true.

4.6 Semantic model

We extend our previous semantic model with a notion of “possible worlds”. These worlds
are meant to encode the possible shapes of the physical state, i.e., the heap that our
program will produce over the course of its execution. When we allocate fresh references,
we are allowed to add additional invariants that will be preserved in the remainder of the
execution. This is the key reasoning principle that justifies the example from the previous
section: We can have invariants on parts of the heap, like on the location used for x above.

Invariants Inv := P(Heap)
World W ∈

⋃
n Inv

n

World Extension W ′ ⊒W := ∃n. |W ′| ≥ |W | ∧ |W | = n ∧ ∀i ∈ 1 . . . n. W ′[i] =W [i]

World Satisfaction h :W := ∃n. |W | = n ∧ ∃h1 . . . hn. h ⊇ h1 ⊎ . . . ⊎ hn ∧
∀i ∈ 1 . . . n. hi ∈W [i]

We update our step-indexed termination judgment for state.

Step-indexed termination h ; e↘k h′ ; e′

∀h′, e′. h ; e ̸; h′ ; e′

h ; e↘0 h ; e

h ; e; h′ ; e′ h′ ; e′ ↘k h′′ ; e′′

h ; e↘k+1 h′′ ; e′′
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Semantic Types τ ∈ SemType

SemType :=

{
τ ∈ P(N×World× CVal)

∣∣∣∣∣ ∀(k,W,v) ∈ τ. ∀k′ ≤ k,W ′ ⊒W.
(k′,W ′,v) ∈ τ

}

Notice that semantic types have to be closed with respect to smaller step-indices and larger
worlds.

First-Order References Before we get to the meat of the model, the value relation, we
have to impose an important restriction on our language. From here on, our language has
only first-order references. Put differently, the heap is not allowed to contain functions,
polymorphic or existential types, or references. If the heap contains these higher-order
types, the semantic model presented below will not work.

First-Order Types a

First-order Types a ::= int | bool | a1 + a2 | a1 × a2
Types A ::= . . . | ref a

Value Relation VJAKδ

VJαKδ := δ(α)

VJintKδ := {(k,W, n)}
VJA×BKδ := {(k,W, ⟨v1,v2⟩) | (k,W,v1) ∈ VJAKδ ∧ (k,W,v2) ∈ VJBKδ}
VJA→ BKδ := {(k,W, λx. e) | (λx. e) ∈ CVal ∧ ∀j ≤ k,W ′ ⊒W,v .

(j,W ′,v) ∈ VJAKδ ⇒ (j,W ′, e[v/x]) ∈ EJBKδ}
VJref aKδ := {(k,W, ℓ) | ∃i. W [i] = {[ℓ 7→ v ] | ⊢ v : a}}
VJ∀α. AKδ := {(k,W,Λ. e) | (Λ. e) ∈ CVal ∧ ∀τ ∈ SemType. (k,W, e) ∈ EJAK(δ, α 7→ τ)}
VJ∃α. AKδ := {(k,W, packv) | ∃τ ∈ SemType. (k,W,v) ∈ VJAK(δ, α 7→ τ)}
VJµα. AKδ := {(k,W, roll v) | ∀j < k. (j,W,v) ∈ VJA[µα. A/α]Kδ}

Expression Relation EJAKδ

EJAKδ := {(k,W, e) | ∀j < k,W ′ ⊒W, e′, h :W ′, h′.

h ; e↘j h′ ; e′ ⇒ ∃W ′′ ⊒W ′. h′ :W ′′ ∧ (k − j,W ′′, e′) ∈ VJAKδ}

The definition of the ref case might seem odd at first glance. More concretely, one might
ask why we refer to the syntactic typing judgment. The following lemma explains why this
particular definition makes sense.

Lemma 62 (First-order types are simple). ⊢ v : a⇔ (k,W,v) ∈ VJaKδ.

In other words, for first-order types, syntactic and semantic well-typedness coincide.
Furthermore, the step-index and the worlds are irrelevant.
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Example Recall our implementation of the MUTBIT signature:

MyMutBit := let x = new 0

in {flip := λy. assert (!x == 0 ∨ !x == 1) ; x← 1− !x,

get := λy. assert (!x == 0 ∨ !x == 1) ; !x > 0}

We will now prove that this implementation is safe with respect to the signature.

Theorem 63.

∀k,W. (k,W,MyMutBit) ∈ EJMUTBITK.

Proof.

Let e0(ℓ) = {flip := λy. assert (! ℓ == 0 ∨ ! ℓ == 1) ; ℓ← 1− ! ℓ,

get := λy. assert (! ℓ == 0 ∨ ! ℓ == 1) ; ! ℓ > 0}.
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We have: To show:
(k,W,MyMutBit) ∈ EJMUTBITK

Suppose j < k, W1 ⊒W , h :W1, h ; MyMutBit↘j h′ ; e′.
∃W2 ⊒W1. h

′ :W2 ∧ (k − j,W2, e
′) ∈ VJMUTBITK

We have j = 2, h′ = h[ℓ 7→ 0] (for some ℓ ̸∈ dom(h)), and e′ = e0(ℓ).
∃W2 ⊒W1. h

′ :W2 ∧ (k − 2,W2, e0(ℓ)) ∈ VJMUTBITK
Let n := |W1|. Pick W2 :=W1 ++

{
[ℓ 7→ 0], [ℓ 7→ 1]

}
.

W2 ⊒W1

Trivial.
h′ :W ′

From h :W1 we have h = h1 ⊎ . . . ⊎ hn.
Since ℓ ̸∈ dom(h), we have ∀i ∈ 1 . . . n. ℓ ̸∈ dom(hi).
Thus, h′ = h ⊎ hn+1 ⊇ h1 ⊎ . . . ⊎ hn ⊎ hn+1 where hn+1 := [ℓ 7→ 0].

∀i ∈ 1 . . . |W2|. hi ∈W2[i]

With h :W1 hn+1 ∈W2[n+ 1]

[ℓ 7→ 0] ∈
{
[ℓ 7→ 0], [ℓ 7→ 1]

}
Trivial.

(k − 2,W2, e0(ℓ)) ∈ VJ(1→ 1)× (1→ bool)K
We only do the case for flip here.

(k − 2,W2, λy. assert (! ℓ == 0 ∨ ! ℓ == 1) ; ℓ← 1− ! ℓ) ∈ VJ1→ 1K
Suppose j ≤ k − 2, and W3 ⊒W2.

(j,W3, assert (! ℓ == 0 ∨ ! ℓ == 1) ; ℓ← 1− ! ℓ) ∈ EJ1K
Suppose j′′ < j, W4 ⊒W3, h′′ :W4, and h′′ ; e′′ ↘j′′ h′′′ ; e′′′.

∃W5 ⊒W4. h
′′′ :W5 ∧ (j − j′′,W5, e

′′′) ∈ VJ1K
From h′′ :W4, h′′ ⊇ h1 ⊎ . . . ⊎ hn ⊎ hn+1 ⊎ hn+2 ⊎ . . . hn′

with ∀i ∈ 1 . . . n′. hi ∈W4[i].
Since W4 ⊒W3 ⊒W2 we have hn+1 = [ℓ 7→ 0] or hn+1 = [ℓ 7→ 1].
Thus, h′′(ℓ) = 0 or h′′(ℓ) = 1.
So h′′′ = h′′[ℓ 7→ 1− h′′(ℓ)], e′′′ = ().

∃W5 ⊒W4. h
′′′ :W5 ∧ (j − j′′,W5, ()) ∈ VJ1K

We pick W5 =W4 ⊒W4.
h′′′ :W5 ∧ (j − j′′,W5, ()) ∈ VJ1K

(j − j′′,W5, ()) ∈ VJ1K
Trivial.

h′′′ :W5

From h′′ :W4, it suffices to show [ℓ 7→ 1− h′′(ℓ)] ∈W4[n+ 1]

[ℓ 7→ 1− h′′(ℓ)] ∈
{
[ℓ 7→ 0], [ℓ 7→ 1]

}
This follows from h′′(ℓ) = 0 or h′′(ℓ) = 1.

As before, the expression relation EJAKδ and value relation VJAKδ are monotone (downwards-
closed) with respect to step-indices:

• If (k,W,v) ∈ VJAKδ, then ∀j ≤ k. (j,W,v) ∈ VJAKδ.

• If (k,W, e) ∈ EJAKδ, then ∀j ≤ k. (j,W, e) ∈ EJAKδ.

In addition, they are monotone (upwards-closed) with respect to worlds:
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• If (k,W,v) ∈ VJAKδ, then ∀W ′ ⊒W. (k,W ′,v) ∈ VJAKδ.

• If (k,W, e) ∈ EJAKδ, then ∀W ′ ⊒W. (k,W ′, e) ∈ EJAKδ.

Lemma 64 (Decomposition of step-indexed termination).
If h ;K[e]↘k h′ ; e′,
then ∃j ≤ k, e′′, h′′. h ; e↘j h′′ ; e′′ ∧ h′′ ;K[e′′]↘k−j h′ ; e′.

Exercise 51 Prove the bind lemma. You may use the decomposition of step-indexed
termination lemma.

Lemma 65 (Bind).
If (k,W, e) ∈ EJAKδ,
and ∀j ≤ k. ∀W ′ ⊒W. ∀v . (j,W ′,v) ∈ VJAKδ ⇒ (j,W ′,K[v ]) ∈ EJBKδ,
then (k,W,K[e]) ∈ EJBKδ.

•

Exercise 52 Prove closure under expansion.

Lemma 66 (Closure under Expansion).
If e reduces deterministically for j steps under any heap,
and if ∀h. h ; e;j h ; e′ and (k,W, e′) ∈ EJAKδ,
then (k + j,W, e) ∈ EJAKδ.

•

Exercise 53 Consider this interface for a counter

COUNTER := {inc : 1→ 1,

get : 1→ int}

and the following, extra-safe implementation of the counter that stores the current count
twice, just to be sure that it does not mis-count or gets invalidated by cosmic radiation:

SafeCounter : 1→ COUNTER

SafeCounter := λ_. let c1 = new 0 in let c2 = new 0 in

{inc = λ_. c1← ! c1 + 1 ; c2← ! c2 + 1

get = λ_. let v1 = ! c1 in let v2 = ! c2 in

assert (v1 == v2) ; v1}

Prove that SafeCounter is semantically well-typed. In other words, prove that for
∀k,W. (k,W, SafeCounter) ∈ VJ1→ COUNTERK. •

Proof conventions. As a convention, we omit some of the nitty-gritty details of these
proofs. In particular, we omit all step-indices. We also omit the accounting of names for
invariants. Furthermore, we use disjoint union to express heaps, which makes reasoning
about world satisfaction much easier. Below, we show the proof of the inc case for the
SafeCounter.
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Proof.

We have: To show:
ectr = let c1 = new 0 in let c2 = new 0 in . . .

W0 (_,W0, λ_. ectr) ∈ VJ1→ COUNTERK
W1 ⊒W0

(_,W1,v1) ∈ VJ1K (_,W1, ectr) ∈ EJCOUNTERK
W2 ⊒W1

h1 :W2

h1 ; ectr ↘− h2 ; e2 ∃W3 ⊒W2. h2 :W3 ∧ (_,W3, e2) ∈ VJCOUNTERK

h2 = h1 ⊎
hctr︷ ︸︸ ︷

[ℓ1 7→ 0, ℓ2 7→ 0]

e2 = {inc = λ_. einc, get = λ_. eget}
einc := ℓ1← ! ℓ1 + 1 ; ℓ2← ! ℓ2 + 1

eget := let v1 = ! ℓ1 in let v2 = ! ℓ2 in assert (v1 == v2) ; v1

Pick W3 with new invariant i:
W3[i] := Hctr := {h | ∃n. h(ℓ1) = h(ℓ2) = n}

h2 :W3 (done by hctr ∈ Hctr)
(_,W3, e2) ∈ VJCOUNTERK

Case inc: (_,W3, λ_. einc) ∈ VJ1→ 1K
W4 ⊒W3 (_,W4, einc) ∈ EJ1K
W5 ⊒W4

h3 :W5

h3 ; einc ↘− h4 ; e4
∃W6 ⊒W5. h4 :W6 ∧ (_,W6, e4) ∈ VJ1K

By world satisfaction: W5[i] = Hctr

h3 = h′3 ⊎ [ℓ1 7→ n, ℓ2 7→ n]︸ ︷︷ ︸
∈Hctr

By reduction, we know the code can execute safely and we get
e4 = (), h4 = h′3 ⊎ [ℓ1 7→ n+ 1, ℓ2 7→ n+ 1]

Pick W6 :=W5

h4 :W6 (done by definition of Hctr)
(_,W6, ()) ∈ VJ1K (trivial)

Semantic soundness. Once again, we re-establish semantic soundness. We are only in-
terested in actual programs here, so we will assume that e does not contain any locations.
First, we supplement the missing definitions:

Context Relation GJΓKδ

GJΓKδ := {(k,W, γ) | ∀x : A ∈ Γ.(k,W, γ(x)) ∈ VJAKδ}

Semantic Typing ∆ ; Γ ⊨ e : A

∆ ; Γ ⊨ e : A := ∀k,W. ∀δ. ∀γ. (k,W, γ) ∈ GJΓKδ ⇒ (k,W, γ(e)) ∈ EJAKδ
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Now we can prove the core theorem.

Theorem 67 (Semantic Soundness). If ∆ ; Γ ⊢ e : A, then ∆ ; Γ ⊨ e : A.

Proof. As before, we proceed by induction on the typing derivation for e, applying compat-
ibility lemmas in each case. We proved compatibility for dereferencing in class and prove
compatibility for new below. We leave compatibility for assignment as an exercise.

Lemma 68 (Compatibility for first-order allocation (cf. new)).

∆ ; Γ ⊨ e : a

∆ ; Γ ⊨ new e : ref a

Proof.

We have: To show:
(i) ∆ ; Γ ⊨ e : a ∆ ; Γ ⊨ new e : ref a

Let δ, (k,W, γ) ∈ GJΓKδ (k,W, γ(new e)) ∈ EJref aKδ
(k,W, new γ(e)) ∈ EJref aKδ

(k,W, γ(e)) ∈ EJaKδ by (i)
j ≤ k,W ′ ⊒W, (j,W ′,v) ∈ VJaKδ (j,W ′, newv) ∈ EJref aKδ

by bind with K = new •
j′ < j,W ′′ ⊒W ′, h :W ′′, h ; newv ↘j′ h′ ; e′′

∃W ′′′ ⊒W ′′. h′ :W ′′′ ∧ (j − j′,W ′′′, e′′) ∈ VJref aKδ
j′ = 1, h′ = h[ℓ 7→ v ], e′′ = ℓ, ℓ ̸∈ dom(h) by inversion

∃W ′′′ ⊒W ′′. h′ :W ′′′ ∧ (j − 1,W ′′′, ℓ) ∈ VJref aKδ
Pick W ′′′ =W ′′ ++ {[ℓ 7→ v̂ ] | ⊢ v̂ : a}.

W ′′′ ⊒W ′′

Trivial.
h′ :W ′′′

This follows from h :W ′′, our assumption on v , and Lemma 62.
(j − 1,W ′′′, ℓ) ∈ VJref aKδ

By definition of VJref aK.

Exercise 54 Prove compatibility for first-order assignment.

Lemma 69 (Compatibility for first-order assignment).

∆ ; Γ ⊨ e : ref a ∆ ; Γ ⊨ e′ : a

∆ ; Γ ⊨ e← e′ : 1

•

Exercise 55 Prove compatibility for first-order dereferencing.

Lemma 70 (Compatibility for first-order dereferencing).

∆ ; Γ ⊨ e : ref a

∆ ; Γ ⊨ ! e : a
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•

Exercise 56 In the lecture we have seen that extending the value relation for references
in the naive way to allow higher-order state does not work because it breaks monotonicity.
Here is a slightly different version of the naive approach:

VJref AKδ := {(k,W, ℓ) | ∃i. W [i] ⊆ {[ℓ 7→ v ] | (k,W,v) ∈ VJAKδ}}

Does this change preserve monotonicity? If yes, is it a sensible definition of the logical
relation for references? •
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4.7 Protocols

While the model presented above lets us prove interesting examples, we will now see its
limitations. Consider the following program.

e := let x = new 4

in λf. f () ; assert (!x == 4)

: (1→ 1)→ 1

Picking the following invariant allows us to prove this program safe.{
[ℓ 7→ 4]

}
Now consider the following program.

e := let x = new 3

in λf. x← 4 ; f () ; assert (!x == 4)

: (1→ 1)→ 1

While the programs are similar in nature, we struggle to come up with an invariant that
remains true throughout the execution, and still allows us to prove the program safe.

To solve this problem, we can extend our model with a stronger notion of invariants,
which we refer to as “protocols” or “state transition systems”. We parameterize our model
by an arbitrary set of states State. For every island in the world (“invariant” would no
longer be the right term), we store the legal transitions on this abstract state space, the
current state, and which heap invariant is enforced at each abstract state. The world
extension relation makes sure that the invariants and the transitions never change, but the
current state may change according to the transitions. World satisfaction then enforces
the invariants given by the current states of all islands.

Invariants Inv := { Φ : P(State× State) (Φ reflexive, transitive),
c : State,
H : State→ P(Heap) }

World W ∈
⋃

n Inv
n

World Extension W ′ ⊒W := |W ′| ≥ |W | ∧ |W | = n

∧ ∀i ∈ 1 . . . n. W ′[i].Φ =W [i].Φ

∧W ′[i].H =W [i].H

∧ (W [i].c,W ′[i].c) ∈W [i].Φ

World Satisfaction h :W := |W | = n ∧ ∃h1 . . . hn. h ⊇ h1 ⊎ . . . ⊎ hn
∧ ∀i ∈ 1 . . . n. hi ∈W [i].H(W [i].c)

Lemma 71 (World Extension is a pre-order). ⊒ is reflexive and transitive.
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Value Relation VJAKδ

VJαKδ := δ(α)

VJintKδ := {(k,W, n)}
VJA×BKδ := {(k,W, ⟨v1,v2⟩) | (k,W,v1) ∈ VJAKδ ∧ (k,W,v2) ∈ VJBKδ}
VJA→ BKδ := {(k,W, λx. e) | (λx. e) ∈ CVal ∧ ∀j ≤ k,W ′ ⊒W,v .

(j,W ′,v) ∈ VJAKδ ⇒ (j,W ′, e[v/x]) ∈ EJBKδ}
VJref aKδ := {(k,W, ℓ) | ∃i. W [i] = { Φ := ∅⋆, c := s0,H := λ . {[ℓ 7→ v ] | ⊢ v : a} }}
VJ∀α. AKδ := {(k,W,Λ. e) | (Λ. e) ∈ CVal ∧ ∀τ ∈ SemType. (k,W, e) ∈ EJAK(δ, α 7→ τ)}
VJ∃α. AKδ := {(k,W, packv) | ∃τ ∈ SemType. (k,W,v) ∈ VJAK(δ, α 7→ τ)}
VJµα. AKδ := {(k,W, roll v) | ∀j < k. (j,W,v) ∈ VJA[µα. A/α]Kδ}

For the case of reference types, we assert that there exists an invariant that makes sure
the location always contains data of the appropriate type. To this end, we assume there
is some fixed state s0 which this invariant will be in, and the transition relation is the
reflexive, transitive closure of the empty relation – in other words, the state cannot be
changed.

The remaining definitions (expression relation, context relation, semantic typing) re-
main unchanged.

Exercise 57 (In Fµ ! + STSs) This exercise operates in Fµ !, that is System F – univer-
sal and existential types – plus recursive types (µ) and state (!). Furthermore, we work
with the semantic model that is based on state-transition-systems (STSs).

Show the compatibility lemmas for the cases for first-order references: new e, ! e, e1←e2.
•

This model now is strong enough to prove safety of the example above, and of many
interesting real-world programs.

Lemma 72. Recall the example program from above which we used to motivate the intro-
duction of state transition systems.

e := let x = new 3

in λf. x← 4 ; f () ; assert (!x == 4)

: (1→ 1)→ 1

We can now show that ( ,W, e) ∈ EJ(1→ 1)→ 1K.
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Proof.

We have: To show:
( ,W1, e) ∈ EJ(1→ 1)→ 1K

W2 ⊒W1, h :W2

h ; e↘− h0 ; e0
∃W3 ⊒W2. h0 :W3 ∧ ( ,W3, e0) ∈ VJ(1→ 1)→ 1K

ℓ ̸∈ dom(h)

h0 = h ⊎ [ℓ 7→ 3]

e0 = λf. ℓ← 4 ; f () ; assert (∗ℓ == 4)

Pick W3 that extends W2 with a new invariant i:
W3[i] := { Φ := {(s3, s4)}⋆ , c := s3,H := λsn. {[ℓ 7→ n]} }

W3 ⊒W2 (trivial)
h0 :W3 (done by [ℓ 7→ 3] ∈W3[i].H(s3))

( ,W3, e0) ∈ VJ(1→ 1)→ 1K
W4 ⊒W3

( ,W4,v) ∈ VJ1→ 1K
Let e1 := ℓ← 4 ;v () ; assert (∗ℓ == 4) ( ,W4, e1) ∈ EJ1K
W5 ⊒W4, h1 :W5

h1 ; e1 ↘− h2 ; e2
∃Wf ⊒W5. h2 :Wf ∧ ( ,Wf , e2) ∈ VJ1K

In order to pick Wf , we need to know what h2 and e2 can be,
so we need to symbolically execute e1.
From W5 ⊒W4 ⊒W3, W5[i] =W3[i] except that W5[i].c could be s4.
From h1 :W5 and the invariant i, ℓ ∈ dom(h1).
So h1 ; e1 ;⋆ h1[ℓ 7→ 4] ; (v () ; assert (∗ℓ == 4))

and (i) h1[ℓ 7→ 4] ; (v () ; assert (∗ℓ == 4))↘− h2 ; e2.
Now, we need to execute v () ; assert (∗ℓ == 4).
For that, we need to come up with a new world.
Let W6[i] =W5[i] with c := s4
(ii) h1[ℓ 7→ 4] :W6

By Lemma 73, along with (i) and (ii),
we get ∃W7 ⊒W6. h2 :W7 ∧ ( ,W7, e2) ∈ VJ1K
Pick W7 as given.
By transitivity of ⊒, W7 ⊒W5.

Lemma 73 (Auxiliary “Lemma”). ( ,W5, (v () ; assert (∗ℓ == 4))) ∈ EJ1K
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Proof.

We have: To show:
From ( ,W4,v) ∈ VJ1→ 1K, by monotonicity
( ,W5,v) ∈ VJ1→ 1K

( ,W5, (v () ; assert (∗ℓ == 4))) ∈ EJ1K
By assumption, and def. of VJ1→ 1K,
( ,W5,v ()) ∈ EJ1K
We apply Lemma 65 (the bind lemma) with K := • ; assert (! ℓ == 4)

∀W6 ⊒W5. ( ,W6, assert ! ℓ == 4) ∈ EJ1K
W7 ⊒W6,W6 ⊒W5

h4 :W7

h4 ; assert (! ℓ == 4)↘− h5 ; e5
∃W8 ⊒W7. h5 :W8 ∧ ( ,W8, e5) ∈ VJ1K

h5(ℓ) = 4 because W7 ⊒W5 and W5[i].c = s4
h5 = h4 ∧ e5 = ()

∃W8 ⊒W7. h4 :W8 ∧ ( ,W8, ()) ∈ VJ1K
Trivial by picking W8 :=W7.

4.8 State & Existentials

We present several examples that combine references and existential types to encode state-
ful abstract data types.

4.8.1 Symbol ADT

Consider the following signature and the corresponding (stateful) implementation.

SYMBOL := ∃α. { mkSym : 1→ α,

check : α→ 1 }
Symbol := let c = new 0 in

pack

〈
int,
{ mkSym := λ . let x = ! c in c← x+ 1 ; x,

check := λx. assert (x < ! c) }

〉
as SYMBOL

Intuitively, the function check guarantees that only mkSym can generate values of type α.
The proof of safety for Symbol showcases how semantic types and invariants can work

together in interesting ways. Instead of going through the proof, we give the invariant that
will be associated with the location ℓc correspding to the reference c, and the semantic
type for the type variable α.

W [i] := { Φ := {(sn1 , sn2) | (n2 ≥ n1)} ,
c := s0,

H := λsn. {[ℓc 7→ n]} }
α 7→ {( ,W, n) | 0 ≤ n ∧W [i].c = sm ∧ n < m}

Note that the semantic type assigned to α is defined in terms of the transition system that
governs ℓc. Consequently, the semantic type will grow over time as the value in ℓc increases.
This is possible because when we define the interpretation of α, we already picked the new
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world, and hence we know which index our island will have. This is similar to how, when
we define the island, we already know the actual location ℓc picked by the program.

In the proof of safety of Symbol, we know that both mkSym and check will only be
called in worlds future to the one in which we established our invariant. Consequently, we
can rely on the existence of the transition we set up. The transitions we take mirror the
change to c in the program.

Proof Sketches. We refer to the above as a proof sketch. In such a sketch, we only give
the invariants that are picked, the interpretations of semantic types, and how we update
the state of STSs.

4.8.2 Twin Abstraction

The following signature represents an ADT that can generate two different types of values
(red and blue). The check function guarantees that values from distinct “colors” will never
be equal. Interestingly, the ADT is implemented by picking both red and blue values from
an ever-increasing counter.

TWIN := ∃α. ∃β. { mkRed : 1→ α,

mkBlue : 1→ β,

check : (α, β)→ 1 }
Twin := let c = new 0 in

pack pack { mkRed := λ . let x = ! c in c← x+ 1 ; x,

mkBlue := λ . let x = ! c in c← x+ 1 ; x,

check := λ(x, y). assert (x ̸= y) }

Note how the implementation does not keep track of the assignment of numbers to the
red or blue type. Nonetheless, we are able to prove this implementation semantically safe.
It is perhaps not surprising that we cannot rely entirely on physical state to guarantee
the separation of the red and blue type. We make use of so-called “ghost state”, which is
auxiliary state that only exists in the verification of the program.

In addition to the value of the counter value n, our transition system also has to keep
track of two sets which we suggestively call R and B. These sets are disjoint represent
the part of generated values (between 0 and n) that belong to the red and blue type,
respectively.

Again, we tie the semantic types for α and β to the transition system to ensure that
their interpretation can grow over time. This time, however, we additionally require that
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the values in those semantic types belong to R or B, respectively.

W [i] :=

 Φ :=

(sn,R,B, sn′,R′,B′)

∣∣∣∣∣∣
R ⊎B = {0 . . . n− 1}
R′ ⊎B′ = {0 . . . n′ − 1}
n ≤ n′, R ⊆ R′, B ⊆ B′

 ,

c := s0,∅,∅,

H := λsn,R,B. {[ℓc 7→ n]}


α 7→ {( ,W, n) |W [i].c = sm,R,B ∧ n ∈ R}
β 7→ {( ,W, n) |W [i].c = sm,R,B ∧ n ∈ B}

Given these definitions, proving safety of Twin is straight-forward. When we give out a
red value, we update the R component of our state. Accordingly, when we give out a blue
value, we update B. In both cases, we increase the n component by one.

Exercise 58 (In Fµ ! + STSs) Consider the following stateful abstract data type. We
assume we are given some first-order types a and b.

SUM := ∃β. { setA : a→ β,

setB : b→ β,

getA : β → 1+ a,

getB : β → 1+ b }
MySum := λ_. let x = new ⟨1, 1⟩ in

pack { setA := λy. x← ⟨1, y⟩,
setB := λy. x← ⟨2, y⟩,
getA := λ_. let (c, d) = !x in

if c == 1 then inj2 d else inj1 (),

getB := λ_. let (c, d) = !x in

if c == 2 then inj2 d else inj1 () }

The client can only obtain an element of β once they called one of the two setters. This
means that the getters can rely on the data having been initialized.

Prove that this implementation is semantically well-typed:

∀k,W. (k,W,MySum) ∈ VJ1→ SUMK

Give only a proof sketch (i.e., give only the invariants, the semantic type picked for β, and
how the STSs are updated). •

Exercise 59 (In Fµ ! + STSs) Consider the following code:

ectr := let c = new 0 in

λn. if n > ! c then c← n else ();

λ_. assert (! c ≥ n)

Intuitively, this function allows everyone to increment the counter to values of their choice.
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After every increment, a little stub is returned that asserts that the counter will never be
below the given n again.

Show that ectr is safe:

∀k,W. (k,W, ectr) ∈ EJint→ (1→ 1)K

Give a proof outline, not a proof sketch (following the conventions described previously, in
which step-indices are ignored). •

Exercise 60 (In Fµ ! + Inv) This exercise operates in Fµ ! and the semantic model with
plain invariants, i.e., no STSs.

When we started building a semantic model for our language with state, we restricted
the type system to only allow storing first-order data into the heap. This was necessary for
the proof of semantic soundness of the model. However, we did not change the operational
semantics of the language: We can still write programs that use higher-order state, we
just do not automatically obtain their safety. In some specific cases though, the use of
higher-order state can actually be justified in our model.

Consider the following simple program:

eid := λf. let x = new f in λy. !x y

Show that eid is semantically well-typed: For any closed types A, B, prove

∀k,W. (k,W, eid) ∈ VJ(A→ B)→ (A→ B)K

Give a proof outline, not a proof sketch, following the conventions described previously, in
which step-indices are ignored. •

4.9 Semantically well-typed expressions are safe

The following theorem tells us that, in order to to prove that a closed expression is safe—or
progressive in our old tongue, it is adequate to show that the expression is semantically
well-typed.

Theorem 74 (Adequacy).

If ⊨ e : A then
for all h, e′, h′ such that h ; e;⋆ e′ ;h′, either e′ is a value or h′ ; e′ can make a step.
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Proof.

We have: To show:
(i) ⊨ e : A
h ; e;⋆ e′ ; h′ e′ is a value or h′ ; e′ can make a step
Suppose h′ ; e′ cannot take a step any more.

e′ is a value
(Here we exploit the fact that the reduction relation ; is decidable.)
So h ; e↘j h′ ; e′.
From (i), have ∀k,W. (k,W, e) ∈ EJAK.
We instantiate this with k := j + 1 and W,W ′ := [ ].
It is trivial to see that h :W .
So we have some W ′′ s.t. W ′′ ⊒W ′ ∧ h′ :W ′′ ∧ (1,W ′′, e′) ∈ VJAK.
Thus e′ is a value.
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5 Program Logic

For every language up to this point, we first defined its operational semantics and then
used the operational semantics to reason about terms of the language. We now turn to a
different approach sometimes referred to as axiomatic semantics: the axiomatic semantics
assigns meaning to programs in the form of a program logic—a set of rules that we can
use to modularly reason about programs.

Why axiomatic semantics? In contrast to language models based on operational seman-
tics and types, axiomatic semantics are aimed at compositional program verification. For
example, consider verifying the Euclidian algorithm for computing the greatest common
divisor:

euclid(a, b) := if b == 0 then a else euclid(b,mod(a, b))

mod(a, b) := a− (a div b) ∗ b

In a typed model based on operational semantics, we can at best type both functions as
int× int→ int. But even for the type int× int→ int, we have the problem that a div b could
be stuck for b = 0. So how can we say anything useful about these two functions? With a
program logic (i.e., an axiomatic semantics), we can give compositional specifications for
these functions. For example, we can express the specification as Hoare triples:

{a ≥ 0 ∧ b > 0}mod(a, b) {c. ∃k ≥ 0. a = b · k + c ∧ 0 ≤ c < b}

{a ≥ 0 ∧ b ≥ 0} euclid(a, b) {c. gcd(a, b, c)}

where gcd is a predicate expressing that the c is the greatest common divisor of a and b.
Such a triple {P} e {v . Q(v)} expresses that if the precondition P is true, then e will execute
to a value v (if it terminates) satisfying the postcondition Q(v). As we will see below, when
we prove such triples, we learn information (e.g., from case distinctions), which we can use
to justify subsequent reasoning steps (e.g., the application of mod).

5.1 Hoare Logic

We start with the canonical example of a program logic: Hoare logic [4]. In our setting,
we discuss a Hoare logic with Hoare triples {P} e {v . Q(v)} for terms from an extended
λ-calculus1:

Propositions P,Q,R ::= ϕ | ∃x. P (x) | ∀x. P (x) | P ∧Q | P ∨Q
Terms e ::= x | v | fix f x. e | e1 e2 | e1 o e2 | if e1 then e2 else e3

| (e1, e2) | π1e | π2e | inj1e | inj2e
| match e1 of inj1 x⇒ e2 | inj2 y ⇒ e3 end

Values v ::= fix f x. e | n | (v1,v2) | inj1v | inj2v | true | false

where ϕ is an arbitrary, simple meta level proposition (e.g., True, False, n < 0, or even(k)).

1As a consequence of considering the λ-calculus instead of an imperative language (as done in more
traditional formulations of Hoare logic), we do not have explicit variable assignments in the language.
Fittingly, our pre- and postconditions do not contain variable assignments and we use substitution
instead of updating pre- and postconditions.
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Proposition Proof Rules P ⊢ Q

Refl
P ⊢ P

Trans
P ⊢ Q Q ⊢ R

P ⊢ R

Pure
ϕ

P ⊢ ϕ

FromPure
P ⊢ ϕ ϕ⇒ (P ⊢ Q)

P ⊢ Q
AndElimL
P ∧Q ⊢ P

AndElimR
P ∧Q ⊢ Q

AndIntro
P ⊢ Q P ⊢ R

P ⊢ Q ∧R
OrIntroL
P ⊢ P ∨Q

OrIntroR
Q ⊢ P ∨Q

OrElim
P ⊢ R Q ⊢ R

P ∨Q ⊢ R

AllIntro
∀x : X. (P ⊢ Q(x))

P ⊢ ∀x : X.Q(x)

AllElim
y : X

(∀x : X. P (x)) ⊢ P (y)

ExistIntro
y : X P ⊢ Q(y)

P ⊢ ∃x : X.Q(x)

ExistElim
∀x : X. (P (x) ⊢ Q)

∃x : X. P (x) ⊢ Q

Here, we write ϕ⇒ ψ for a meta-level implication. (You can think of it as a Coq implica-
tion.)

Exercise 61 Derive some common proof principles:

Weakening
P ⊢ R

P ∧Q ⊢ R
True
P ⊢ True

False
False ⊢ P

AndComm
P ∧Q ⊢ Q ∧ P

OrComm
P ∨Q ⊢ Q ∨ P

AllComm
∀x, y. P (x, y) ⊢ ∀y, x. P (x, y)

ExComm
∃x, y. P (x, y) ⊢ ∃y, x. P (x, y) •

Hoare Rules {P} e {v . Q(v)}

Value
{P (v)}v {w. P (w)}

Consequence
P ′ ⊢ P (∀v . Q(v) ⊢ Q′(v)) {P} e {v . Q(v)}{

P ′} e {v . Q′(v)
}

Bind
{P} e {v . Q(v)} ∀v . {Q(v)}K[v ] {w. R(w)}

{P}K[e] {w. R(w)}

Pure
P ⊢ ϕ ϕ⇒ {P} e {v . Q(v)}

{P} e {v . Q(v)}

Exists
∀x : X. {P (x)} e {v . Q(v)}
{∃x : X. P (x)} e {v . Q(v)}

PureStep
e1 →pure e2 {P} e2 {v . R(v)}

{P} e1 {v . R(v)}
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Pure Steps e1 →pure e2

e1 →pure e2

K[e1]→pure K[e2] n+m→pure n+m n−m→pure n−m
m ̸= 0

n divm→pure n/m

n = m

n == m→pure true

n ̸= m

n == m→pure false (fix f x. e)v →pure e[fix f x. e/f,v/x]

n ∗m→pure n ·m if true then e1 else e2 →pure e1 if false then e1 else e2 →pure e2

match inj1v of inj1 x⇒ e1 | inj2 y ⇒ e2 end→pure e1[v/x] π1(v1,v2)→pure v1

match inj2v of inj1 x⇒ e1 | inj2 y ⇒ e2 end→pure e2[v/x] π2(v1,v2)→pure v2

Exercise 62 Traditionally, Hoare logic is presented without the rule PureStep. Instead,
following the axiomatic style, they are presented with structural rules for all language
connectives. Derive the following structural rules:

Rec
{P} e[fix f x. e/f,v/x] {w. Q(w)}
{P} (fix f x. e)v {w. Q(w)}

IsNeq
{n ̸= m} n == m {v .v = false}

Sub
{True} n−m {v .v = n−m}

Add
{True} n+m {v .v = n+m}

IfFalse
{P} e2 {v . Q(v)}

{P} if false then e1 else e2 {v . Q(v)}

•

Exercise 63 Derive the following rule for Hoare triples with pure preconditions:

PurePre
{ϕ} e {v . Q(v)} ⇐⇒ (ϕ⇒ {True} e {v . Q(v)})

•

Program Verification We use the rules for {P} e {v . Q} to verify the following imple-
mentation of the Fibonacci function:

fix fib n. if n == 0 then 0 else if n == 1 then 1 else fib(n− 1) + fib(n− 2)

Lemma 75. {n ≥ 0} fib n
{
v .v = Fn

}
where Fn is the n-th Fibonacci number.

Proof. Let n ≥ 0 by PurePre. We show {True} fib n
{
v .v = Fn

}
by strong induction

on n. The base cases follow with Lemma 76 and the recursive case with Lemma 77.

Lemma 76. {True} fib 0 {v .v = 0} and {True} fib 1 {v .v = 1}.
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Exercise 64 Prove Lemma 76. •

Lemma 77.

{True} fib(n− 1)
{
v .v = Fn−1

}
{True} fib(n− 2)

{
v .v = Fn−2

}
{n > 1} fib n

{
v .v = Fn

}
Proof. Let n > 1 by PurePre. By executing several pure steps (e.g., the conditions
of the if-expressions), it remains to show {True} fib(n− 1) + fib(n− 2)

{
v .v = Fn

}
. We

bind fib(n− 2) with Bind and use our assumption for the recursive call. It remains to
show

{
v = Fn−2

}
fib(n− 1) + v

{
w. w = Fn

}
, so {True} fib(n− 1) + Fn−2

{
w. w = Fn

}
by PurePre. Similarly, we evaluate the recursive call with n− 1, leaving us to prove
{True} Fn−1 + Fn−2

{
w. w = Fn

}
, which follows from a pure step and rule Value.

Exercise 65 (Old School) Prove

{True} fib n− 1
{
v .v = Fn−1

}
{True} fib n− 2

{
v . Fn−2

}
{n > 1} fib n

{
v .v = Fn

}
without using the rule PureStep and, instead, use only the structural rules you derived
previously. •

Example 78 (Euclid). We can also verify the specification for the euclid function given
above:

{a ≥ 0 ∧ b > 0}mod(a, b) {c. ∃k ≥ 0. a = b · k + c ∧ 0 ≤ c < b}

{a ≥ 0 ∧ b ≥ 0} euclid(a, b) {c. gcd(a, b, c)}

The specification for mod can be straightforwardly verified using the rules for Hoare
triples and standard mathematical reasoning. The specification for euclid is proved by
strong induction on b ≥ 0. We do a case analysis on b and end up with a base case and
the inductive step:

{True} euclid a 0 {v .v = a}

∀c. {0 ≤ c < b} euclid b c {d. gcd(b, c, d)}
{b > 0 ∧ a ≥ 0} euclid a b {c. gcd(a, b, c)}

For the inductive step, we use the inductive hypothesis for the result of mod and then
employ the property gcd(b, c, d)↔ gcd(b · k + c, b, d).

Exercise 66 Let fix fac n := if n == 0 then 1 else n ∗ fac(n− 1). Prove that fac computes
the factorial function: {n ≥ 0} fac n

{
v .v = n!

}
. •

5.2 Separation Logic

The Hoare logic we have seen above is quite limited in that it can only be used to reason
about pure, functional programs. To support more expressive reasoning about programs
with a heap, we now turn to a successor of Hoare logic2: separation logic [8].

2Traditionally, Hoare logics are designed for imperative languages. Fittingly, they have built in support
for reasoning about the program state in the form of variable assignments. However, they do not make
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We extend our propositions, terms, and values:

Propositions P,Q,R ::= · · · | ℓ 7→ v | P ∗Q
Terms e ::= · · · | new(e) | e1← e2 | ! e

Values v ::= · · · | ℓ

The proposition ℓ 7→ v (read “ℓ points to v ”) asserts that the location ℓ currently stores the
value v . The proposition P ∗ Q is called the separating conjunction. Like conjunction, it
asserts that both P and Q are true. What makes it special—and the distinguishing feature
of separation logic—is that it ensures P and Q are satisfied by disjoint parts of the heap.
That is, the proposition ℓ 7→ v ∗ ℓ 7→ w is false, because both conjuncts do not refer to
separate parts of the heap. Correspondingly, the proposition ℓ 7→ v ∗ ℓ′ 7→ w ensures that
ℓ ̸= ℓ′ and ℓ 7→ v and ℓ′ 7→ w.

Proposition Proof Rules P ⊢ Q

SepWeaken
P ∗Q ⊢ P

SepTrue
P ⊢ P ∗ True

SepComm
P ∗Q ⊢ Q ∗ P

SepSplit
P ⊢ P ′ Q ⊢ Q′

P ∗Q ⊢ P ′ ∗Q′

SepAssoc
P ∗ (Q ∗R) ⊣⊢ (P ∗Q) ∗R

ExistsSep
(∃x : X.P (x)) ∗Q ⊢ (∃x : X.P (x) ∗Q)

PointstoSep
ℓ 7→ v ∗ ℓ 7→ w ⊢ False

PointstoAnd
ℓ 7→ v ∧ ℓ 7→ w ⊢ v = w

We write P ⊣⊢ Q as a shorthand for P ⊢ Q and Q ⊢ P .

Exercise 67 Derive the following proof rules:

PointstoDisj
ℓ 7→ v ∗ ℓ′ 7→ w ⊢ ℓ ̸= ℓ′

SepExists
(∃x : X.P (x)) ∗Q ⊣⊢ (∃x : X.P (x) ∗Q)

•

Example 79 (Chains). Using the separating conjunction, we can concisely express the
notion of a chain of references:

chain(ℓ, r) := ∃n > 0. chainn(ℓ, r)

chain0(ℓ, r) := ℓ = r

chainn+1(ℓ, r) := ∃t. ℓ 7→ t ∗ chainn(t, r)

Let us look at a simple chain:

ℓ2 7→ ℓ3 ∗ ℓ1 7→ ℓ2 ∗ ℓ3 7→ ℓ4 ⊢ chain(ℓ1, ℓ4)

memory locations first class values and, thus, fall short of the expressive power of separation logic,
which supports nested references and linked lists.
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We can also establish some simple properties of chains:

ℓ 7→ r ⊢ chain(ℓ, r)

ℓ 7→ r ∗ chain(r, t) ⊢ chain(ℓ, t)

chain(ℓ, r) ∗ chain(r, t) ⊢ chain(ℓ, t)

chain(ℓ, r) ∗ chain(ℓ, t) ⊢ False

chain(ℓ, r) ∗ chain(r, ℓ) ⊢ cycle(ℓ)

where cycle(ℓ) := chain(ℓ, ℓ).

Exercise 68 Prove the chain properties. •

Exercise 69 (Awkward Cycles) Can you prove cycle(ℓ) ⊢ ∃r. chain(ℓ, r) ∗ chain(r, ℓ)?
•

Separation logic rules {P} e {v . Q(v)}

We extend our Hoare proof rules by the following separation logic proof rules.

Frame
{P} e {v . Q}

{P ∗R} e {v . Q ∗R}
New
{True} new v {w. ∃ℓ. w = ℓ ∗ ℓ 7→ v}

Store
{ℓ 7→ v} ℓ← w { . ℓ 7→ w}

Load
{ℓ 7→ v} ! ℓ {w. w = v ∗ ℓ 7→ v}

Note that Frame is completely agnostic about the expression e it is applied to while
all the other rules (i.e., New, Store, and Load) are structural: they apply only to specific
forms of expressions. Out of these four rules, the Frame rule deserves the most attention:
it is the heart of separation logic. Since the separating conjunction P ∗ R expresses that
P and R assert facts about disjoint parts of the heap, we know that if e only needs the P
part of the heap, then R remains unchanged and holds again after the execution of e.

Ownership reasoning Let us dwell on the frame rule for a bit longer. What it concisely
encapsulates is the so-called “ownership reasoning” of separation logic. The idea is that the
assertion ℓ 7→ v expresses “ownership” of the location ℓ. Owning a location ℓmeans no other
program part can manipulate it. For example, in the triple

{
ℓ 7→ 0

}
f (ℓ, ℓ′)

{
. ℓ 7→ 42

}
the function f “owns” ℓ for the duration of the call and it can be sure that no other
program part (even in a concurrent setting) will interfere with ℓ. Moreover, from the triple{
ℓ 7→ 0

}
f (ℓ, ℓ′)

{
. ℓ 7→ 42

}
we know f only needs the location ℓ from the current heap—

ownership of all other locations can be framed around the function call. For example, we
can verify the following program:

eown := let x := new(0) in let y := new(42) in f(x, y) ; assert (!x == ! y)

Exercise 70 Prove the following rule for assert (e) := if e then () else 0 0: If {P} e {v .v = true},
then {P} assert (e) {v .v = ()}. •

81 Draft of February 14, 2022



Lemma 80.

{True} eown { .True}

Proof Sketch. For the proof of this lemma on paper, we use a typical proof style for Hoare
triples. We write the assertions that hold before/after each line in curly braces (and we
use the same name for locations that we use for the variables):

{True}
let x := new(0) in

{x 7→ 0}
let y := new(42) in

{x 7→ 0 ∗ y 7→ 42}
f(x, y);

{x 7→ 42 ∗ y 7→ 42}
assert (!x == ! y)

{x 7→ 42 ∗ y 7→ 42}
{True}

Note that we use the Frame rule here multiple times: The first time that we use it,
we frame the ownership of x 7→ 0 around the allocation of y. While this use of framing is
perhaps not very interesting, the second one is. The second time we use framing, we frame
the ownership of y 7→ 42 around the call to f . How do we know that y is not altered by f?
The answer is that f only demands ownership of x 7→ 0 in its precondition (even though it
also takes y as an argument) and, hence, eown can keep the ownership of y 7→ 42: we can
frame it around the function call. Thus, it is not very surprising that the assert afterwards
succeeds.

Exercise 71 Verify the function swap(x, y) := let t := !x in x← ! y ; y← t by proving

{ℓ 7→ v ∗ r 7→ w} swap(ℓ, r) { . ℓ 7→ w ∗ r 7→ v}
•

Adequacy If we verify functions such as swap or fib, what do we actually prove? The
following adequacy statement can shed some light on this question:

Statement 81 (Pure Adequacy). If {True} e {v . ϕ(v)} and (e, h) ;∗ (e′, h′), then (e′, h′)

can take a step or e′ = v for some v such that ϕ(v).

Intuitively, this statement says that e never gets stuck and if it eventually terminates, then
the value satisfies the postcondition. To reason about programs which manipulate the
heap, we can use the following strengthened version:

Statement 82 (Adequacy). If
{∗ℓ7→v∈hin

ℓ 7→ v
}
e
{
v . ∃hout. (∗ℓ7→w∈hout

ℓ 7→ w) ∗ ϕ(v , hout)
}

and h ⊇ hin and (e, h) ;∗ (e′, h′), then (e′, h′) can take a step or e′ = v for some v and
h′ ⊇ hout for some hout such that ϕ(v , hout).
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Linked List Example Let us turn to our first larger example: verifying a linked list
implementation. We define recursively what it means for a value v to represent the list xs:

list(v , nil) := v = None

list(v , x :: xr) := ∃ℓ, w.v = Some(ℓ) ∗ ℓ 7→ (x,w) ∗ list(w, xr)

Here, we use None as notation for inj1 () and Some as notation for inj2. For this represen-
tation of lists, we can define a range of standard list functions:

new() := None

cons(a, x) := let r := new(a, x) in Some(r)

head(x) := match x with

| None⇒ skip

| Some r ⇒ let (a, x) := ! r in a

end

tail(x) := match x with

| None⇒ skip

| Some r ⇒ let (a, x) := ! r in x

end

len(x) := match x with

| None⇒ 0

| Some r ⇒ let (a, x) := ! r in len(x) + 1

end

app(x, y) := match x with

| None⇒ y

| Some r ⇒ let (a, x) := ! r in r← (a, app(x, y)) ; Some r

end

We verify the append function:

Lemma 83. {list(v , xs) ∗ list(w, ys)} app(v , w) {u. list(u, xs++ ys)}

Proof. By induction on xs. In the case xs = nil, we have to show

{v = None ∗ list(w, ys)} app(v , w) {u. list(u, ys)}

In the case xs = x :: xr, we have to show

{(∃ℓ, u.v = Some(ℓ) ∗ ℓ 7→ (x, u) ∗ list(u, xr)) ∗ list(w, ys)} app(v , w) {u. list(u, x :: (xr ++ ys))}

given the inductive hypothesis ∀v . {list(v , xr) ∗ list(w, ys)} app(v , w) {u. list(u, xr ++ ys)}.
Both cases follow by prudent application of the rules.
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Exercise 72 Verify the remaining linked list functions:

{True} new() {v . list(v , nil)} {list(v , xs)} cons(x,v) {u. list(u, x :: xs)}

{list(v , x :: xs)} head(v) {w. w = x} {list(v , x :: xs)} tail(v) {w. list(w, xs)}

{list(v , xs)} len(v)
{
w. w = |xs| ∗ list(v , xs)

}
•

Exercise 73 The specification of the tail function can be strengthened. One specification
you might come up with is the following:

{list(v , x :: xs)} tail(v) {w. list(v , x :: xs) ∗ list(w, xs)}

Is this specification true? If yes, prove this specification. If not, explain why, try to find
another valid specification, and prove it. •
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6 Iris

We have seen how one can verify simple programs with a program logic. Unfortunately,
the separation logic from the previous section is quite limited: (1) we have no support for
(possibly) infinite loops, (2) we have no support for sharing ownership, (3) we have to do
every single proof step manually, (4) and we have no support for concurrency. To verify
larger and more complicated programs, we now turn to a much more powerful and usable
separation logic: Iris [5].

Iris extends the separation logic from Section 5.2 with a number of connectives:

Propositions P,Q,R ::= · · · | P −∗ Q | wp e {v . P (v)} | �P | P
N | ▷P | µx. P

We will now step-by-step introduce these connectives, Iris’s automation, and how the
connectives help us to verify increasingly complicated programs.

6.1 The Magic Wand

We start with the magic wand P −∗ Q. From separation logic, we already know separating
conjunction P1 ∗ P2, which acts like ordinary conjunction P1 ∧ Q2 in many ways. For
example, separating conjunction, like ordinary conjunction, is commutative and associative
and one can show that P1 ∗ P2 ⊢ P1 ∧ P2. But there is an additional aspect in which they
are similar: just like ordinary conjunction P1 ∧ P2 has an associated notion of implication
P ⇒ Q in propositional logic, separating conjunction P1 ∗ P2 has an associated notion of
implication in separation logic—the magic wand P −∗ Q.

Intuitively, the magic wand P −∗ Q expresses that Q holds under the assumption of P .
That is, Q holds under the assumption of ownership of the heap fragment described by P .
There are only two proof rules for P −∗ Q and they are quite simple:

WandIntro
P ∗Q ⊢ R
P ⊢ Q −∗ R

WandElim
P ⊢ Q −∗ R
P ∗Q ⊢ R

With the addition of the magic wand, we can prove one of the rules of separating
conjunction that we introduced as an axiom in Section 5, the rule ExistsSep.

Lemma 84.

ExistsSep
(∃x : X. P (x)) ∗Q ⊢ ∃x : X. P (x) ∗Q

Proof. Using WandElim, we can revert the assumption Q from our context, leaving us
to prove (∃x : X. P (x)) ⊢ Q −∗ ∃x : X. P (x) ∗ Q. We use ExistElim to eliminate the
existential quantifier in our assumptions. We have to show P (x) ⊢ Q −∗ ∃x : X. P (x) ∗Q
for arbitrary x : X. By WandIntro, we have to show P (x) ∗Q ⊢ ∃x : X. P (x) ∗Q, which
follows by ExistIntro.

Exercise 74 Prove the following derived rules:

CarryRes
P ⊢ Q −∗ P ∗Q

CommPremise
Q −∗ P −∗ R ⊢ P −∗ Q −∗ R

SepOrDisj2
(P ∨R) ∗ (Q ∨R) ⊢ (P ∗Q) ∨R
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•

6.2 Iris Proof Mode

To reason about the entailment P ⊢ Q, we currently use an ever-growing collection of
rules about P ⊢ Q. In particular, we have to use rules to destruct assumptions, instantiate
existential quantifiers, use associativity (and commutativity) of the separating conjunction,
etc. This is in stark contrast to what Coq and other interactive theorem provers offer their
users: In Coq, we have a proof context (not just a single proposition) and we can use
tactics to manipulate our proof context and our goal.

With the Iris Proof Mode (IPM) [6], we now turn to similar machinery for Iris that
simplifies proving P ⊢ Q. The IPM introduces an additional context for separation logic
propositions and tactic support to manipulate the assumptions therein. To understand
what that looks like, let us turn to an example, proving (P ∨Q) ∗R ⊢ (P ∗R) ∨ (Q ∗R).
In the IPM, we start the proof as follows:

Lemma or_sep P Q R: (P ∨ Q) ∗ R ⊢ (P ∗ R) ∨ (Q ∗ R).
Proof.

iIntros "[HPQ HR]".

Afterwards, the proof state looks as follows:

P, Q, R : iProp
-------------------------
"HPQ": P ∨ Q
"HR": R
-------------------------*
(P ∗ R) ∨ (Q ∗ R)

Above the first line is the normal Coq context containing the propositions P and Q. Below
the first line and above the second line is the spatial context. It contains two assumptions,
HPQ and HR, which express ownership of P∨Q and R. Below the second line is our remaining
goal (P ∗R) ∨ (Q ∗R). Similar to ordinary Coq proofs, we can destruct P ∨Q:

Lemma or_sep P Q R: (P ∨ Q) ∗ R ⊢ (P ∗ R) ∨ (Q ∗ R).
Proof.

iIntros "[HPQ HR]". iDestruct "HPQ" as "[HP|HQ]".

As one might expect, we now have two subgoals to prove:

P, Q, R : iProp
-------------------------
"HP": P
"HR": R
-------------------------*
(P ∗ R) ∨ (Q ∗ R)

P, Q, R : iProp
-------------------------
"HQ": Q
"HR": R
-------------------------*
(P ∗ R) ∨ (Q ∗ R)

In the first case, we want to pick the left side of the disjunct and in the second case the
right side. We do so with the tactics iLeft and iRight, leaving us to prove:
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P, Q, R : iProp
-------------------------
"HP": P
"HR": R
-------------------------*
P ∗ R

P, Q, R : iProp
-------------------------
"HQ": Q
"HR": R
-------------------------*
Q ∗ R

In both cases, we can finish the proof with the tactic iFrame. iFrame will go through
the spatial context and search for any propositions that appear in the goal. It will then
try to use those to discharge proof obligations in the goal.

The spatial context. One can think of the linear context of the IPM as a large separating
conjunction of all the assumptions. That is, since separating conjunction is commutative
and associative, we can display the assumptions as an unordered list:

∆ ⊢ Q := P1 ∗ · · · ∗ Pn ⊢ Q where∆ = [P1, . . . , Pn]

An important distinction between the Coq proof context and the spatial context is that
assumptions in the spatial context are linear, meaning we can only use them once. That
is, if we have the assumption n > 5 in our Coq context, then it is persistent—it does not
change and remains true as we proceed in the proof. In contrast, if we have the assumption
ℓ 7→ 42 in our spatial context, then it is only true now—we have to give it up to mutate ℓ
and get back a new points to assumption. The reason the spatial context is linear is that
ℓ 7→ 42 would be false if we assign 0 to location ℓ. Put differently, the ownership reasoning
of separation logic only works if we are required to give up ownership in certain places.
Logics like separation logic, where we have to give up propositions when we use them, are
called linear logics.

Using entailments. Of course, we can also use entailments that we have already proven as
part of other proofs. For example, let us return to the proof of (P∨Q)∗R ⊢ (P ∗R)∨(Q∗R).
Suppose, for the sake of argument, we want to use the rule OrIntroL directly instead of
the tactic iLeft. To use OrIntroL, we use the tactic iPoseProof. Concretely, in the proof
state:

P, Q, R : iProp
-------------------------
"HP": P
"HR": R
-------------------------*
(P ∗ R) ∨ (Q ∗ R)

the tactic iPoseProof (or_intro_l (P ∗ R) (Q ∗ R)) as "-#Hor" brings us to the proof state:

P, Q, R : iProp
-------------------------
"HP": P
"HR": R
"Hor": P ∗ R -* (P ∗ R) ∨ (Q ∗ R)
-------------------------*
(P ∗ R) ∨ (Q ∗ R)
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The entailment becomes a magic wand in our proof context. (The reader can ignore the
-# after the as.) Since the magic wand is similar to an implication, we can then apply it
to our goal with iApply "Hor".

Coq propositions. Recall that we embed arbitrary Coq propositions into our goals as ϕ.
If we want to prove a pure proposition with the IPM, we can use the tactic iPureIntro,
which will change the goal to allow us to prove the pure proposition (inspired by Pure).
To get access to pure propositions in our assumptions (if they are in the linear context and
not the Coq context), we can lift them out of the linear context (inspired by FromPure).
To do so, we destruct the assumption, which we will look at next.

Destructing assumptions. Recall that to destruct assumptions, the IPM offers the tactic
iDestruct. With iDestruct, we can destruct an assumption H, say (P ∨Q) ∗ R, into its
components. Specifically, here we would use iDestruct "H" as "[[HP|HQ] HR]" inspired
by Coq’s destruction patterns. If we want to destruct an existential quantifier ∃x : X. P (x),
then the pattern becomes "[%w HP]" where w is the Coq name the witness will get and HP
the name the identifier for the assumption P (w) that will be added to the context. If we
want to access the contents of an assumption that is a pure proposition (i.e., n < 5), then
the destruct pattern becomes "%Hn" where Hn is the Coq name the assumption n < 5 will
get. The tactic iIntros can also be given a destruction pattern.

Specializing assumptions. Recall that we can add entailments as assumptions using the
tactic iPoseProof. If we have used it to add "Hor": P * R -* (P * R) \/ (Q * R) to
our spatial context, then we can specialize the assumption of the magic wand. With
iSpecialize ("Hor" with "[HR HP]"), we create a new proof obligation:

P, Q, R : iProp
-------------------------
"HP": P
"HR": R
-------------------------*
P ∗ R

We have to show the premise P ∗ R from the assumptions we carry over HR and HP. We can
use the machinery behind iFrame to directly frame HR and HP when we specialize the wand.
To do so, we execute iSpecialize ("Hor" with "[$HR $HP]").

A more exhaustive overview of the tactics of the IPM can be found at:

https://gitlab.mpi-sws.org/iris/iris/-/blob/master/docs/proof_mode.md

Exercise 75 Prove ⊢ P −∗ Q −∗ P ∗Q, P ∗(P −∗ Q) ⊢ Q, and P∨Q ⊢ R −∗ (P ∗R)∨(Q∗R)
with and without the IPM. •

6.3 Weakest Preconditions

The IPM is very convenient for reasoning about the entailments P ⊢ Q. But to prove
Hoare triples, we still have to leave the IPM and use our collection of lemmas manually.
With the weakest precondition, we will now see how we can reuse the IPM to prove Hoare
triples. In Iris, we define Hoare triples {P} e {v . Q(v)} as an entailment:

P ⊢ wp e {v . Q(v)}
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where wp e {v . Q(v)} is the weakest precondition that we have to impose such that e never
gets stuck and (if it terminates) results in a value satisfying the postcondition Q(v).

Proving a Hoare triple {P} e {v . Q(v)} by showing that P implies the weakest precon-
dition of e is not specific to Iris. However, in the case of Iris, it is important to note that we
prove an entailment between two separation logic propositions—the weakest precondition
is a separation logic assertion! Thus, we can reuse the Iris proof mode.

Weakest Precondition Rules wp e {v . Q(v)}

Structural Rules

Value
Q(v) ⊢ wp v {w. Q(w)}

Wand
(∀v . Q(v) −∗ Q′(v)) ∗ wp e {w. Q(w)} ⊢ wp e

{
w. Q′(w)

}
WpBind
wp e {v .wpK[v ] {w. Q(w)}} ⊢ wpK[e] {w. Q(w)}

PureStep
e→pure e

′

wp e′ {v . Q(v)} ⊢ wp e {v . Q(v)}

Heap Command Rules

New
(∀ℓ. ℓ 7→ v −∗ Q(ℓ)) ⊢ wp new(v) {w. Q(w)}

Load
ℓ 7→ v ∗ (ℓ 7→ v −∗ Q(v)) ⊢ wp ! ℓ {w. Q(w)}

Store
ℓ 7→ v ∗ (ℓ 7→ w −∗ Q()) ⊢ wp ℓ← w {u. Q(u)}

The structural rules should not come as a big surprise. Let us take a look at the general
rules. The rule Wand corresponds to Consequence and the rule WpBind to the rule Bind.
But what about all the other rules for Hoare triples (e.g., Exists,Pure, and Frame)?
They can be derived from the rules above.

Exercise 76 (The Frame Rule) Using the rules for the weakest precondition, prove
the Frame rule.

Frame
{P} e {v . Q}

{P ∗R} e {v . Q ∗R}

Hint: You may find R ⊢ Q −∗ Q ∗R useful. •

Exercise 77 (The Heap Rules) Using the rules for the weakest precondition, reprove
the structural rules for state manipulating expressions (i.e., New, Load, and Store). •

Iris proof mode. In the IPM, we have several specialized tactics to use the weakest
precondition rules: The first one is wp_bind e where e is the expression in the evaluation
context that we want to use the rule WpBind on. The second one is wp_pure e where e is
the expression (potentially inside an evaluation context) that we want to execute a pure
step of. We can omit e and just write _ instead, or just use the tactic: wp_pures, which will
execute as many pure steps as possible. Finally, for non-pure reduction rules (i.e., New,
Load, and Store), we have the tactics wp_alloc l as "H" to allocate a fresh reference l
with the new assertion H, wp_load to execute a load, and wp_store to execute a store.
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Case Study: Linked Lists We return to the linked list example from Section 5. Recall
the definition of the append function:

app(x, y) := match x with

| None⇒ y

| Some r ⇒ let (a, x) := ! r in r← (a, app(x, y)) ; Some r

end

Once again, we prove its correctness—this time in Iris!

Lemma 85. {list(v , xs) ∗ list(w, ys)} app(v , w) {u. list(u, xs++ ys)}

Proof. By induction on xs.

a) Let xs = nil. We show {list(v , nil) ∗ list(w, ys)} app(v , w) {u. list(u, nil++ ys)}. Step-
by-step, we prove the triple in Iris (if the postcondition of a weakest pre does not
change, just the code, we omit it):

Context: Goal:
list(v , nil) ∗ list(w, ys) wp app(v , w) {u. list(u, nil++ ys)}
v = None ∗ list(w, ys) app(v , w)

list(w, ys) app(None, w)

list(w, ys) match None with

| None⇒ w

| Some r ⇒ let (a, x) := ! r in r← (a, app(x, y)) ; Some r

end

list(w, ys) w

From list(w, ys), we can deduce our postcondition list(w, nil++ ys).

b) Let xs = x :: xr. We show {list(v , x :: xr) ∗ list(w, ys)} app(v , w) {u. list(u, (x :: xr) ++ ys)}.
Step-by-step, we prove the triple in Iris:

Context: Goal:
list(v , x :: xr) ∗ list(w, ys) wp app(v , w) {u. list(u, (x :: xr) ++ ys)}
(∃r, n.v = Some(r) ∗ r 7→ (x, n) ∗ list(n, xr)) app(v , w)

∗ list(w, ys)
r 7→ (x, n) ∗ list(n, xr) ∗ list(w, ys) app(Some(r), w)

r 7→ (x, n) ∗ list(n, xr) ∗ list(w, ys) let (x, n) := ! r in r← (x, app(n,w)) ; Some r

r 7→ (x, n) ∗ list(n, xr) ∗ list(w, ys) r← (x, app(n,w)) ; Some r

By induction for xs, binding app(n,w), and framing r 7→ (x, n):
r 7→ (x, n) ∗ list(u, xr ++ ys) r← (x, u) ; Some r

r 7→ (x, u) ∗ list(u, xr ++ ys) Some r

list(Some r, x :: (xr ++ ys)) Some r

From list(Some r, x :: (xr ++ ys)), we can deduce list(Some r, (x :: xr) ++ ys).
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Exercise 78 Verify the remaining linked list functions in Iris:

{True} new() {v . list(v , nil)} {list(v , xs)} cons(x,v) {u. list(u, x :: xs)}

{list(v , x :: xs)} head(v) {w. w = x} {list(v , x :: xs)} tail(v) {w. list(w, xs)}

{list(v , xs)} len(v)
{
w. w = |xs| ∗ list(v , xs)

}
•

Exercise 79 We can write down a function lookup for linked lists that returns a reference
to a link of the list given its index:

lookup(l, i) := match l with

| None⇒ None

| Some l⇒ if i == 0 then Some l else lookup(π2 ! l, i− 1)

end

We can give a specification (for the case that the index is in range) that allows mutation
of that link of the linked list using a specification pattern commonly known as the magic
wand encoding (which is often used to give access to parts of a data structure).

{list(v , xs) ∗ i < |xs|}
lookup(v , i)

{w. ∃ℓ, n. w = Some ℓ ∗ ℓ 7→ (xs[i], n) ∗ (∀u. ℓ 7→ (u, n) −∗ list(v , xs[i 7→ u]))}

The postcondition gives ownership of the location ℓ returned by the function, and logically
ownership of the whole linked list can be restored once ownership of ℓ is given up again.

Verify this specification. •

6.4 Invariants and Persistency

Recall the MUTBIT example:

MUTBIT := {flip : 1→ 1, get : 1→ bool}
MyMutBit := let x = new 0

in {flip := λy. x← 1− !x,

get := λy. !x > 0}

In Section 4, we proved that MyMutBit is semantically safe (i.e., ⊨ MyMutBit : MUTBIT).
Let us try to verify MyMutBit in Iris (records are essentially just pairs with named pro-
jections). Instead of using types to specify the function, in Iris, we verify MyMutBit by
proving a Hoare triple:

{True}MyMutBit {v .MutBit(v)}
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We just have to settle on a predicate MutBit. Intuitively, to match the type specification,
we want to say something like:

MutBit(v) := {True}v .flip() {w. w = ()} ∗ {True}v .get() {w. w ∈ B}

For the flip component, we want the result to be unit, and for get we want to obtain some
boolean. The types do not specify any input, so we pick the precondition True for both.

The specification MutBit poses two problems: First, Hoare triples are defined as en-
tailments P ⊢ wp e {v . Q(v)}, which is not an Iris proposition itself. So if we embed them
as a meta level proposition into our specification, we lose all information about the current
program state (e.g., the location x). Second, the preconditions do not make the location
x available to flip and get. How can we prove the two triples without ownership of x?

Internalizing Hoare triples. Let us focus on the first problem—Hoare triples are not
Iris propositions. Since they are defined using the entailment and is something like an
implication, we could try do define {P} e {v . Q(v)} := P −∗ wp e {v . Q(v)} as an Iris
proposition. Then, when we prove {P} e {v . Q(v)}, we can keep all of the ownership we
currently have (e.g., ownership of x after allocation). Unfortunately, with this definition,
ownership of a triple {P} e {v . Q(v)} would mean we could only use it once! So in the case
of flip, we could only do a single flip and for any subsequent calls to flip, we would have a
problem.

What we really want is that Hoare triples are duplicable:

{P} e {v . Q(v)} ⊢ {P} e {v . Q(v)} ∗ {P} e {v . Q(v)}

Then, just like with Coq propositions, we can always keep a copy whenever we want to use
the Hoare triple. In Iris, we call propositions which can be duplicated (i.e., P ⊢ P ∗ P )
persistent, and we have a modality �P , which “makes” propositions persistent:

PersDup
�P ⊢ (�P ) ∗ (�P )

PersElim
�P ⊢ P

Thus, we define Hoare triples as {P} e {v . Q(v)} := �(P −∗ wp e {v . Q(v)}).

Proving persistent propositions. Given the duplicable definition of Hoare triples, a new
question arises: how do we prove a persistent proposition �P? The two rules we have
seen so far allow us to eliminate �P , but no rule allows us to introduce �P yet. To do
so, we use the following rules for interacting with persistent propositions:

PersMono
P ⊢ Q

�P ⊢ �Q
PersPure
ϕ ⊢ �ϕ

PersAndSep
(�P ) ∧Q ⊢ (�P ) ∗Q

PersIdemp
�P ⊢ ��P

PersAll
∀x : X. �P (x) ⊢ �∀x : X. P (x)

PersExists
�∃x : X. P (x) ⊢ ∃x : X. �P (x)

In the IPM, persistent propositions play a special role: they have their own context.
That is, since persistent propositions are duplicable, they do not have to be given up when
we use them. Thus, they reside in their own context. For example, if we start a proof with:
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Lemma double_int f :

{True} f () {v, ∃ z: Z, v = #z } ⊢ {True} f () + f () {v, ∃ z: Z, v = #z }
Proof.

iIntros "#Hf".

then the resulting proof state is:

f: val
-------------------------
"Hf": {True} f () {v, ∃ z: Z, v = #z }
-------------------------�
-------------------------*
{True} f () + f () {v, ∃ z: Z, v = #z }

The # moves the assumption into the persistent context, which is right above the spatial
context. All the propositions in the persistent context must be underneath a box. We
can then get rid of the � in our goal (behind the definition of Hoare triples) with the
tactic iModIntro, leaving us to prove

True -* WP f () {v, ∃ z: Z, v = #z }

Note that when we get rid of the� in the goal, the proof mode implicitly applies PersMono.
PersMono requires that all the assumptions we want to take with us are underneath a �,
so we can keep the persistent context but lose the spatial context.

Exercise 80 The rule PersDup can be derived from the more general (and less intuitive)
rule PersAndSep. Derive PersDup from PersAndSep without the IPM. •

Exercise 81 Given Hoare triples {P} e {v . Q(v)} := �(P −∗ wp e {v . Q(v)}) defined as
Iris propositions, suppose we define {P} e {v . Q(v)}ext := ⊢ {P} e {v . Q(v)}. Reprove all
the Hoare rules we have discussed so far for {P} e {v . Q(v)}ext. •

Invariants. Now that we have internalized Hoare triples, let us return to the verification
of MyMutBit. After allocating the reference x, we have to prove:

x 7→ 0 ⊢ {True} bit .flip() {w. w = ()} ∗ {True} bit .get() {w. w ∈ B}
where bit = {flip := λy. x← 1− !x, get := λy. !x > 0}

How are we supposed to decide whether to give ownership of x 7→ 0 to flip or get? Moreover,
if we pick one side, then we subsequently have to prove a persistent proposition, but the
proposition x 7→ 0 is not persistent, so we cannot keep it!

Here, invariants P
N come in. With invariants, we can make the ownership of x

duplicable. The price we have to pay (to retain a sound logic) is that we have to agree on
a “protocol” how x will be used. Concretely, in the case of MyMutBit, we know that x will
always be either 0 or 1. That is what we choose as the invariant:

IMyMutBit := ∃n ∈ {0, 1} . x 7→ n
N
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To understand how invariants work and why they help us here, we consider their rules:

InvPers
F

N ⊢ � F
N

InvAlloc
P ∗ F N ⊢ wpE e {v . Q(v)}
P ∗ F ⊢ wpE e {v . Q(v)}

InvOpen
P ∗ F ⊢ wpE\N e {v . F ∗Q(v)} N ⊆ E

P ∗ F N ⊢ wpE e {v . Q(v)}

The rule InvPers says that invariants are persistent and, hence, we can duplicate them and
share them with separate parts of our proof. The propositions we can put into invariants
are from the restricted fragment of state propositions:

State Proposition F,G ::= ϕ | ℓ 7→ v | ∃x : X. F (x) | ∀x : X. F (x) | F ∨G | F ∗G

Most importantly, the state propositions can neither contain invariants themselves nor
weakest preconditions. (We will see a strengthened version, called impredicative invariants,
in Section 6.5.)

The rule InvAlloc says that we can allocate the invariant F if we are willing to
give up ownership of F . Thereafter, we can freely share ownership of F by sharing the
invariant F

N .
The rule InvOpen is the most interesting rule. It says that if we own the invariant F

N ,
then we can get access to F . In exchange, we have to prove F again in our postcondition.
The reason is that other program parts could rely on the invariant being true when they
are executed. For example, both flip and get will rely on the invariant IMutBit and, hence,
they have to ensure that it holds again after their execution.

The rule InvOpen shows an additional bit of bookkeeping: we may not open the same
invariant multiple times. For example, if we have the invariant MutBit, then opening it
twice would be fatal: we could use PointstoSep to prove anything. To ensure we do
not open the same invariant multiple times, invariants F

N have a so-called namespace
N associated with them and weakest preconditions have masks E . Whenever we open an
invariant, we must make sure that it is not already opened by proving that the namespaceN
is still contained in the mask. Subsequently, the namespace is removed from the mask until
the invariant is closed again (i.e., in the postcondition). If we omit the mask from a weakest
precondition (as we did above), we mean the full mask ⊤. All the rules we have seen so
far for the weakest precondition are true for arbitrary masks.

So let us return to the proof of MyMutBit:

Lemma 86.
{True}MyMutBit {v .MutBit(v)}
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Proof.

Context: Goal:
wp MyMutBit {v .MutBit(v)}

let x = new 0 in

{flip := λy. x← 1− !x, get := λy. !x > 0}
ℓ 7→ 0 {flip := λy. ℓ← 1− ! ℓ, get := λy. ! ℓ > 0}
ℓ 7→ 0 ∨ ℓ 7→ 1 {flip := λy. ℓ← 1− ! ℓ, get := λy. ! ℓ > 0}
We allocate ℓ 7→ 0 ∨ ℓ 7→ 1 as an invariant.
IMutBit {flip := λy. ℓ← 1− ! ℓ, get := λy. ! ℓ > 0}
Let bit := {flip := λy. ℓ← 1− ! ℓ, get := λy. ! ℓ > 0}.
IMutBit MutBit(bit)

Case flip.

IMutBit wp bit .flip() {w. w = ()}
IMutBit ℓ← 1− ! ℓ

We open the invariant IMutBit.
n ∈ {0, 1} ∗ ℓ 7→ n wp⊤\N ℓ← 1− ! ℓ {w. (∃m ∈ {0, 1} . ℓ 7→ m) ∗ w = ()}
n ∈ {0, 1} ∗ ℓ 7→ n ℓ← 1− n
n ∈ {0, 1} ∗ ℓ 7→ n ℓ← 1− n
n ∈ {0, 1} ∗ ℓ 7→ 1− n ()

Since n = 0 ∨ n = 1, we have 1− n = 0 ∨ 1− n = 1. Thus, ∃m ∈ {0, 1} . ℓ 7→ m.

Case get.

IMutBit wp bit .get() {w. w ∈ B}
IMutBit ! ℓ > 0

We open the invariant IMutBit.
n ∈ {0, 1} ∗ ℓ 7→ n wp⊤\N ! ℓ > 0 {w. (∃m ∈ {0, 1} . ℓ 7→ m) ∗ w ∈ B}
n ∈ {0, 1} ∗ ℓ 7→ n n > 0

n ∈ {0, 1} ∗ ℓ 7→ n ∗ b ∈ B b

The postcondition holds for b.

Exercise 82 (Abstract integers) We define an ADT which represents an integer as two
non-negative numbers:

MyInt(z) := let x = new if 0 < z then (0, z) else (−z, 0)
in {get := λy. let z = !x in assert (0 ≤ π1z) ; assert (0 ≤ π2z) ; π2z − π1z,

flip := λy. let z = !x in (π2z, π1z)}

Prove the following specification:

{True}MyInt(z) {v . FlipInt(v)}

where FlipInt(v) := {True}v .get() {w. ∃z. w = z} ∗ {True}v .flip() {w. w = ()}. •
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6.5 Step-indexing

Up to now, all examples that we have discussed are terminating. But what if we want to
verify a potentially non-terminating program (e.g., a parameterized function, a potentially
diverging loop, or the Z-combinator from Section 3)? We are now going to discuss how step-
indexing can help us—just like with the Z-combinator—to prove properties of potentially
diverging programs.

To keep matters concrete, we will focus on a specific example: deriving a recursion rule
for our built-in recursive functions fix f x. e. We already have a rule to execute a single step
of our recursive functions with PureStep. However, if we use that rule for (fix f x. e) v ,
then we do not obtain any assumptions about the recursive occurrences of f in e. However,
in a partial correctness logic like Iris, where we do not prove termination3, we can assume
for any recursive call the specification is already true:

Rec
P (v) ∗ ∀u. {P (u)} (fix f x. e)u {w. Q(u,w)} ⊢ wp e[(fix f x. e)/f,v/x] {w. Q(v , w)}

P (v) ⊢ wp (fix f x. e)v {w. Q(v , w)}

Logical step-indexing In Section 3, we have encountered step-indexing as a technique to
define logical relations and a way to give cyclic proofs for programs in the relation. We
will now discuss the logical version of step-indexing where all the step-index manipulation
is hidden behind a modality, the later modality ▷P . As we will see in subsequent sections,
the model of our propositions is step-indexed, meaning they are modelled as predicates
over natural numbers, and the later modality makes sure that the step-index decreases.

LaterIntro
P ⊢ ▷P

LaterMono
P ⊢ Q

▷P ⊢ ▷Q

Loeb
▷P ⊢ P
⊢ P

LaterSep
▷(P ∗Q) ⊣⊢ ▷P ∗ ▷Q

LaterExists
X non-empty

▷(∃x : X. P (x)) ⊣⊢ ∃x : X. ▷P (x)

LaterAll
▷(∀x : X. P (x)) ⊣⊢ ∀x : X. ▷P (x)

LaterPers
▷�P ⊣⊢ � ▷P

LaterPureStep
e→pure e

′

▷wp e′ {v . P (v)} ⊢ wp e {v . P (v)}

LaterNew
▷(∀ℓ. ℓ 7→ v −∗ Q(ℓ)) ⊢ wp new(v) {w. Q(w)}

LaterLoad
ℓ 7→ v ∗ ▷(ℓ 7→ v −∗ Q(v)) ⊢ wp ! ℓ {w. Q(w)}

LaterStore
ℓ 7→ v ∗ ▷(ℓ 7→ w −∗ Q()) ⊢ wp ℓ← w {w. Q(w)}

The introduction rule LaterIntro corresponds to downward closure—we can always

3Instead, we only prove that the program does not get stuck and if it terminates, that then the postcon-
dition holds.
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decrease the step-index of our assumptions and nothing goes wrong. The monotonicity
rule LaterMono forces us to always decrease the step-index in the goal when we want to
decrease it in our assumptions—it ensures the step-index in our assumptions matches the
one in the goal. The induction rule Loeb corresponds to Löb induction. It says that if
we want to prove P , then we get to assume that P already holds later (i.e., for smaller
step-indices, so after we have taken steps).

The rules LaterPureStep, LaterNew, LaterLoad, and LaterStore all execute a
step of the program. For step-indexed logical relations, executing a step decreases the
step-index. For logical step-indexing, executing a step allows us to add a later in front of
our goal (if we think about the rules being applied transitively). Thus, we can eliminate
laters from our assumptions. Essentially, we decrease the step-index everywhere.

Exercise 83 The existing rules that we have for program execution are strictly weaker
than the new rules involving later. Derive PureStep, New, Load, and Store from the
new rules. •

Exercise 84 Prove the following commuting rules:

LaterAnd
▷(P ∧Q) ⊣⊢ ▷P ∧ ▷Q

LaterOr
▷(P ∨Q) ⊣⊢ ▷P ∨ ▷Q

Hint: Disjunction can be represented as existential quantification, and con-
junction as universal quantification. •

Recursive Functions and Definitions Let us return to the recursion rule that we set out
to prove in the beginning. We now have everything in place to prove the rule.

Lemma 87.

Rec
∀v . P (v) ∗ ∀u. {P (u)} (fix f x. e)u {w. Q(u,w)} ⊢ wp e[(fix f x. e)/f,v/x] {w. Q(v , w)}

P (v) ⊢ wp (fix f x. e)v {w. Q(v , w)}

Proof. It suffices to prove ⊢ ∀v . {P (v)} (fix f x. e)v {w. Q(v , w)}.

Context: Goal:
∀v . {P (v)} (fix f x. e)v {w. Q(v , w)}

By Loeb induction:
▷ ∀u. {P (u)} (fix f x. e)u {w. Q(u,w)} ∀v . {P (v)} (fix f x. e)v {w. Q(v , w)}
We introduce the � and the precondition.
P (v) ∗ ▷ ∀u. {P (u)} (fix f x. e)u {w. Q(u,w)} wp (fix f x. e)v {w. Q(v , w)}
By LaterIntro and LaterSep.
▷(P (v) ∗ ∀u. {P (u)} (fix f x. e)u {w. Q(u,w)}) wp (fix f x. e)v {w. Q(v , w)}
With LaterPureStep.
▷(P (v) ∗ ∀u. {P (u)} (fix f x. e)u {w. Q(u,w)}) ▷wp e[(fix f x. e)/f,v/x] {w. Q(v , w)}
By LaterMono.
P (v) ∗ ∀u. {P (u)} (fix f x. e)u {w. Q(u,w)} wp e[(fix f x. e)/f,v/x] {w. Q(v , w)}
Follows from our assumption.
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Löb induction in logical step-indexing—similar to the explicitly step-indexed model—
corresponds to strong induction on the step-index. And just like we can (additionally)
introduce definitions recursively on the step-index in an explicitly step-indexed model, we
can introduce recursive definitions in logical step-indexing. To do so, we use Iris’s fixpoint
combinator µx.P . For example, we can define that an expression has an infinite, pure
execution as the predicate:

inf := µinf.λe. ∃e′. e→pure e
′ ∗ ▷ inf e′

A recursive definition µx.P is well-formed if all occurrences of x are guarded by a later
modality (just like in the case of inf).

We can convince ourselves that the definition of inf is sensible by verifying that inf(Ω):
the proof is by Löb induction.

Exercise 85 Prove that inf(e) ⊢ wp e { . False}. •

Step-Indexing in the IPM In the Iris proof mode, we do not have to do all of the above
proof steps manually. Instead, we can interact with step-indexing in the following way:

a) If some of our assumptions are guarded by a later, then the iDestruct tactic will
automatically apply the commuting properties of the later modality (e.g., LaterSep,
LaterOr, and LaterExists) when we destruct the assumption.

b) If our goal is underneath a later, the tactic iNext will introduce the later and strip
a later from all of the assumptions in the Iris context. Technically, it will do so in
an unconventional way: Similar to the proof of the fixpoint combinator above, it will
add a later in front of all the assumptions that are currently not guarded by a later
(using LaterIntro). Subsequently, it (implicitly) moves the later to the very outside
of the separating conjunction that is the spatial context. Finally, it uses monotonicity
(i.e., LaterMono) to get rid of the later around the spatial context and the later in
the goal.

c) Löb induction can be used with the tactic iLöb as "IH", which will make the current
goal available as IH guarded by a later. The IPM will automatically revert all the
propositions in the spatial context such that (a variant of) the Loeb rule becomes
applicable.

Exercise 86 Prove the same specification for the Z-combinator.Recall: for a fixed expres-
sion e, the Z-combinator is defined as

Z := λx. g g x

g := λr. let f = λx. r r x in λx. e

Formally, prove:

∀v . P (v) ∗ ∀u. {P (u)}Z u {w. Q(u,w)} ⊢ wp e[Z/f,v/x] {w. Q(v , w)}
P (v) ⊢ wp Z v {w. Q(v , w)}

•
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Higher-order state Let us return the challenging example from Section 4, Landin’s knot [?],
which represents a sound way to encode recursion using state, but which is not in our step-
indexed logical relation due to the use of higher-order state:

knot := λf. let x = new λx. 0 in

let g = λz. f (λy. (!x) y) z in

x← g ; g

Using Iris, we can verify Landin’s knot. We leave the full verification of knot to the
reader (see Exercise 87) and focus on a simplified variant in the following, a program of
similar structure that uses higher-order state to diverge:

diverge := let d = new (λx. x) in

d← λx. (! d)x;

(! d)()

Lemma 88.

{True} diverge { . False}

Proof.

Context: Goal:
wp diverge { . False}

We allocate d as some location ℓ.
ℓ 7→ λx. x wp ℓ← (λx. (! ℓ)x) ; (! ℓ)() { . False}
We execute the store. Let g := λx. (! ℓ)x.
ℓ 7→ g wp (! ℓ)() { . False}
By Löb.
▷(ℓ 7→ g −∗ wp (! ℓ)() { . False}) ∗ ℓ 7→ g wp (! ℓ)() { . False}
After dereferencing ℓ.
(ℓ 7→ g −∗ wp (! ℓ)() { . False}) ∗ ℓ 7→ g wp g () { . False}
Executing g for one step.
(ℓ 7→ g −∗ wp (! ℓ)() { . False}) ∗ ℓ 7→ g wp (! ℓ)() { . False}

Exercise 87 We write f : P → Q for ∀v . {P (v)} f v {w. Q(w)}. Verify Landin’s knot in
Iris by proving:

∀f. {f : P → Q} t f {g. g : P → Q}
{True} knot t {g. g : P → Q}

Note that the premise can be rewritten as t : (λf. f : P → Q)→ (λg. g : P → Q) •

Impredicative Invariants Let us now turn to another strength of step-indexing: impred-
icative invariants. To motivate impredicative invariants, we consider an example, caching
lazy integers.
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Example 89 (Lazy Integers). A lazy integer is a delayed computation (i.e., a function
f : 1→ int), which computes the actual integer only if it is executed. For example, here is
an addition function on lazy integers:

add(f, g) := λ . f() + g()

The idea of lazy integers is that the computation that produces the integer may be time
intensive or redundant (i.e., the result is not needed) and, hence, we do not evaluate it
eagerly. Instead, we shield the computation by functions. Fittingly, we define:

LazyInt(f, n) := wp f() {w. w = n}

In this definition, we use a weakest precondition and not a Hoare triple, because our lazy
integers should not be duplicable. That is, the idea of more efficiency by delaying the
execution goes out the window if we recompute the same result over and over by executing f
multiple times. Of course, there may be situations where we want to use the same lazy
integer multiple times.

For these situations, we introduce an additional function to cache lazy integers. Since
we want the resulting lazy integer to be duplicable, the specification of the cache function
should be:

{LazyInt(f, n)} cache(f) {h. �LazyInt(h, n)}

To define cache, we use a reference to a data type with three elements: (1) initially,
we are in the state unused(f) indicating that we have not executed the function f yet, (2)
while we are executing f , we are in the state pending, and, (3) finally, after the execution,
we store the cached result as result(y). (The datatype constructors unused(f), pending, and
result(y) can be encoded using the primitive injections inji.)

cache(f) := let c = new(unused(f)) in cachebody(f, c)

cachebody(f, c) := λ . let r = retrieve(c) in

match r with

| inj1(f)⇒ let y = f() in c← result(y) ; y

| inj2(y)⇒ y

end

retrieve(c) := match ! c with

| unused(f)⇒ c← pending ; inj1(f)

| result(y)⇒ inj2(y)

| pending⇒ diverge()

end

During the execution of f , the state of the cache reference c is pending. If cachebody(f, c)
is called again during the pending state, the execution will diverge. It is illegal for the lazy
integer to be called while caching is in progress.

Let us try to verify cache (verifying add is straightfoward). After allocating the refer-
ence c, we end up in the following proof state:

c 7→ unused(f) ∗ LazyInt(f, n) ⊢ wp cachebody(f, c) {h. �LazyInt(h, n)}
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Now we are stuck! We need to show that cachebody(f, c) is a persistent lazy integer,
but we have non-persistent resources: c 7→ unused(f) and LazyInt(f, n). We know that
we can put c 7→ unused(f) into an invariant, but what about LazyInt(f, n)? It does not
correspond to a state proposition F . Here, impredicative invariants come to the rescue!

Impredicative invariants allow us to put arbitrary propositions R into invariants:

InvPers
R

N ⊢ � R
N

InvAlloc
P ∗ R N ⊢ wpE e {v . Q(v)}
P ∗R ⊢ wpE e {v . Q(v)}

InvOpen
P ∗ ▷R ⊢ wpE\N e {v . ▷R ∗Q(v)} N ⊆ E

P ∗ R N ⊢ wpE e {v . Q(v)}

The price we have to pay for this additional expressive power is that the proposition R is
guarded by a later modality—we do not get access to it directly.

The reason the later modality shows up is step-indexing: the intuitive model of invari-
ants is cyclic and step-indexing can be used to stratify it. We will discuss this point in
more detail later on. For now, it suffices to know that the model of Iris’s propositions
roughly looks as follows:

iProp = Inv→ Heap→ Prop Inv = N fin−⇀ iProp

Iris propositions are predicates over invariants and program heaps. Invariants, in turn,
are finite maps of Iris propositions. Clearly, the definition is recursive: to define Iris
propositions, we need Iris propositions in the definition of invariants. Unfortunately, this
definition is not only recursive, but also has a negative occurrence. In essence, we define
iProp as predicates over iProp, which has no solution in set or type theory. Thus, to make
sense of this definition, behind the scenes, step-indexing is used to define iProp similar to
how we used step-indexing before to stratify cyclic definitions.

In fact, the state invariants we saw before are just a special case of general impredicative
invariants: state propositions belong to the class of so-called timeless Iris propositions. If a
proposition P is timeless, we can just eliminate a later modality in front of it when proving
a weakest precondition. Thus, for timeless propositions, the old invariant opening rule can
be derived from the new one! Specifically, timeless propositions satisfy the following rules:

TimelessPure
timeless(ϕ)

TimelessPers
timeless(P )

timeless(�P )

TimelessSep
timeless(P ) timeless(Q)

timeless(P ∗Q)

TimelessWand
timeless(Q)

timeless(P −∗ Q)

TimelessOr
timeless(P ) timeless(Q)

timeless(P ∨Q)

TimelessAnd
timeless(P ) timeless(Q)

timeless(P ∧Q)

TimelessAll
∀x. timeless(P (x))

timeless(∀x. P )

TimelessExists
∀x. timeless(P (x))

timeless(∃x. P )
TimelessPointsto
timeless(ℓ 7→ v)

TimelessStrip
timeless(P ) P ∗Q ⊢ wpE e {v . R(v)}

(▷P ) ∗Q ⊢ wpE e {v . R(v)}

Note that ▷P will in general not be timeless if P is timeless. Thus, TimelessStrip can

101 Draft of February 14, 2022



not be used to strip laters when there are multiple laters above a timeless proposition.

Exercise 88 Derive the invariant opening rule without a later from the new one with a
later, assuming that the invariant’s contents are timeless. •

Lemma 90.

{LazyInt(f, n)} cache(f) {h. �LazyInt(h, n)}

Proof. We factor the proof into two steps: (1) proving a specification for retrieve and (2)
proving the specification for cache. During the proof, we will set up an invariant Ic

N and
retrieve will work on the opened invariant. For (contents of) the invariant Ic, we encode
the three different states that c can be in:

Ic := (c 7→ unused(f) ∗ LazyInt(f, n)) ∨ c 7→ pending ∨ c 7→ result(n)

Let us start with retrieve. For retrieve, we show for an arbitrary location c that if we
own Ic before the execution (and the invariant N is currently open), then Ic holds again
afterwards and we have either obtained f or the result n:

▷ Ic ⊢ wp⊤\N retrieve(c) {w. Ic ∗ (w = inj1(f) ∗ LazyInt(f, n) ∨ w = inj2(n))}

Context: Goal:
▷ Ic wp⊤\N retrieve(c) {w. Ic ∗ (w = inj1(f) ∗ LazyInt(f, n) ∨ w = inj2(n))}
c 7→ unused(f) ∗ LazyInt(f, n)
∨c 7→ pending

∨c 7→ result(n)

match ! c with

| unused(f)⇒ c← pending ; inj1(f)

| result(y)⇒ inj2(y)

| pending⇒ diverge()

end

Case result(n).

c 7→ result(n) inj2(n)

c 7→ result(n) Ic ∗ (inj2(n) = inj1(f) ∗ LazyInt(f, n) ∨ inj2(n) = inj2(n))

Done by picking the result(n) case in Ic.
Case unused(f).

c 7→ unused(f) ∗ LazyInt(f, n) c← pending ; inj1(f)

c 7→ pending ∗ LazyInt(f, n) Ic ∗ (inj1(f) = inj1(f) ∗ LazyInt(f, n) ∨ inj1(f) = inj2(n))

Done by picking the pending case.
Case pending.

c 7→ pending diverge()

Done by Löb induction.

Given the specification for retrieve, let us now turn to the more interesting part: the
proof of the specification of cache itself.
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Context: Goal:
LazyInt(f, n) wp cache(f) {h. �LazyInt(h, n)}
LazyInt(f, n) ∗ c 7→ unused(f) wp cachebody(f, c) {h. �LazyInt(h, n)}
We allocate the invariant Ic.
Ic

N
wp cachebody(f, c) {h. �LazyInt(h, n)}

Let t := λ . let r = retrieve(c) inMr

and Mr := match r with

| inj1(f)⇒ let y = f() in c← result(y) ; y

| inj2(y)⇒ y

end.

Ic
N

wp t {v . �LazyInt(v , n)}
Ic

N �LazyInt(t, n)

Ic
N

LazyInt(t, n)

Ic
N

wp let r = retrieve(c) inMr {v .v = n}
Ic

N
wp retrieve(c) {w.wp let r = w inMr {v .v = n}}

Ic
N ∗ ▷ Ic

wp⊤\N retrieve(c) {w. ▷ Ic ∗ wp let r = w inMr {v .v = n}}
By applying our specification for retrieve.
Ic

N ∗ Ic ∗ (w = inj1(f) ∗ LazyInt(f, n) ∨ w = inj2(n))

▷ Ic ∗ wp let r = w inMr {v .v = n}
By canceling Ic.
Ic

N ∗ (w = inj1(f) ∗ LazyInt(f, n) ∨ w = inj2(n)) wp let r = w inMr {v .v = n}

Casew = inj2(n).

Ic
N

wp n {v .v = n}

Casew = inj1(f).

Ic
N ∗ LazyInt(f, n) let y = f() in c← result(y) ; y

By binding f() and using LazyInt(f, n).
Ic

N
let y = n in c← result(y) ; y

Ic
N

c← result(n) ; n

After updating the invariant.
wp n {v .v = n}

In the proof, we use a common pattern for dealing with laters we get when opening an
invariant: in order to extract timeless components (e.g., ℓ 7→ v) that we need directly after
opening the invariant (i.e., before taking another step to strip the later), we first apply the
later commuting rules (e.g., LaterSep, LaterOr, and LaterExists) to commute the later
down to be directly in front of the timeless part we need access to. We then use timelessness
to remove the later. The IPM applies the commuting rules automatically when destructing
a hypothesis, while a later can be stripped by prefixing an intro pattern with >. Thus, to
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open the invariant in the proof above, we would use the intro pattern "[[(>Hl & Hlazy)
| >Hl] | >Hl]", where Hl is the points-to fact in the respective cases.

Exercise 89 We define the following function:

lazyint_two := λf1 f2 i. let c = cache(i) in f1(c) + f2(c)

Prove the following specification:

(∀h, n. {LazyInt(h, n)} f1(h) {v . ∃m.v = m}) (∀h, n. {LazyInt(h, n)} f2(h) {v . ∃m.v = m})
{LazyInt(i, n)} lazyint_two(f1, f2, i) {v . ∃m.v = m}

•
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7 Logical Relations

Now that we have seen how to verify small examples in Iris, let us turn to our first larger
case study: a logical relation for System F with recursive types and higher-order state.
To define the logical relation, we will make some inessential simplifications. That is, we
do not change our language and keep using the language from Section 6. This language
is missing several constructs (i.e., pack e, unpack e as x in e2, e ⟨⟩, Λ. e, roll e, and unroll e).
Since we only care about the operational behavior of these constructs, we replace them by
operationally equivalent terms instead of primitives:

Λ. e := λ . e e ⟨⟩ := e()

pack e := e unpack e as x in e2 := (λx. e2) e

roll e := e unroll e := let x := e in x

Exercise 90 Convince yourself that

(Λ. e) ⟨⟩ →pure e

unpack (packv) as x in e→pure e[x/v ]

unroll(rollv)→pure v •

Semantic Types SemType

A semantic type is a persistent predicate τ : CVal → iProp, meaning ∀v . τv ⊢ � τv . We
make semantic types persistent, because in a function λx. e the variable x : A can be used
multiple times and, hence, we need to duplicate the argument in the appropriate places.

Note that we do not require τ to be downwards closed with respect to the step-index,
which would mean ∀v . τv ⊢ ▷ τv in logical step-indexing. The reason is quite simple: all
Iris propositions are already downwards-closed by the rule LaterIntro.

Type Interpretations VJAKδ, EJAKδ, and GJΓKδ
In this version of the logical relation, the type interpretations are again predicates over
values, expressions, and substitutions. However, this time they are Iris predicates, so
predicates that return propositions of type iProp.

VJαKδ := δ(α)

VJ1Kδ := {()}
VJintKδ := {n | n ∈ Z}
VJboolKδ :=

{
b
∣∣ b ∈ B

}
VJA→ BKδ := {v |�(∀w. w ∈ VJAKδ −∗ v w ∈ EJBKδ)}
VJ∀α. AKδ := {v |�(∀τ.v ⟨⟩ ∈ EJAKδ, α 7→ τ)}
VJ∃α. AKδ := {packv | ∃τ.v ∈ VJAKδ, α 7→ τ}
VJµα.AKδ := µτ. {rollv | ▷v ∈ VJAKδ, α 7→ τ}

VJrefAKδ :=
{
ℓ
∣∣∣ ∃w. ℓ 7→ w ∗ w ∈ VJAKδ N}

EJAKδ := {e |wp e {v .v ∈ VJAKδ}}

GJΓKδ :=

{
γ

∣∣∣∣∣∗
x:A∈Γ

γx ∈ VJAKδ

}
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Let us discuss this definition case by case. For type variables, we once again carry a
map that maps them to semantic types. The definitions of the interpretation of base types
is straightforward. For function types, we want to say that if applied to values of type A
the function evaluates to values of type B. We use the always modality to ensure that
functions can be applied more than once.

For polymorphism, we use Iris’s built-in quantification—we quantify over semantic
types and extend the map with these semantic types. The fact that Iris’s propositions can
quantify over themselves (or in this case semantic types defined using Iris’s propositions)
is sometimes referred to as “impredicativity” or “being a higher-order” logic.

For recursive types, we make use of the step-indexed model underlying Iris. We can
take recursive fixpoints as long as we make sure that the recursive occurrence is guarded
by a later modality (which it is in this case). We will see in the compatibility lemmas how
the later modality in this definition is handled.

For references, we make use of the impredicative invariants of Iris. Using them, we can
define a protocol which values can be stored in the reference—values of type A. We have
to use an invariant (and cannot just use a points-to assertion) to obtain an interpretation
of the reference type that is duplicable. By using an impredicative invariant, we can easily
handle higher-order reference types like ref(1→ 1).

For expressions, we want to say that the evaluation of the expression is safe and that
the resulting value will be of type A. This notion in concisely encapsulated in Iris’s weakest
precondition, so we use it to lift the value relation to expressions.

Finally, for typing contexts, we just lift the value relations to finite maps. To do so, we
use a big separating conjunction over all the type assignments in the context.

Note that, for references, we use a single, fixed invariant namespace N . One can also
use separate invariant namespace N .ℓ (i.e., one per location). For our purposes, it does
not matter really matter which version we use (since we usually do not need to open two
invariants at the same time).

Exercise 91 The case of universal quantification in the logical relation contains a �-
modality, but the case of existential quantification does not. Can you explain why it is not
needed? •

Semantic Typing ∆ ; Γ ⊨ e : A

∆ ; Γ ⊨ e : A := ∀δ, γ. γ ∈ GJΓKδ ⊢ γe ∈ EJAKδ

The semantic typing is then defined as an entailment between the typing assumptions
of the variable substitution and the substituted expression. As before, we prove semantic
soundness:

Theorem 91 (Semantic Soundness). If ∆ ; Γ ⊢ e : A, then ∆ ; Γ ⊨ e : A.

Proof. By induction on ∆ ; Γ ⊢ e : A using compatibility lemmas.

We discuss a few select compatibility lemmas.

Lemma 92 (Compatibility Application).

∆ ; Γ ⊨ e1 : A→ B ∆ ; Γ ⊨ e2 : A

∆ ; Γ ⊨ e1 e2 : B
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Proof.

Context: Goal:
∆ ; Γ ⊨ e1 : (A→ B) ∗∆ ; Γ ⊨ e2 : A ∆ ; Γ ⊨ e1 e2 : B
∆ ; Γ ⊨ e1 : (A→ B) ∗∆ ; Γ ⊨ e2 : A ∗ γ ∈ GJΓKδ γe1 γe2 ∈ EJBKδ
γe1 ∈ EJA→ BKδ ∗ γe2 ∈ EJAKδ ∗ γ ∈ GJΓKδ γe1 γe2 ∈ EJBKδ
wp γe1 {v .v ∈ VJA→ BKδ} ∗ wp γe2 {v .v ∈ VJAKδ} wp γe1 γe2 {v .v ∈ VJBKδ}
Bind γe2
wp γe1 {v .v ∈ VJA→ BKδ} ∗ wp γe2 {v .v ∈ VJAKδ} wp γe2 {v2.wp γe1 v2 {v .v ∈ VJBKδ}}
Wand
wp γe1 {v .v ∈ VJA→ BKδ} ∗v2 ∈ VJAKδ wp γe1 v2 {v .v ∈ VJBKδ}
Bind γe1
wp γe1 {v .v ∈ VJA→ BKδ} ∗v2 ∈ VJAKδ wp γe1 {v1.wp v1 v2 {v .v ∈ VJBKδ}}
Wand
v1 ∈ VJA→ BKδ ∗v2 ∈ VJAKδ wp v1 v2 {v .v ∈ VJBKδ}
(∀w. w ∈ VJAKδ −∗ v1 w ∈ EJBKδ) ∗v2 ∈ VJAKδ wp v1 v2 {v .v ∈ VJBKδ}
Instantiate the wand with v2
v1 v2 ∈ EJBKδ wp v1 v2 {v .v ∈ VJBKδ}
We are done by definition of EJBKδ.

In the proof above, we have twice used a pattern that frequently comes up in all of the
compatibility lemmas: From the expression relation of a subexpression e, we get a weakest
precondition as an assumption. We use the bind rule to bind that subexpression and then
use the wand rule to match up the postcondition. That way, we get to zap down that
subexpression to a value v in the goal and get to assume that it is in the value relation.
This closely matches the Bind lemma we saw before for explicitly defined logical relations,
and we will shortcut this pattern in the following proofs.

Lemma 93 (Compatibility Type Application).

∆ ; Γ ⊨ e : ∀α. A
∆ ; Γ ⊨ e ⟨⟩ : A[B/α]

Proof.

Context: Goal:
∆ ; Γ ⊨ e : (∀α. A) ∆ ; Γ ⊨ e ⟨⟩ : A[B/α]
∆ ; Γ ⊨ e : (∀α. A) ∗ γ ∈ GJΓKδ (γe) ⟨⟩ ∈ EJA[B/α]Kδ
γe ∈ EJ∀α. AKδ (γe) ⟨⟩ ∈ EJA[B/α]Kδ
Bind & wand
v ∈ VJ∀α. AKδ v ⟨⟩ ∈ EJA[B/α]Kδ
∀τ.v ⟨⟩ ∈ EJAKδ, α 7→ τ v ⟨⟩ ∈ EJA[B/α]Kδ
Boring lemma
∀τ.v ⟨⟩ ∈ EJAKδ, α 7→ τ v ⟨⟩ ∈ EJAKδ, α 7→ VJBKδ
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Lemma 94 (Compatibility Unroll).

∆ ; Γ ⊨ e : µα. A

∆ ; Γ ⊨ unroll e : A[µα. A/α]

Proof.

Context: Goal:
∆ ; Γ ⊨ e : (µα. A) ∆ ; Γ ⊨ unroll e : A[µα. A/α]

∆ ; Γ ⊨ e : (µα. A) ∗ γ ∈ GJΓKδ unroll (γe) ∈ EJA[µα. A/α]Kδ
γe ∈ EJµα. AKδ wp unroll (γe) {u. u ∈ VJA[µα. A/α]Kδ}
Bind & wand
v ∈ VJµα. AKδ wp unroll v {u. u ∈ VJA[µα. A/α]Kδ}
Unfold fixpoint
▷w ∈ VJAKδ, α 7→ VJµα. AK wp unroll roll w {u. u ∈ VJA[µα. A/α]Kδ}
Take a step
w ∈ VJAKδ, α 7→ VJµα. AK wp w {u. u ∈ VJA[µα. A/α]Kδ}
w ∈ VJAKδ, α 7→ VJµα. AK w ∈ VJA[µα. A/α]Kδ
Boring lemma
w ∈ VJAKδ, α 7→ VJµα. AK w ∈ VJAKδ, α 7→ VJµα. AK

Lemma 95 (Compatibility Store).

∆ ; Γ ⊨ e1 : ref A ∆ ; Γ ⊨ e2 : A

∆ ; Γ ⊨ e1← e2 : 1

Proof.

Context: Goal:
∆ ; Γ ⊨ e1 : ref A ∗∆ ; Γ ⊨ e2 : A ∆ ; Γ ⊨ e1← e2 : 1

∆ ; Γ ⊨ e1 : ref A ∗∆ ; Γ ⊨ e2 : A ∗ γ ∈ GJΓKδ γe1← γe2 ∈ EJ1Kδ
γe1 ∈ EJref AKδ ∗ γe2 ∈ EJAKδ γe1← γe2 ∈ EJ1Kδ
Bind & wand (x2)
v1 ∈ VJref AKδ ∗v2 ∈ VJAKδ wp v1←v2 {v .v ∈ VJ1Kδ}
∃w. ℓ 7→ w ∗ w ∈ VJAKδ N ∗v2 ∈ VJAKδ wp ℓ←v2 {v .v ∈ VJ1Kδ}
Set I := ∃w. ℓ 7→ w ∗ w ∈ VJAKδ
(▷ I) ∗v2 ∈ VJAKδ wp⊤\N ℓ←v2 {v . ▷ I ∗v ∈ VJ1Kδ}
ℓ 7→ w ∗ (▷w ∈ VJAKδ) ∗v2 ∈ VJAKδ wp⊤\N ℓ←v2 {v . ▷ I ∗v ∈ VJ1Kδ}
ℓ 7→ v2 ∗v2 ∈ VJAKδ wp⊤\N () {v . ▷ I ∗v ∈ VJ1Kδ}
ℓ 7→ v2 ∗v2 ∈ VJAKδ ▷ I ∗ () ∈ VJ1Kδ
ℓ 7→ v2 ∗v2 ∈ VJAKδ ∃w. ℓ 7→ w ∗ w ∈ VJAKδ

Exercise 92 Extend the type interpretations with sum and product types and prove the
compatibility lemmas. •
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Similarly to our “old” logical relation, we can show the safety of MyMutBit (from Sec-
tion 4.5):

MUTBIT := {flip : 1→ 1, get : 1→ bool}
MyMutBit := let x = new 0

in {flip := λy. assert (!x == 0 ∨ !x == 1) ; x← 1− !x,

get := λy. assert (!x == 0 ∨ !x == 1) ; !x > 0}

Lemma 96.

∆ ; Γ ⊨ MyMutBit : MUTBIT

Proof.

Context: Goal:
∆ ; Γ ⊨ MyMutBit : MUTBIT

γ ∈ GJ∅Kδ γMyMutBit ∈ EJMUTBITKδ
Set gx := {flip := λy. assert (!x == 0 ∨ !x == 1) ; x← 1− !x,

get := λy. assert (!x == 0 ∨ !x == 1) ; !x > 0}
(let x = new 0 in gx) ∈ EJMUTBITKδ

wp let x = new 0 in gx {v .v ∈ VJMUTBITKδ}
ℓ 7→ 0 wp gℓ {v .v ∈ VJMUTBITKδ}
Allocate an invariant

ℓ 7→ 0 ∨ ℓ 7→ 1
N

gℓ ∈ VJMUTBITKδ
Case flip.

ℓ 7→ 0 ∨ ℓ 7→ 1
N

(λy. assert (! ℓ == 0 ∨ ! ℓ == 1) ; ℓ← 1− ! ℓ) ∈ VJ1→ 1Kδ

ℓ 7→ 0 ∨ ℓ 7→ 1
N

assert (! ℓ == 0 ∨ ! ℓ == 1) ; ℓ← 1− ! ℓ ∈ EJ1Kδ
ℓ 7→ 0 ∨ ℓ 7→ 1

N
wp assert (! ℓ == 0 ∨ ! ℓ == 1) ; ℓ← 1− ! ℓ {v .v ∈ VJ1Kδ}

ℓ 7→ 0 ∨ ℓ 7→ 1 wp⊤\N assert (! ℓ == 0 ∨ ! ℓ == 1) ; ℓ← 1− ! ℓ
{
v . (ℓ 7→ 0 ∨ ℓ 7→ 1) ∗v ∈ VJ1Kδ

}
Case flip, case ℓ 7→ 0

ℓ 7→ 0 wp⊤\N assert (! ℓ == 0 ∨ ! ℓ == 1) ; ℓ← 1− ! ℓ
{
v . (ℓ 7→ 0 ∨ ℓ 7→ 1) ∗v ∈ VJ1Kδ

}
Assert succeeds
ℓ 7→ 0 wp⊤\N ℓ← 1− ! ℓ

{
v . (ℓ 7→ 0 ∨ ℓ 7→ 1) ∗v ∈ VJ1Kδ

}
ℓ 7→ 1 wp⊤\N ()

{
v . (ℓ 7→ 0 ∨ ℓ 7→ 1) ∗v ∈ VJ1Kδ

}
ℓ 7→ 1 (ℓ 7→ 0 ∨ ℓ 7→ 1) ∗ () ∈ VJ1Kδ
Case flip, case ℓ 7→ 1

Similar.
Case get.

Similar.
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8 Ghost State

Recall that in Section 4.7, we briefly discussed what is required to enrich the logical relation
presented there with protocols. More concretely, we discussed how we can add ghost state
(i.e., state which is not present in the program, but useful for its verification) to the logical
relation in the form of state transition systems. In the following, we will see how we can
work with ghost state (not only in the form of transition systems) in Iris.

To keep matters concrete, we consider an example, the Symbol ADT from Section 4.7:

SYMBOL := ∃α. { mkSym : 1→ α,

check : α→ 1 }
Symbol := let c = new 0 in

pack

〈
int,
{ mkSym := λ . let x = ! c in c← x+ 1 ; x,

check := λx. assert (x < ! c) }

〉
as SYMBOL

Intuitively, to show that the Symbol ADT is in our logical relation, we would want to
set up an invariant I which contains the ownership of the reference c and then pick for α
the type of all natural numbers which are currently less than the value of the reference c.
In Iris, we can do so by using a piece of ghost state called “monotonically growing natural
numbers”.

Monotonically growing natural numbers monoγ(n) and lbγ(n)

Monotonically growing natural numbers come in the form of two propositions, monoγ(n)

and lbγ(n), which represent two pieces of ghost state connected by the name γ. The ghost
state monoγ(n) expresses that the current value of γ is n and that it can only grow over
time. The ghost state lbγ(n) is a lower bound on the value of γ. It remains a lower bound
on the value of γ over time since monoγ(n) can only grow. This relationship is, formally,
captured by the following rules:

MakeBound
monoγ(n) ⊢ monoγ(n) ∗ lbγ(n)

UseBound
monoγ(n) ∗ lbγ(m) ⊢ n ≥ m

BoundPers
lbγ(n) ⊢ � lbγ(n)

IncreaseVal
monoγ(n) ⊢ |⇛monoγ(n+ 1)

NewMono
True ⊢ |⇛∃γ.monoγ(n)

MonoTimeless
timeless(monoγ(n))

BoundTimeless
timeless(lbγ(n))

The rule MakeBound allows us to create a new lower bound lbγ(n) from the current
value monoγ(n). The rule UseBound then later on allows us to show that the current value
monoγ(n) is not greater than any of the bounds we have created lbγ(m). The rule Bound-
Pers ensures that the lower bounds lbγ(n) are persistent. The rules IncreaseVal and New-
Mono use a new modality of Iris that we have not discussed so far, the update modality
|⇛P , which we will discuss below. Intuitively, IncreaseVal says that we can always in-
crease the current value monoγ(n) by one with an update. The rule NewMono allows us
to create a new monotonically growing natural number monoγ(n) where the rule picks (a
fresh) name γ for us. The rules MonoTimeless and BoundTimeless ensure that both new
connectives are timeless and, hence, easy to use in invariants.
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The update modality |⇛P
Intuitively, the update modality |⇛P means that P holds after (possibly) performing some
updates to the current ghost state. Besides the ghost state specific rules like IncreaseVal
and NewMono, the update modality has the following structural rules:

UpdReturn
P ⊢ |⇛P

UpdBind
(|⇛P ) ∗ (P −∗ |⇛Q) ⊢ |⇛Q

UpdWP
|⇛wp e {v . Q(v)} ⊢ wp e {v . Q(v)}

With UpdReturn, we can always update the current state P to itself (by doing noth-
ing). With UpdBind, we can compose two updates into a single update. (Together, the
rules turn the update modality |⇛P into a monad.) With UpdWP, we can execute an
update at a weakest precondition. To explain how this rule is used, it is helpful to derive
some properties of the update modality first:

Exercise 93 Prove the following derived rules for the update modality:

UpdWand
(|⇛P ) ∗ (P −∗ Q) ⊢ |⇛Q

UpdMono
P ⊢ Q

|⇛P ⊢ |⇛Q
UpdTrans
|⇛|⇛P ⊢ |⇛P

UpdFrame
P ∗ |⇛Q ⊢ |⇛(P ∗Q)

•

Exercise 94 Derive the following rule for monotonically growing numbers:

IncreaseMono
n ≤ m

monoγ(n) ⊢ |⇛monoγ(m)

•

With these derived properties in hand, we will now look at an example how one can
update ghost state during the proof of a weakest precondition:

Lemma 97.

n ≤ m
(monoγ(m) −∗ wp e {v . Q(v)}) ⊢ (monoγ(n) −∗ wp e {v . Q(v)})

Proof.

Context: Goal:
n ≤ m ∗ (monoγ(m) −∗ wp e {v . Q(v)}) ∗monoγ(n) wp e {v . Q(v)}
By IncreaseMono
(monoγ(m) −∗ wp e {v . Q(v)}) ∗ |⇛monoγ(m) wp e {v . Q(v)}
By UpdWP
(monoγ(m) −∗ wp e {v . Q(v)}) ∗ |⇛monoγ(m) |⇛wp e {v . Q(v)}
Follows by UpdWand
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Exercise 95 Prove the following derived property:

(∀γ.monoγ(n) −∗ wp e {v . Q(v)}) ⊢ wp e {v . Q(v)})

•

Iris Proof Mode The proof of the lemma above shows, in principle, how we update
ghost state using the update modality based on its basic rules. Since the pattern used
to update ghost state in proofs is very similar to the proof above, the IPM provides
some tactic support for it. Specifically, it provides the tactic iMod "H" which will remove
an update modality from the hypothesis H if the current goal is a weakest precondition.
In fact, the entire proof above can essentially be condensed into an application of iMod:
iMod (increase_mono with "Hn") as "Hm" updates the ghost state monoγ(n) (named Hn in
the context) to monoγ(m) (named Hm in the context).

The Symbol ADT Let us return to the Symbol ADT. Equipped with updates and mono-
tonically growing natural numbers, we can now proceed with the proof along the lines of
the intuitive argument mentioned above.

Lemma 98.

Symbol ∈ EJSYMBOLKδ
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Proof.

Context: Goal:
wp Symbol {v .v ∈ VJSYMBOLK}

ℓ 7→ 0 pack{ mkSym := λ . let x = ! ℓ in ℓ← x+ 1 ; x,

check := λx. assert (x < ! ℓ) }
ℓ 7→ 0 ∗monoγ(0)

pack{ mkSym := λ . let x = ! ℓ in ℓ← x+ 1 ; x,

check := λx. assert (x < ! ℓ) }
By NewMono and executing the update.
∃n. ℓ 7→ n ∗monoγ(n)

N

pack{ mkSym := λ . let x = ! ℓ in ℓ← x+ 1 ; x,

check := λx. assert (x < ! ℓ) }
∃n. ℓ 7→ n ∗monoγ(n)

N

∃τ. (λ . let x = ! ℓ in ℓ← x+ 1 ; x) ∈ VJ1→ αKδ, α 7→ τ

∗(λx. assert (x < ! ℓ)) ∈ VJα→ 1Kδ, α 7→ τ

Pick τ := {n | lbγ(n+ 1)}.

CasemkSym

∃n. ℓ 7→ n ∗monoγ(n)
N

(λ . let x = ! ℓ in ℓ← x+ 1 ; x) ∈ VJ1→ αKδ, α 7→ τ

∃n. ℓ 7→ n ∗monoγ(n)
N

wp let x = ! ℓ in ℓ← x+ 1 ; x {v .v ∈ τ}
∃n. ℓ 7→ n ∗monoγ(n)

wp⊤\N (let x = ! ℓ in ℓ← x+ 1 ; x) {v .v ∈ τ ∗ (∃n. ℓ 7→ n ∗monoγ(n))}
ℓ 7→ n+ 1 ∗monoγ(n)

wp⊤\N n {v .v ∈ τ ∗ (∃n. ℓ 7→ n ∗monoγ(n))}
By Lemma 97 and MakeBound
ℓ 7→ n+ 1 ∗monoγ(n+ 1) ∗ lbγ(n+ 1)

wp⊤\N n {v .v ∈ τ ∗ (∃n. ℓ 7→ n ∗monoγ(n))}
ℓ 7→ n+ 1 ∗monoγ(n+ 1) ∗ lbγ(n+ 1)

n ∈ τ ∗ (∃n. ℓ 7→ n ∗monoγ(n))

Case check
∃n. ℓ 7→ n ∗monoγ(n)

N

(λx. assert (x < ! ℓ)) ∈ VJα→ 1Kδ, α 7→ τ

∃n. ℓ 7→ n ∗monoγ(n)
N ∗v ∈ τ

wp (assert (v < ! ℓ)) {w. w = ()}
(∃n. ℓ 7→ n ∗monoγ(n)) ∗v ∈ τ

wp⊤\N (assert (v < ! ℓ)) {w. w = () ∗ ∃n. ℓ 7→ n ∗monoγ(n)}
(∃n. ℓ 7→ n ∗monoγ(n)) ∗ lbγ(m+ 1)

wp⊤\N (assert (m < ! ℓ)) {w. w = () ∗ ∃n. ℓ 7→ n ∗monoγ(n)}
By UseBound
ℓ 7→ n ∗monoγ(n) ∗ lbγ(m+ 1) ∗m+ 1 ≤ n

wp⊤\N (assert (m < ! ℓ)) {w. w = () ∗ ∃n. ℓ 7→ n ∗monoγ(n)}
Thus the assert succeeds
ℓ 7→ n ∗monoγ(n) ∗ lbγ(m+ 1) ∗m+ 1 ≤ n

() = () ∗ ∃n. ℓ 7→ n ∗monoγ(n)
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Exercise 96 Consider the following loop combinator:

loop_comb :=λf.

let l := new(0) in

let loop := fix loop . let x := ! l in

if f(λ_. ! l)
then assert (! l = x);

l← x+ 1;

loop ()

else ! l

in loop ()

Prove that ∅ ; ∅ ⊨ loop_comb : ((1 → int) → bool) → int. Intuitively, the function f

receives a closure to get the current iterator value and then returns whether to continue
looping.

During the proof, we will need to give the closure passed to f the permission to access
the location l. But at the same time, we need to retain the knowledge that the value stored
at l will not change, to handle the assertion. For this, a form of synchronized ghost state
will be useful.

Let X be a fixed type. The ghost theory of synchronized ghost state has two elements
leftγ(x : X) and rightγ(y : X) which always have the same value:

True ⊢ |⇛∃γ. leftγ(x) ∗ rightγ(x) leftγ(x) ∗ rightγ(y) ⊢ x = y

leftγ(x) ∗ rightγ(y) ⊢ |⇛leftγ(z) ∗ rightγ(z) timeless(leftγ(x)) timeless(rightγ(x))

We can use it to construct a shared reference that everyone can read from, but only
one party can mutate. To do so, we set up the invariant:

Iγ,ℓ := ∃v . ℓ 7→ v ∗ leftγ(v)

The exclusive right to mutate the reference is conveyed through the ownership of rightγ(v).
•

Exercise 97 (You only got one shot) Let us consider the following expression e:

let x := new(42) in

λf. x← 1337;

f ();

assert (!x = 1337)

Show that ∅ ; ∅ ⊨ e : (1 → 1) → 1. During the proof, you will encounter a problem: to
verify the assertion, we need to know that x points to the value 1337. But when we initially
allocate the invariant containing x (we cannot retain full ownership, as the proof of the
function type requires us to give up non-persistent resources), it will point to a different
value! The idea is that we have a two-phase system: after the write of 1337 to x before
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the function call, x will always contain 1337, while the value before that may be different.
For the transition, a new kind of one shot ghost state will be helpful, that allows us to

take this transition exactly once, and afterwards obtain a persistent certificate.
LetX be a fixed type. The ghost theory of the one shot ghost state has two constructors

pendingγ and shotγ(x : X). They obey the following rules:

True ⊢ |⇛∃γ. pendingγ pendingγ ⊢ |⇛shotγ(x) shotγ(x) ⊢ � shotγ(x)

pendingγ ∗ shotγ(x) ⊢ False pendingγ ∗ pendingγ ⊢ False shotγ(x) ∗ shotγ(y) ⊢ x = y

timeless(pendingγ) timeless(shotγ(x))

•

Exercise 98 We consider the following ADT that generates “red” and “blue” tags. It does
so by increasing an internal counter that gets incremented each time a new tag is allocated.
This ensures that red and blue tags will always be disjoint, captured by a function that
asserts this.

Twin := let c = new 0 in

{ mkRed := λ . let x = ! c in c← x+ 1 ; x,

mkBlue := λ . let x = ! c in c← x+ 1 ; x,

check := λx y. assert (x ̸= y) }

Prove that Twin is semantically well-typed at the following type:

TWIN := ∃α. ∃β. { mkRed : 1→ α,

mkBlue : 1→ β,

check : α× β → 1 }

During the proof, you will have to pick an invariant (for managing the state of the
counter) as well as an interpretation for the two existentially quantified types. You will
need some way of linking up the semantic types to this invariant. For that, the theory of
agreement maps will be useful, featuring connectives AGMγ(M) and a ↪→γ b. It essentially
models a map between two types A and B. (In the case of TWIN, A = N and the type
of two elements B = red | blue will be useful). The authoritative element AGMγ(M) states
that the full map is M , while the persistent fragments a ↪→γ b state that M maps a to b.

It satisfies the following rules:

True ⊢ |⇛∃γ. AGMγ(∅) k ↪→γ a ∗ k ↪→γ b ⊢ a = b k ↪→γ a ⊢ � k ↪→γ a

M [k] = ⊥
AGMγ(M) ⊢ |⇛AGMγ(M [k 7→ a]) ∗ k ↪→γ a AGMγ(M) ∗ k ↪→γ a ⊢M [k] = a

timeless(k ↪→γ a) timeless(AGMγ(M))

•
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8.1 Resources

Seeing the different ghost state connectives (i.e., monoγ(n), lbγ(m), shotγ(x), pendingγ ,
etc.) naturally begs the question what other ghost state Iris has to offer? Instead of a
few select ghost theories, Iris has built in an extensible mechanism to introduce and work
with ghost state. At the heart of this mechanism is the ghost state connective a

γ which
expresses ownership of the resource a (explained below) with name γ. From this ghost state
connective other forms of ghost state (e.g., monoγ(n) and lbγ(m)) can then be derived by
choosing the right kinds of resources.

With monotonically growing natural numbers, we have barely touched the surface of
ghost state in Iris. To understand which objects a qualify as resources and which rules
the corresponding ghost theory (i.e., rules about the ghost state of the resource) has, it is
instructive to think about the interaction of ghost state with the connectives of our logic:

ResAlloc
???

⊢ |⇛∃γ. a γ

ResSep
???

a1
γ ∗ a2

γ ⊣⊢ a3
γ

ResUpd
???

a
γ ⊢ |⇛ a′

γ

ResTimeless
???

timeless( a
γ
)

ResPers
a

γ ⊢ � ???
γ

ResValid
a

γ ⊢???

When can we allocate a fresh piece of ghost state γ with resource a (see ResAlloc)? What
does it mean to own two resources a1 and a2 of the same ghost state γ (see ResSep)? Which
fraction of a resource is persistent and can, hence, be duplicated freely (see ResPers)?
What does it mean to own a resource a (see ResValid)? When can we update the resource
a to a′ (see ResUpd)? When is ghost state timeless (see ResTimeless)?

When we introduce new kinds of resources, we have to answer all of the above ques-
tions. More concretely, to introduce a new resource kind, we define a so-called resource
algebra M = (A, ·,V, | |). The elements a, b, c, . . . of a resource algebra M = (A, ·,V, | |)
are drawn from the carrier type A. The carrier type together with the binary operation (·)
forms a partial commutative monoid which governs how separating conjunction behaves
on the resources of the algebra. The (meta-level) predicate V encapsulates what it means
to own a resource—it must be a “valid” resource, meaning a ∈ V. Finally, the the core
| | maps resources to their duplicable part (i.e., |a| is obtained from a by striping off all
non-duplicable parts). For now, ghost state will always be timeless. (We come back to the
question of timelessness in Section 9.)

Ghost State Rules a
γ

Concretely, we obtain the following rules for resources from a resource algebra (A, ·,V, | |):

ResAlloc
a ∈ V

⊢ |⇛∃γ. a γ

ResUpd
a⇝ B

a
γ ⊢ |⇛∃b ∈ B. b γ

ResPers
|a| ≠ ⊥

a
γ ⊢ � |a| γ

ResSep
a

γ ∗ b γ ⊣⊢ a · b γ

ResValid
a

γ ⊢ a ∈ V
ResTimeless
timeless( a

γ
)

We will discuss how the update a ⇝ B (used in ResUpd) is defined below once we have
discussed the full definition of a resource algebra. A resource algebra cannot be any
quadruple (A, ·,V, | |). It needs to obey additional rules to ensure soundness of the logic.
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Definition 99 (Resource Algebra). A resource algebra (RA) is a quadruple
(A, (·) : A×A → A,V : A → Prop, |−| : A → A?) satisfying:

∀a, b, c. (a · b) · c = a · (b · c) (ra-assoc)
∀a, b. a · b = b · a (ra-comm)
∀a. |a| ∈ A ⇒ |a| · a = a (ra-core-id)
∀a. |a| ∈ A ⇒ ||a|| = |a| (ra-core-idem)
∀a, b. |a| ∈ A ∧ a ≼ b⇒ |b| ∈ A ∧ |a| ≼ |b| (ra-core-mono)
∀a, b. a · b ∈ V ⇒ a ∈ V (ra-valid-op)

where A? := A ⊎ {⊥} x · ⊥ := ⊥ · x := x

a ≼ b := ∃c ∈ A. b = a · c (ra-incl)

Unital Resource Algebras Sometimes, it will be useful to work with unital resource
algebras, resource algebras with a unit ε : A such that ε · a = a and ε ∈ V and |ε| = ε.

Resource Updates The components of a resource algebra precisely characterize how ghost
state interacts with the separating conjunction P ∗Q, the box modality �P , and what it
means to own a resource. But when can we update a piece of ghost state to another (i.e.,
when does a ⇝ B hold)? As it turns out, we do not get to choose an arbitrary update
relation a ⇝ B when we define a resource algebra. Instead, the updates of a resource
algebra are already determined by the choice of validity V and the binary operation (·).
To understand why, we have to take a closer look at validity.

Validity a ∈ V characterizes what it means to be a valid element of the resource algebra.
For example, we will later see that in the resource algebra of monotonically growing natural
numbers the resource given by monoγ(n) ∗ lbγ(m) is valid iff n ≥ m and that the resource
given by monoγ(n) ∗monoγ(n

′) is just invalid regardless of the choice of n and n′ (because
monoγ(n) is exclusive like ℓ 7→ v , there can only ever be one). Validity is implicitly
maintained throughout proofs by Iris: we initially choose a valid resource (with ResAlloc),
we maintain validity (implicitly) when we update resources (with ResUpd), and ownership
of a resource entails it is valid (with ResValid).

Thus, one might think that we can update ownership of a resource a to an arbitrary
other valid resource a′. But this is not the case. To understand why, we consider an
example. Suppose we own the ghost state monoγ(42). What prevents us from updating
it to monoγ(2), so what prevents us from violating the monotonicity baked into the ghost
state? The resource behind monoγ(2) is certainly valid, so we do not violate validity by
going from monoγ(42) to monoγ(2). But in doing so, we do ignore that there are potential
frames of the ghost state monoγ(42) which we would violate. For instance, other parts of
the program could be relying on lbγ(41) so initially monoγ(42) ∗ lbγ(41) would be valid. If
we then update monoγ(42) to monoγ(2), then the ghost state named γ suddenly becomes
invalid (since 2 ̸≥ 41).

To remedy this predicament, we account for arbitrary frames in the definition of frame
preserving updates a⇝ B:

Definition 100. It is possible to do a frame-preserving update from a ∈ A to B ⊆ A,
written a⇝ B, if ∀xf ∈ A?. a · xf ∈ V ⇒ ∃b ∈ B. b · xf ∈ V. We define a⇝ b := a⇝ {b}.

Note that xf could be ⊥, so the frame-preserving update can also be applied to elements
that have no frame. Those elements are called exclusive resources.
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8.2 Common Resource Algebras

Let us now fill the definition of resource algebras with life. As it turns out, many of the
commutative monoids the reader may be familiar with are resource algebras and we will
discuss them below. On their own, these resource algebras (and many others that we will
see) may seem useless because they do not offer interesting updates a ⇝ b. We will soon
see that they are, nevertheless, useful building blocks for obtaining composite resource
algebras with useful ghost theories such as the monotonically growing natural numbers.

8.2.1 Numbers

Natural Number Addition (N,+)

The monoid (N,+) (read “nat plus”) forms a unital resource algebra:

m · n := m+ n m ∈ V := True |n| := 0 ε := 0

∀m,n. m⇝ n m ≼ n ⇐⇒ m ≤ n

Note that we do not define m ⇝ n and m ≼ n here. Their characterization follows from
the other definitions.

Natural Number Maximum (N,max)

The monoid (N,max) (read “nat max”) forms a unital resource algebra:

m · n := max(m,n) m ∈ V := True |n| := n ε := 0

∀m,n. m⇝ n m ≼ n ⇐⇒ m ≤ n

Fractions ((0, 1],+)

Just like for natural numbers, addition on the positive rational numbers (Q+,+) forms a
resource algebra (without a unit). We obtain a particularly useful resource algebra if we
restrict to the interval (0, 1].

q1 · q2 := q1 + q2 q ∈ V := q ≤ 1 |q| := ⊥

0 < q2 ≤ q1 ⇒ q1 ⇝ q2 q1 ≼ q2 ⇐⇒ q1 < q2

Fractions do not have a core (i.e., |q| = ⊥) since addition on positive rational numbers is
never idempotent and, similarly, they do not have a unit.

Exercise 99 Show that (Z,+) and (N,min) are resource algebras. Derive properties for
updates and inclusions. Do they have units? •

8.2.2 Free Resource Algebras

Next, we will discuss some resource algebras that the reader is most likely not familiar with
yet. We can use them to equip an arbitrary type X with a resource algebra structure. On
their own, they may seem strange at first, but they will turn out to be very useful later on.
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Exclusive Resource Algebra Ex(X)

The first resource algebra will be the exclusive resource algebra. The carrier type of the
exclusive resource algebra is Ex(X) := ex(x : X) |  . It consists of exclusive elements
ex(x : X) and an invalid element  . Its operations are pretty simple:

a · b :=  a ∈ V := a ̸=  |a| := ⊥

∀x, y. ex(x : X)⇝ ex(y : X) a ≼ b ⇐⇒ b =  

The exclusive resource algebra has no unit.
As the name indicates, the exclusive resource algebra ensures that there can always be

only one resource ex(x : X), which gives us the right to update it freely (without violating
the assumptions about the current ghost state of other program parts). Thus, the resource
algebra is similar to a points-to assertion ℓ 7→ v in that it conveys exclusive ownership.

We say that an element a of an RA A is exclusive if (a · b) /∈ V for any b (i.e., a has no
frame). For instance, all elements of the exclusive algebra Ex(X) are exclusive.

Exercise 100 Show that an exclusive element a can be updated to any other valid element:
a⇝ b whenever b ∈ V. •

Agreement Resource Algebra Ag(X)

The carrier type of the agreement algebra are finite, non-empty sets of elements in X:

Ag(X) :=
{
A ∈ Pfin(X)

∣∣X non-empty
}

ag(x) := {x}

The operations on the elements of the resource algebra are given by:

A ·B := A ∪B A ∈ V := ∃x : X. A = {x} |A| := A

ag(x : X)⇝ ag(y : X) ⇐⇒ x = y A ≼ B ⇐⇒ A ⊆ B

The agreement resource algebra is in some sense the opposite of the exclusive resource
algebra: its elements can be freely duplicated, but in exchange we can never update them,
as the derived properties below show.

ag(x) · ag(x) = ag(x) ag(x) · ag(y) ∈ V ⇐⇒ x = y ag(x) ≼ ag(y) ⇐⇒ x = y

In this sense, resource algebras are similar to invariants P
N in that they can be freely

duplicated, but no one can change the statement of the invariant P .

8.2.3 Authoritative Resource Algebra

Let us now turn to one of the most widely used resource algebras of Iris: the authoritative
resource algebra Auth(M). The idea of this resource algebra is that for a unital resource
algebra M , the elements of the resource algebra Auth(M) are either the authoritative
element •a or fragments ◦b. The relationship between the two kinds of elements is that, at
any given point, all fragments ◦b are included in the authoritative element •a (i.e., b ≼ a).
Moreover, fragments ◦b can only be updated if the corresponding part of the authoritative
element •a is also updated.
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Authoritative Resource Algebra Auth(M)

The carrier type, its elements, and its operations are given by:

Auth(M) := Ex(M)? ×M •a := (ex(a), εM ) ◦b := (⊥, b)

(x, a) · (y, b) := (x · y, a · b) V :=
{
(⊥, b)

∣∣ b ∈ VM}
∪
{
(ex(a), b)

∣∣ b ≼M a ∧ a ∈ VM
}

ε := (⊥, εM ) |(x, a)| := (⊥, |a|)

The definition of Auth(M) is arguably somewhat mystifying. It does, however, allow us to
derive the following useful collection of properties:

fragment rules

◦(a · b) = ◦a · ◦b |◦a| = ◦|a| ◦a ∈ V ⇐⇒ a ∈ VM

◦εM = ε ◦a ≼ ◦b ⇐⇒ a ≼ b

authoritative element rules

•a ∈ V ⇐⇒ a ∈ VM •a · •b ∈ V ⇐⇒ False

interaction rules

•a · ◦b ∈ V ⇐⇒ b ≼M a ∧ a ∈ VM (a, b)⇝L (a′, b′)⇒ •a · ◦b⇝ •a′ · ◦b′

The fragment rules show that the resource algebra M embeds into the resource algebra
Auth(M) via the fragments injection ◦b in a sensible way (i.e., preserving all the prop-
erties of the original algebra). The rules for the authoritative element •a show that the
authoritative element injection embeds the elements of M as exclusive elements (i.e., there
can never be two authoritative elements). The interaction rules are the most interesting
rules. The first one says that, as explained above, every fragment must be included in the
authoritative element. The second one states a condition on when it is possible to update
a fragment inside and the authoritative element, the so-called local update.

Local Updates (a, b)⇝L (a′, b′)

It is possible to update a fragment and its corresponding part in the authoritative element
whenever we can prove a local update:

(a, b)⇝L (a′, b′) := ∀x ∈ A?. a ∈ VM ∧ a = b · x⇒ a′ ∈ VM ∧ a′ = b′ · x

Exercise 101 Prove that if (a, b)⇝L (a′, b′), then •a · ◦b⇝ •a′ · ◦b′ from the definitions.
Then derive the following properties:

a) If (a, ε)⇝L (a′, b), then •a⇝ •a′ · ◦b.

b) If (a, ε)⇝L (a′, b), then •a⇝ •a′.

c) If (a, b)⇝L (a′, ε), then •a · ◦b⇝ •a′. •

Observe that while ordinary updates a⇝ B just refer to validity and are (hence) useless
for some of the resource algebras we have seen, the local updates also impose requirements
that do not involve validity (i.e., requirements on the composition of the elements). Thus,
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we obtain some interesting rules for local updates for the resource algebras that we have
discussed already:

n+m′ = n′ +m

(n,m)⇝L (n′,m′)
(N,+)

n ≤ k
(n,m)⇝L (k, k)

(N,max)

Monotonically Growing Natural Numbers We now have all the puzzle pieces together
to define the ghost theory of monotonically growing natural numbers from our resource
algebra combinators. The resource algebra we will use is Auth(N,max). We define:

monoγ(n) := •n
γ ∗ ◦n γ

lbγ(n) := ◦n
γ

With the definition in hand, we can revisit the properties of the ghost theory of mono-
tonically growing natural numbers. We show:

Lemma 101.

UseBound
monoγ(n) ∗ lbγ(m) ⊢ n ≥ m

BoundPers
lbγ(n) ⊢ � lbγ(n)

Proof. UseBound. Observe that monoγ(n)∗ lbγ(m) ⊢ •n · ◦n · ◦m γ . Thus •n · ◦n · ◦m ∈ V
and, hence, •n · ◦m ∈ V. By definition of validity of the authoritative resource algebra,
we obtain m ≼ n and m ∈ V. Thus, since m ≼ n ⇐⇒ m ≤ n in the resource algebra
(N,max), we obtain m ≤ n.

BoundPers. Observe that |◦n| = ◦|n| = ◦n by the definition of the core in the authori-
tative resource algebra and the (N,max) resource algebra.

Exercise 102 Prove the remaining lemmas of the ghost theory for monotonically growing
natural numbers:

MakeBound
monoγ(n) ⊢ monoγ(n) ∗ lbγ(n)

IncreaseVal
monoγ(n) ⊢ |⇛monoγ(n+ 1)

NewMono
True ⊢ |⇛∃γ.monoγ(n)

MonoTimeless
timeless(monoγ(n))

BoundTimeless
timeless(lbγ(n))

•

8.2.4 Common Type Formers

We turn to some common type formers: options, sums, products, and (finite) functions,
and show how they can be used to define interesting resource algebras.

Options option(M)

We define the options resource algebra in such a way that it extends the resource algebra M
with a new unit.
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None · o := o

o · None := o

Some(a) · Some(b) := Some(a · b)
None ∈ V := True

Some(a) ∈ V := a ∈ VM
|None| := None

|Some(a)| := Some(|a|)
ε := None

We derive some properties about the resource algebra:

None ≼ o ⇐⇒ True Some(a) ≼ o ⇐⇒ ∃b. o = Some(b) ∧ (a ≼ b ∨ a = b)

Exercise 103 What happens when we extend a unital resource algebra with an additional
unit? Does the resulting resource algebra have two units? •

Sums M1 + M2

With the sum resource algebra, we can express a form of disjunction of two resource
algebras M1 and M2. Its elements can either be from the first or the second resource
algebra (or an invalid element):

M1 + M2 := inj1(a1 :M1) | inj2(a2 :M2) |  

The operations are given by:

inji(ai) · inji(bi) := inji(ai ·Mi bi)

x · y :=  otherwise
V :=

{
inj1(a1)

∣∣ a1 ∈ VM1

}
∪
{
inj2(a2)

∣∣ a2 ∈ VM2

}
|inji(ai)| := inji(|ai|)

inji(ai) ≼ inji(bi) ⇐⇒ ai ≼Mi
bi

We obtain three interesting update rules for this resource algebra:

UpdInj
ai ⇝ Bi

inji(ai)⇝ {inji(bi) | bi ∈ Bi}

UpdFlipLR
exclM1(a1) a2 ∈ VM2

inj1(a1)⇝ inj2(a2)

UpdFlipRL
exclM2(a2) a1 ∈ VM1

inj2(a2)⇝ inj1(a1)

where excl(a) := ∀b. (a · b) /∈ V means a is exclusive. That is, there cannot be any possible
frame and, hence, it is sound to flip the sides of the disjunction. The exclusive algebra has
exclusive elements (i.e., excl(ex(x : X))) and various algebras derived from the exclusive
algebra. If a resource algebra has a unit, then there are no interesting exclusive elements
(i.e., no valid exclusive elements).

Exercise 104 (Products and Functions) The resource algebras for products and func-
tions are straightforward pointwise liftings. Define them and prove that they form a re-
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source algebra. When do they have units? When are their elements exclusive? •

Finite Functions K fin−⇀M

For an countably infinite set K and a resource algebra M , the resource algebra of finite
functions K fin−⇀M lifts the resource algebra structure of M to finite maps. This resource
algebra is used, for example, to obtain a ghost state version of heaps. The operations on
the resource algebra are given by:

h1 · h2 := [k 7→ a | k 7→ a ∈ h1, k /∈ dom h2]

∪ [k 7→ a | k 7→ a ∈ h2, k /∈ dom h1]

∪ [k 7→ a · b | k 7→ a ∈ h1, k 7→ b ∈ h2]
h ∈ V := ∀k ∈ dom h. h(k) ∈ VM
|h| := [k 7→ |a| | k 7→ a ∈ h, |a| ≠ ⊥]
ε := ∅

We derive:

h1 ≼ h2 ⇐⇒ ∀k ∈ dom h1. k ∈ dom h2 ∧ (h1(k) = h2(k) ∨ h1(k) ≼ h2(k))

Alloc
G infinite a ∈ V
∅⇝ {[k 7→ a] | k ∈ G}

Update
a⇝ B

h[k 7→ a]⇝ {h[k 7→ b] | b ∈ B}

Note that the update rule Alloc is the first rule that truly makes use of the fact that
frame preserving updates a ⇝ B go from an element of the resource algebra a to a set
of elements of the resource algebra B. We need a set of elements, because there is no
single key k such that ∅⇝ [k 7→ a], since k could always be used as part of the frame. In
other words, since updates need to be frame preserving, picking specific keys is impossible
because we cannot ensure that they have not already been picked by some frame. We can,
however, pick a set of elements. For every potential frame, since the frame is a finite map,
there exists some fresh key k in the infinite set G that is not contained in the domain of
the frame.

Exercise 105 Use Alloc to prove:

Extend
G infinite a ∈ V

h⇝ {h[k 7→ a] | k ∈ G}

•

8.3 Examples

Let us now turn to a number of examples that show case useful ghost theories that we can
derive from our resource algebras.
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Synchronized Ghost State Recall the ghost theory for synchronized ghost state:

True ⊢ |⇛∃γ. leftγ(x) ∗ rightγ(x) leftγ(x) ∗ rightγ(y) ⊢ x = y

leftγ(x) ∗ rightγ(y) ⊢ |⇛leftγ(z) ∗ rightγ(z)

We can derive it from the resource algebra Sync := Auth(option(Ex(X))).

Exercise 106 Verify that the resource algebra Sync indeed yields the desired ghost theory
with leftγ(x) := •Some(ex(x))

γ and rightγ(x) := ◦Some(ex(x))
γ . •

Ghost variables with fractions The synchronized ghost state shown above can be gener-
alized: what if we do not only want to have two parts leftγ(x) and rightγ(x) that need to
agree, but more than that? We can use fractions to achieve this. Concretely, consider the
following ghost theory:

True ⊢ |⇛∃γ. γ 1
↪→ x γ

q
↪→ x ∗ γ

q′

↪→ y ⊢ x = y ∗ q + q′ ≤ 1

γ
q
↪→ x ∗ γ

q′

↪→ x ⊣⊢ γ
q+q′

↪→ x γ
1
↪→ x ⊢ |⇛γ 1

↪→ y

We can derive it with the resource algebra GVar := ((0, 1],+)× Ag(X).
We define γ

q
↪→ x := (q, ag(x))

γ . Note that the update (1, ag(x))⇝ (1, ag(y)) needed
to prove the update rule relies on the fact that the fraction 1 rules out any non-trivial
frame.

Exercise 107 Verify that the resource algebra GVar indeed yields the desired ghost theory
for ghost variables with fractions. •

Oneshot Consider again the oneshot ghost theory:

True ⊢ |⇛∃γ. pendingγ pendingγ ⊢ |⇛shotγ(x) shotγ(x) ⊢ � shotγ(x)

pendingγ ∗ shotγ(x) ⊢ False pendingγ ∗ pendingγ ⊢ False shotγ(x) ∗ shotγ(y) ⊢ x = y

timeless(pendingγ) timeless(shotγ(x))

We can derive it from the resource algebra OneShot := Ex(1) + Ag(X).

Exercise 108 Verify that the resource algebra OneShot indeed yields the desired ghost
theory with pendingγ := inj1(ex())

γ and shotγ(x) := inj2(ag(x))
γ . •

Agreement maps Recall the agreement map theory:

True ⊢ |⇛∃γ. AGMγ(∅) k ↪→γ a ∗ k ↪→γ b ⊢ a = b k ↪→γ a ⊢ � k ↪→γ a

M [k] = ⊥
AGMγ(M) ⊢ |⇛AGMγ(M [k 7→ a]) ∗ k ↪→γ a AGMγ(M) ∗ k ↪→γ a ⊢M [k] = a

timeless(k ↪→γ a) timeless(AGMγ(M))
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It can be derived with the resource algebra AgMap := Auth(A fin−⇀ Ag(B)).

Exercise 109 Verify that the resource algebra AgMap indeed yields the desired ghost
theory with AGMγ(M) := •[k 7→ ag(v)|(k 7→ v) ∈M ]

γ and k ↪→γ a := ◦[k 7→ ag(a)]
γ . •

Updatable maps We consider a modification of the agreement map theory which allows
updates to the map when having ownership of a fragment. Essentially, with this algebra
we can model the points-to connective.

True ⊢ |⇛∃γ. EGMγ(∅) k Z⇒γ a ∗ k Z⇒γ b ⊢ False

EGMγ(M) ∗ k Z⇒γ a ⊢ |⇛EGMγ(M [k 7→ b]) ∗ k Z⇒γ b

M [k] = ⊥
EGMγ(M) ⊢ |⇛EGMγ(M [k 7→ a]) ∗ k Z⇒γ a EGMγ(M) ∗ k Z⇒γ a ⊢M [k] = a

timeless(k Z⇒γ a) timeless(EGMγ(M))

It can be derived with the resource algebra ExMap := Auth(A fin−⇀ Ex(B)).

Exercise 110 Verify that the resource algebra ExMap indeed yields the desired ghost
theory with EGMγ(M) := •[k 7→ ex(v)|(k 7→ v) ∈M ]

γ and k Z⇒γ a := ◦[k 7→ ex(v)]
γ . •

Exercise 111 What ghost theory do we obtain when we modify the AgMap resource
algebra to GhostMap := Auth(A fin−⇀ ((0, 1],+) × Ag(B))? How does this theory relate to
the one for ExMap?

Challenge: Can you come up with a modified notion of fractions that allows you to
obtain one map algebra to rule them all, i.e., an algebra that allows you to combine the
reasoning principles of the ghost theories of ExMap, AgMap, and GhostMap? (Think about
the effect that the product with fractions has on the agreement RA). •
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8.4 Advanced Ghost State

In the following, we will discuss one of the more advanced applications of ghost state and
invariants. Concretely, wee will use them to built a binary logical relation on top of our
existing program logic. We will define a binary logical relation ∆ ; Γ ⊨ ei ⪯ es : A which
can be used to prove contextual refinement ∆ ; Γ ⊨ ei ≤ctx es : A.

∆ ; Γ ⊨ ei ≤ctx es : A := ∀C :(∆ ; Γ ;A) ; (∅ ; ∅ ; 1), h, h′.
(C[ei], h) ↓ ((), h′)⇒ ∃h′′. (C[es], h) ↓ ((), h′′)

Contextual refinement ensures that the behavior of the expression ei is included in the
behavior of the expression es. For example, one can think of es as a specification program
and of ei as the implementation. Then contextual refinement ensures that the implemen-
tation (in any potential context) does not have more behaviors than those allowed by the
specification.

Once again, we make use of (typed) program contexts C here. In this case, we use them
to express the capabilities of a potential program in which we could replace the specification
expression es with the implementation expression ei. (We can use the type unit 1 here,
because if the implementation returns a different result, we can usually construct a context
Since our language has various constructs for diverging programs, it suffices to return unit

Exercise 112 The function λx. x+ 1 does not contextually refine the function λx. x− 1

at type N→ N. Prove it by giving a distinguishing context. •

8.4.1 A Binary Logical Relation

To simplify proving contextual refinement, we set up a logical relation—this time in Iris.
Most of the cases of the logical relation are straightforward generalizations of the unary
logical relation from Section 7:

VJαKδ := δ(α)

VJ1Kδ := {((), ())}
VJintKδ := {(n, n) | n ∈ Z}
VJboolKδ :=

{
(b, b)

∣∣ b ∈ B
}

VJA→ BKδ :=
{
(v ,v ′)

∣∣�(∀w,w′. (w,w′) ∈ VJAKδ −∗ (v w,v ′ w′) ∈ EJBKδ)
}

VJ∀α. AKδ := {(v , w) |�(∀τ. (v ⟨⟩, w ⟨⟩) ∈ EJAKδ, α 7→ τ)}
VJ∃α. AKδ := {(packv , packw) | ∃τ. (v , w) ∈ VJAKδ, α 7→ τ}
VJµα.AKδ := µτ. {(rollv , rollw) | ▷(v , w) ∈ VJAKδ, α 7→ τ}

VJrefAKδ :=
{
(ℓ, r)

∣∣∣ ∃v , w. ℓ 7→ v ∗ r 7→sw ∗ (v , w) ∈ VJAKδ
N}

EJAKδ :=
{
(e, e′)

∣∣ e ⪯ e′ : {v , w. (v , w) ∈ VJAKδ}}
GJΓKδ :=

{
(γ, γ′)

∣∣∣∣∣∗
x:A∈Γ

(γx, γ′x) ∈ VJAKδ

}

Finally, we define:

∆ ; Γ ⊨ ei ⪯ es : A := ∀δ, γ. R NR ∗ (γi, γs) ∈ GJΓKδ ⊢ (γiei, γses) ∈ EJAKδ

where R NR is an invariant that we will discuss shortly (in Section 8.4.3).
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Binary Simulation e ⪯ e′ : {v , w. Q(v , w)}
The interesting question is of course now:

“How is the binary simulation e ⪯ e′ : {v , w. Q(v , w)} defined? ”

Here, we can truly see the power of Iris’s ghost state for the first time. The binary
simulation (and by extension the logical relation) is defined on top of the program logic of
Iris just by using a clever combination of invariants and ghost state [?, ?]:

e ⪯ e′ : {v , w. Q(v , w)} := ∀K. spec(K[e′]) −∗ wp e {v . ∃w. spec(K[w]) ∗Q(v , w)}

Let us discuss this definition by first focusing on the new connectives. The connectives
spec(e) (used in the binary simulation) and ℓ 7→sv (used in the reference case of the logical
relation) are two new forms of ghost state. They are used to turn the specification program
into ghost state—into a “ghost program” if you will. The connective spec(e) expresses that
the expression in the ghost program is currently e. The connective ℓ 7→sv expresses that
the heap in the ghost program currently stores the value v in location ℓ. We will discuss
the precise details of the ghost theory (and its implementation) shortly. For now, it suffices
to understand that if we own the ghost expression spec(e) and some ghost heap fragments,
then we can “step” the specification program by updating our ghost state. For example,
if we own spec((λx. x) 42), then we can update the source program to spec(42). Similarly,
if we own spec(! ℓ) and ℓ 7→s 42, then we can update the source program to spec(42) and
while retaining our ownership of ℓ 7→s 42.

Equipped with connectives to reason about our specification program (i.e., the ghost
program), let us now turn to the definition of the binary simulation e ⪯ e′ : {v , w. Q(v , w)}.
As in the case of the unary relation, we need to prove a weakest precondition—this time
of our our implementation e. What is new here is that we get to assume the specification
program is e′ (in some evaluation context) K. We then have to make sure that by the
time we have finished executing e, we have executed the ghost program to a state where
e′ has become a value w (still in the evaluation context K). Finally, the resulting values
of e and e′ need to be related by Q so we can make sure that they are, for example, the
same integer.

To familiarize ourselves more with the definition of the binary simulation, we prove two
lemmas that we have encountered already for other logical relations (in slightly modified
form):

Lemma 102 (Value Inclusion). Q(v , w) ⊢ v ⪯ w : {v , w. Q(v , w)}

Proof.

Context: Goal:
Q(v , w) v ⪯ w : {v , w. Q(v , w)}
Q(v , w) ∗ spec(K[w]) wp v {v . ∃w. spec(K[w]) ∗Q(v , w)}
Which follows by Value.

Lemma 103 (Bind).

e1 ⪯ e2 : {v1,v2. K1[v1] ⪯ K2[v2] : {v , w. Q(v , w)}} ⊢ K1[e1] ⪯ K2[e2] : {v , w. Q(v , w)}
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Proof.

Context: Goal:
e1 ⪯ e2 : {v1,v2. K1[v1] ⪯ K2[v2] : {v , w. Q(v , w)}} K1[e1] ⪯ K2[e2] : {v , w. Q(v , w)}
e1 ⪯ e2 : {v1,v2. K1[v1] ⪯ K2[v2] : {v , w. Q(v , w)}}
spec(K[K2[e2]])

wpK1[e1] {v . ∃w. spec(K[w]) ∗Q(v , w)}
Since K[K2[e2]] = K[K2][e2] we can instantiate the premise.
wp e2 {v1. ∃v2. spec(K[K2][v2]) ∗K1[v1] ⪯ K2[v2] : {v , w. Q(v , w)}}

wpK1[e1] {v . ∃w. spec(K[w]) ∗Q(v , w)}
By WpBind
∃v2. spec(K[K2][v2]) ∗K1[v1] ⪯ K2[v2] : {v , w. Q(v , w)}

wpK1[v1] {v . ∃w. spec(K[w]) ∗Q(v , w)}
Since K[K2][v2] = K[K2[v2]], we can instantiate the binary simulation.
wpK1[v1] {v . ∃w. spec(K[w]) ∗Q(v , w)}

wpK1[v1] {v . ∃w. spec(K[w]) ∗Q(v , w)}

The Ghost Theory Let us now turn to the ghost theory. Compared to the ghost theories
that we have discussed previously, there is something special about this ghost theory. The
ghost update rules only hold in the presence of an invariant R NR . We will discuss which
proposition R we need to choose to make the ghost theory work in Section 8.4.3. For now,
the reader may think of the invariant R NR as the puzzle piece that ties the ghost program
connectives spec(e) and ℓ 7→sv to an actual program execution (of the specification) such
that the updates on the ghost state correspond to actual computation steps. We obtain
the following ghost theory:

SourcePure
e→pure e

′ NR ⊆ E

R NR ∗ spec(e) ⊢ |⇛E spec(e
′)

SourceAlloc
NR ⊆ E

R NR ∗ spec(K[new(v)]) ⊢ |⇛E ∃ℓ. spec(K[ℓ]) ∗ ℓ 7→sv

SourceLoad
NR ⊆ E

R NR ∗ spec(K[! ℓ]) ∗ ℓ 7→sv ⊢ |⇛E spec(K[v ]) ∗ ℓ 7→sv

SourceStore
NR ⊆ E

R NR ∗ spec(K[ℓ←v ]) ∗ ℓ 7→sw ⊢ |⇛E spec(K[()]) ∗ ℓ 7→sv

Besides the invariant R NR there is something else that is peculiar about this ghost
theory. The update modalities carry a mask E . The reason for this mask is quite simple:
to interact with the invariant R NR , we need to be able to open it. With the updates that
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we have discussed so far, |⇛P , opening invariants is impossible—we can only use them to
update our ghost state. To additionally interact with invariants when we update our ghost
state, Iris offers an additional update modality—the fancy update.

8.4.2 Fancy Updates

In general, fancy updates are of the form |⇛E1 E2P . The updates we have seen (i.e., |⇛E P )
are a derived form |⇛E P := |⇛E E P . The idea of the fancy update |⇛E1 E2P is that P holds
after updating the ghost state and after going from the current mask E1 to the mask E2.
More concretely, when we prove an update |⇛E1 E2P , we can open all the invariants which
are in E1, perform ghost state updates, and then have to close all the invariants that are
in E2. For example, in proving |⇛⊤ ⊤\NRP , we get to open R NR and in proving |⇛⊤\NR ⊤ ,
we have to close R NR again. Let us fill this idea with life by discussing the rules of the
fancy update modality |⇛E1 E2P :

FancyReturn
P ⊢ |⇛E E P

FancyBind
( |⇛E1 E2P ) ∗ (P −∗ |⇛E2 E3Q) ⊢ |⇛E1 E3Q

FancyUpd
|⇛P ⊢ |⇛E E P

FancyWp
|⇛E E wpE e {v . Q(v)} ⊢ wpE e {v . Q(v)}

FancyTimeless
timeless(P )

▷P ⊢ |⇛E E P

FancyInv
N ⊆ E

P
N ⊢ |⇛E E\N ▷P ∗ (▷P −∗ |⇛E\N E True)

FancyMaskFrame
|⇛E1 E2P ⊢ |⇛E1⊎E E2⊎E P

FancyIntroMask
E2 ⊆ E1

|⇛E1 E1P ⊢ |⇛E1 E2 |⇛E2 E1P

Just like the ordinary update modality |⇛P , the fancy update modality enjoys the
return (i.e., FancyReturn) and bind (i.e., FancyBind) rules. For the fancy update, the
masks compose transitively in the FancyBind rule: if we can get to P by going from E1
to E2 and then we can use P to get to Q at mask E3, then we can directly go to from E1
to Q at E3. The rule FancyUpd allows us to turn an update into a fancy update, allowing
us to reuse all of our existing ghost theories. The rule FancyWp allows us to eliminate
(i.e., to execute) a fancy update at a weakest precondition. One can think of the fancy
update |⇛E P as an update collecting a number of modifications to the invariants in the
mask E . When we get to a weakest precondition, we can execute them all with FancyWp.
Similar to previous ghost theories (on standard updates |⇛P ), the rule FancyWp allows
us to execute the updates from our ghost theory (e.g., the ghost program theory) while
our goal is a weakest precondition. We will see an example of such a use case shortly.

The rule FancyInv is the most interesting one. Together with the other rules, we can
use this rule to open, modify, and then close invariants again all as part of proving a fancy
update |⇛E E P . That is, the rule FancyInv allows to open the invariant N (as long as its
namespace is still contained in the mask) to get ▷P . Moreover, we get a funny looking
wand ▷P −∗ |⇛E\N E True. Once we are done manipulating the contents of the invariant, we
can close it again using the wand (with the closing update). We will also see an example
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of such a use case shortly.
After opening an invariant, it is typically very useful to eliminate laters from timeless

propositions. The rule FancyTimeless lets us do just that (as we will see below).
Finally, the rule FancyMaskFrame allows us to frame part of the mask (e.g., to open

the invariants in E later), and the rule FancyIntroMask allows us to introduce an inter-
mediate mask where some invariants could have been opened. These last two rules are
useful in rare occasions, so we list them here. However, since they are seldomly used, the
reader may spare them little thought.

Exercise 113 Prove the following derived rules for the fancy update modality:

FancyWand
( |⇛E1 E2P ) ∗ (P −∗ Q) ⊢ |⇛E1 E2Q

FancyMono
P ⊢ Q

|⇛E1 E2P ⊢ |⇛E1 E2Q

FancyTrans
|⇛E1 E2 |⇛E2 E3P ⊢ |⇛E1 E3P

FancyFrame
P ∗ |⇛E1 E2Q ⊢ |⇛E1 E2P ∗Q

•

Example: Executing Fancy Updates To understand better how we use ghost theories
with fancy updates, let us discuss a concrete example: advancing the specification program
in the binary simulation by one, pure step.

Lemma 104.

es →pure e
′
s

R NR ∗ ei ⪯ e′s : {v , w. Q(v , w)} ⊢ ei ⪯ es : {v , w. Q(v , w)}

Proof. The proof proceeds analogously to Lemma 97.

Context: Goal:
R NR ∗ ei ⪯ e′s : {v , w. Q(v , w)} ∗ spec(K[es]) wp ei {v . ∃w. spec(K[w]) ∗Q(v , w)}
Since es →pure e

′
s, we have K[es]→pure K[e′s].

By SourcePure, we obtain:
R NR ∗ ei ⪯ e′s : {v , w. Q(v , w)} ∗ |⇛⊤ spec(K[e′s]) wp ei {v . ∃w. spec(K[w]) ∗Q(v , w)}
By FancyWp

R NR ∗ ei ⪯ e′s : {v , w. Q(v , w)} ∗ |⇛⊤ spec(K[e′s]) |⇛⊤wp ei {v . ∃w. spec(K[w]) ∗Q(v , w)}
Follows by FancyWand

Example: Proving Fancy Updates Let us now consider the other side of the coin: proving
ghost theories with fancy updates. To this end, let us discuss the concrete example of
proving the rule SourcePure of the ghost program ghost theory. Since we still have not
defined R, we do so under suitable assumptions about R:
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Lemma 105. Suppose that (1) if e →pure e
′, then R ∗ spec(e) ⊢ |⇛spec(e′) ∗ R, and (2)

timeless(R). We prove:

NR ⊆ E e→pure e
′

R NR ∗ spec(e) ⊢ |⇛E spec(e
′)

Proof.

Context: Goal:
R NR ∗ spec(e) |⇛E spec(e

′)

By FancyInv.
spec(e) ∗ |⇛E E\NR ▷R ∗ (▷R −∗ |⇛E\NR E True) |⇛E spec(e

′)

By FancyTrans.
spec(e) ∗ |⇛E E\NR ▷R ∗ (▷R −∗ |⇛E\NR E True) |⇛E E\NR |⇛E E\NR spec(e′)

By FancyWand.
spec(e) ∗ ▷R ∗ (▷R −∗ |⇛E\NR E True) |⇛E E\NR spec(e′)

By FancyTimeless using timelessness of R.
spec(e) ∗ R ∗ (▷R −∗ |⇛E\NR E True) |⇛E E\NR spec(e′)

By assumption.
(|⇛spec(e′) ∗ R) ∗ (▷R −∗ |⇛E\NR E True) |⇛E E\NR spec(e′)

By FancyUpd.
(|⇛spec(e′) ∗ R) ∗ (▷R −∗ |⇛E\NR E True) |⇛ |⇛E E\NR spec(e′)

By UpdWand.
(spec(e′) ∗ R) ∗ (▷R −∗ |⇛E\NR E True) |⇛E E\NR spec(e′)

By LaterIntro.
spec(e′) ∗ |⇛E\NR E True |⇛E E\NR spec(e′)

By FancyWand.
spec(e′) ∗ True spec(e′)

Which is trivial.

Note that in the last two step, we make use of the funny looking wand. Even though,
its conclusion looks like it is trivial, its conclusion is actually what allows us to close the
invariant again (i.e., to get rid of the fancy update in the goal whose masks are growing).
After opening an invariant, the funny wand is essentially a “callback” that we can use to
close the invariant again now that we have done all of our updates.

Note that in the IPM, we have considerable automation simplifying most of the mask
handling for us. At an intuitive level, what happens in the above proof is very similar to
just working with plain updates. At some places, we have to do some shuffling with the
updates, but in those instances in Coq the IPM is there to help.

8.4.3 Ghost State Model

Now that we have seen the ghost theory for the ghost program in action, let us turn to its
model: the definition of the invariant R NR and the ghost state connectives spec(e) and
ℓ 7→sv . We fix an initial configuration of the specification program (e0, h0) and assume
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the specification executes with the operational semantics (e, h) ; (e′, h′). Under these
assumptions, we define:

R := ∃e′, h′. (e0, h0) ;∗ (e′, h′) ∗ leftγexpr(e
′) ∗ EGMγ(h

′)

spec(e) := rightγexpr(e)

ℓ 7→sv := ℓ Z⇒γheap v

The high-level idea of this definition is that the invariant R NR stores the execution
of the initial source program (e0, h0) to the current configuration (e′, h′). The current
expression e′ and the current heap h′ are then made available outside of the invariant
through ghost state—the ghost state γheap and γexpr to be precise.

Ghost Theories The ghost state connectives leftγ(e) and rightγ(e) belong to the theory of
synchronized ghost state. Recall that they arise from the resource algebra Auth(option(Ex(Expr)))
with leftγ(e) := •Some(ex(e))

γ and rightγ(e) := ◦Some(ex(e))
γ . Moreover, they obey

the following rules:

True ⊢ |⇛∃γ. leftγ(x) ∗ rightγ(x) leftγ(x) ∗ rightγ(y) ⊢ |⇛leftγ(z) ∗ rightγ(z)

leftγ(x) ∗ rightγ(y) ⊢ x = y timeless(leftγ(x)) timeless(rightγ(x))

The connectives EGMγ(h) and ℓ Z⇒γ v belong to the ghost theory of mutable heaps.
Recall that the theory consists of an authoritative heap EGMγ(h) and its mutable frag-

ments ℓ Z⇒γ v . The underlying resource algebra is Auth(Loc fin−⇀ Ex(Val)) where EGMγ(h) :=

•[ℓ 7→ ex(v) | ℓ 7→ v ∈ h] γ and ℓ Z⇒γ v := ◦ℓ 7→ ex(v)
γ . The rules of the ghost theory are

given by:

True ⊢ |⇛∃γ. EGMγ(h)

ℓ /∈ dom h

EGMγ(h) ⊢ |⇛EGMγ(h[ℓ 7→ v ]) ∗ ℓ Z⇒γ v

EGMγ(h) ∗ ℓ Z⇒γ v ⊢ h(ℓ) = v EGMγ(h) ∗ ℓ Z⇒γ v ⊢ |⇛EGMγ(h[ℓ 7→ w]) ∗ ℓ Z⇒γ w

timeless(EGMγ(h)) timeless(ℓ Z⇒γ v)

Fixed Ghost Names Note that in the definition of our ghost theory for the ghost program
(i.e., in R, spec(e), and ℓ 7→sv), we use some fixed names γexpr and γheap. For the ghost
state names γ that we have seen so far were always picked dynamically during the proof
(e.g., by using ResAlloc). In this instance, we do not need multiple copies of the same
ghost theory, so a single pair of ghost names suffices that we fix alongside with the initial
configuration (e0, h0). In terms of the rules we have discussed so far, one may imagine that
the names γexpr and γheap are picked once in the beginning (using ResAlloc) and then all
the proofs proceed parametrically over the ghost names and the initial configuration.

That is, to be precise, the definition of our logical relation needs to quantify over the
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initial configuration and the ghost names for the heap and expression:

∆ ; Γ ⊨ ei ⪯ es : A :=

∀γexpr, γheap, e0, h0, δ, γ. Rγexpr,γheap,e0,h0

NR ∗ (γi, γs) ∈ GJΓKδ ⊢ (γiei, γses) ∈ EJAKδ

Ghost Program Rules Let us now return to the rules from 8.4.1 for executing the ghost
program. We now have all the puzzle pieces in hand to prove them.

Lemma 106.

SourcePure
e→pure e

′ NR ⊆ E

R NR ∗ spec(e) ⊢ |⇛E spec(e
′)

Proof. Since R is trivially timeless, it suffices to prove:

if e→pure e
′, then R ∗ spec(e) ⊢ |⇛spec(e′) ∗ R

by Lemma 105. We proceed with the proof:
Context: Goal:
R ∗ spec(e) |⇛spec(e′) ∗ R
(e0, h0) ;

∗ (e′′, h′′) ∗ leftγexpr(e
′′) ∗ EGMγ(h

′′) ∗ rightγexpr(e) |⇛spec(e′) ∗ R
Using the rules of the synchronized ghost state theory, we know e′′ = e.
(e0, h0) ;

∗ (e, h′′) ∗ leftγexpr(e) ∗ EGMγ(h
′′) ∗ rightγexpr(e) |⇛spec(e′) ∗ R

Since e→pure e
′, we have (e, h′′) ; (e′, h′′).

(e0, h0) ;
∗ (e′, h′′) ∗ leftγexpr(e) ∗ EGMγ(h

′′) ∗ rightγexpr(e) |⇛spec(e′) ∗ R
By updating the synchronized ghost state.
(e0, h0) ;

∗ (e′, h′′) ∗ leftγexpr(e
′) ∗ EGMγ(h

′′) ∗ rightγexpr(e
′) spec(e′) ∗ R

Which follows by definition.

Exercise 114 Prove the remaining ghost program rules: SourceAlloc, SourceLoad,
and SourceStore. •

8.4.4 Fundamental Property and Adequacy

With the ghost theory in hand, we can proceed to prove the fundamental property and the
closure under program contexts:

Theorem 107 (Fundamental Property). If ∆ ; Γ ⊢ e : A, then ∆ ; Γ ⊨ e ⪯ e : A.

Proof. By induction on ∆ ; Γ ⊢ e : A using compatibility lemmas for each case.

Theorem 108 (Compatibility with Program Contexts). If ∆ ; Γ ⊨ ei ⪯ es : A and
C : (∆ ; Γ ;A) ; (∆′ ; Γ′ ;A′), then ∆′ ; Γ′ ⊨ C[ei] ⪯ C[es] : A′.

Proof. By induction on C : (∆ ; Γ ; A) ; (∅ ; ∅ ; 1) using compatibility lemmas for each
case.

As for the other logical relations that we have seen in earlier sections, the proofs above
rely on compatibility lemmas for each typing rule. We discuss the lemma for function
application explicitly.
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Lemma 109.

∆ ; Γ ⊨ e1 ⪯ e′1 : A→ B ∆ ; Γ ⊨ e2 ⪯ e′2 : A
∆ ; Γ ⊨ e1 e2 ⪯ e′1 e′2 : B

Proof.

Context: Goal:
R NR ∗ (γi, γs) ∈ GJΓKδ ((γie1) (γie2), (γse

′
1) (γse

′
2)) ∈ EJBKδ

R NR ∗ (γie1, γse′1) ∈ EJA→ BKδ ∗ (γie2, γse′2) ∈ EJAKδ
((γie1) (γie2), (γse

′
1) (γse

′
2)) ∈ EJBKδ

R NR

γie1 ⪯ γse′1 : {v , w. (v , w) ∈ VJA→ BKδ}
γie2 ⪯ γse′2 : {v , w. (v , w) ∈ VJAKδ}

((γie1) (γie2), (γse
′
1) (γse

′
2)) ∈ EJBKδ

By Lemma 103.
R NR

γie1 ⪯ γse′1 : {v , w. (v , w) ∈ VJA→ BKδ}
(v2,v

′
2) ∈ VJAKδ

((γie1)v2, (γse
′
1)v

′
2) ∈ EJBKδ

By Lemma 103.
R NR

(v1,v
′
1) ∈ VJA→ BKδ

(v2,v
′
2) ∈ VJAKδ

(v1 v2,v
′
1 v

′
2) ∈ EJBKδ

Which follows by definition.

Exercise 115 Prove the remaining compatibility lemmas. •

Adequacy Finally, let us now show that our binary logical relation can be used to prove
contextual refinement. Concretely, we prove:

Theorem 110 (Compatibility of ⪯ w.r.t. ≤ctx).
If ∆ ; Γ ⊨ ei ⪯ es : A, then ∆ ; Γ ⊢ ei ≤ctx es : A.

Proof. Let C : (∆ ; Γ ;A) ; (∅ ; ∅ ; 1) such that (C[ei], h) ↓ ((), h′). Then by Theorem 108,
we have ⊨ C[ei] ⪯ C[es] : 1. We allocate the required ghost state such that True ⊢
|⇛∃γheap, γexpr. Rγexpr,γheap,C[e2],h ∗ spec(C[e2]). and put R into an invariant, obtaining

True ⊢ |⇛⊤∃γheap, γexpr. Rγexpr,γheap,C[es],h
NR ∗ spec(C[es]). By ⊨ C[ei] ⪯ C[es] : 1 (and

duplicability of invariants), we thus obtain:

True ⊢ |⇛⊤∃γheap, γexpr.wp C[ei]
{
v . ∃w. Rγexpr,γheap,C[es],h

NR ∗ spec(w) ∗v = w = ()
}

By opening the invariant in the post condition, we derive:

True ⊢ |⇛⊤∃γheap, γexpr.wp C[ei]
{
v . ∃w, h′′. |⇛⊤ (C[es], h) ;

∗ (w, h′′) ∗ w = ()
}
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Using a slight generalization of the adequacy theorem of Iris, we can then use the execution
(C[ei], h) ↓ ((), h′) to get to the postcondition and obtain the execution of es.

Exercise 116 Just as with our unary logical relation, we can use the binary semantic
model to reason about results that do not simply follow from the compatiblity lemma, for
instance to show interesting and non-trivial contextual refinements!

Come up with an interesting refinement that you would like to prove, and verify it.
Bonus points if it makes non-trivial use of impredicate invariants! •
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9 Iris’s Model

After spending several sections discussing the features of Iris, in this section, we take
a closer look at the model of Iris. That is, we discuss how Iris’s propositions and its
connectives are defined. Unfortunately, the full model of Iris is quite a mouthful and a
thorough discussion is beyond the scope of these notes. Instead, we discuss a simplified
model without impredicative invariants (in Section 9.1) and then sketch what is required
to extend the simplified model to handle them (in Section 9.2).

9.1 Simplified Model

The model of Iris consists of two parts: the program logic and the base logic. The program
logic will be concerned with programs, heaps, and the weakest precondition. The base logic
is agnostic about all of those and merely concerned with resources, resource management,
and step-indexing. The base logic forms a simple foundation, upon which we build the
program logic.

9.1.1 Base Logic

In the previous sections, we have worked with the type of Iris’s propositions iProp. In the
model of Iris, iProp is obtained from a more general construction: uniform predicates over
a unital resource algebra M , written UPred(M). One obtains iProp from UPred(M), as
explained below, by picking a specific unital resource algebra M .

Uniform Predicates UPred(M)

The type UPred(M) consists of predicates over step-indices and resources (from M) which
are down-closed with respect to the step-index and up-closed with respect to the resource:

UPred(M) := {P ∈ P(N,M) | ∀(n, a) ∈ P. ∀m, b. m ≤ n⇒ a ≼ b⇒ (m, b) ∈ P}

The entailment relation P ⊢ Q is given by

P ⊢ Q := ∀n, a. a ∈ V ⇒ (n, a) ∈ P ⇒ (n, a) ∈ Q

and we define the connectives:

ϕ := {(n, a) | ϕ}
P ∧Q := {(n, a) | (n, a) ∈ P ∧ (n, a) ∈ Q}
P ∨Q := {(n, a) | (n, a) ∈ P ∨ (n, a) ∈ Q}
P ⇒ Q := {(n, a) | ∀m, b. m ≤ n⇒ a ≼ b⇒ (m, b) ∈ P ⇒ (m, b) ∈ Q}

∀x : X. P (x) := {(n, a) | ∀x : X. (n, a) ∈ P (x)}
∃x : X. P (x) := {(n, a) | ∃x : X. (n, a) ∈ P (x)}

P ∗Q := {(n, a) | ∃a1, a2. a = a1 · a2 ∧ (n, a1) ∈ P ∧ (n, a2) ∈ Q}
P −∗ Q :=

{
(n, a)

∣∣ ∀m, b. m ≤ n⇒ a · b ∈ V ⇒ (m, b) ∈ P ⇒ (m, a · b) ∈ Q
}

�P := {(n, a) | (n, |a|) ∈ P}
▷P := {(n, a) | ∀m < n. (m, a) ∈ P}
|⇛P := {(n, a) | a⇝ {b | (n, b) ∈ P}}

Own (a) := {(n, b) | a ≼ b}
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Soundness Equipped with the definition of uniform predicates, we can prove many of the
rules that we have encountered in previous sections:

Refl
P ⊢ P

Trans
P ⊢ Q Q ⊢ R

P ⊢ R

Pure
ϕ

P ⊢ ϕ

FromPure
P ⊢ ϕ ϕ⇒ (P ⊢ Q)

P ⊢ Q
AndElimL
P ∧Q ⊢ P

AndElimR
P ∧Q ⊢ Q

AndIntro
P ⊢ Q P ⊢ R

P ⊢ Q ∧R
OrIntroL
P ⊢ P ∨Q

OrIntroR
Q ⊢ P ∨Q

OrElim
P ⊢ R Q ⊢ R

P ∨Q ⊢ R

AllIntro
∀x : X. (P ⊢ Q(x))

P ⊢ ∀x : X.Q(x)

AllElim
y : X

(∀x : X. P (x)) ⊢ P (y)

ExistIntro
y : X P ⊢ Q(y)

P ⊢ ∃x : X.Q(x)

ExistElim
∀x : X. (P (x) ⊢ Q)

∃x : X. P (x) ⊢ Q

WandIntro
P ∗Q ⊢ R
P ⊢ Q −∗ R

WandElim
P ⊢ Q −∗ R
P ∗Q ⊢ R

SepWeaken
P ∗Q ⊢ P

SepTrue
P ⊢ P ∗ True

SepComm
P ∗Q ⊢ Q ∗ P

SepSplit
P ⊢ P ′ Q ⊢ Q′

P ∗Q ⊢ P ′ ∗Q′
SepAssoc
P ∗ (Q ∗R) ⊣⊢ (P ∗Q) ∗R

PersElim
�P ⊢ P

PersMono
P ⊢ Q

�P ⊢ �Q
PersPure
ϕ ⊢ �ϕ

PersAndSep
(�P ) ∧Q ⊢ (�P ) ∗Q

PersIdemp
�P ⊢ ��P

PersAll
∀x : X. �P (x) ⊢ �∀x : X. P (x)

PersExists
�∃x : X. P (x) ⊢ ∃x : X. �P (x)

LaterIntro
P ⊢ ▷P

LaterMono
P ⊢ Q

▷P ⊢ ▷Q

Loeb
▷P ⊢ P
⊢ P

LaterSep
▷(P ∗Q) ⊣⊢ ▷P ∗ ▷Q

LaterExists
X non-empty

▷(∃x : X. P (x)) ⊣⊢ ∃x : X. ▷P (x)

LaterAll
▷(∀x : X. P (x)) ⊣⊢ ∀x : X. ▷P (x)

LaterPers
▷�P ⊣⊢ � ▷P

UpdReturn
P ⊢ |⇛P

UpdBind
|⇛P ∗ (P −∗ |⇛Q) ⊢ |⇛Q

Exercise 117 Prove the soundness of the rules Refl, Trans, Pure, AndIntro, Exis-
tElim, SepSplit, WandElim, PersElim, PersAndSep, LaterIntro, LaterMono, Loeb,
UpdReturn, and UpdBind. •

137 Draft of February 14, 2022



Ghost State Notably, none of the rules above mention ghost state or resources in any
form. Let us have a closer look at resources in UPred(M). Instead of the ghost state
connective a

γ , the type UPred(M) has the ownership connective Own (a). This ownership
connective enjoys the following rules:

OwnEmpty
True ⊢ Own (ε)

OwnPers
Own (a) ⊢ �Own (|a|)

OwnSep
Own (a) ∗ Own (b) ⊣⊢ Own (a · b)

OwnValid
Own (a) ⊢ a ∈ V

OwnUpd
a⇝ B

Own (a) ⊢ |⇛∃b ∈ B.Own (b)

Exercise 118 Verify OwnEmpty, OwnPers, OwnSep, OwnValid, and OwnUpd. •

Iris Propositions iProp
From the general construction of UPred(M), we obtain the type of Iris propositions iProp
and the ghost state ownership connective a

γ by picking a specific resource algebra:

iProp := UPred(N fin−⇀M)

whereM combines the resource algebras that we want to use (see below). By using finite
maps to M, we can associate ghost state with a name γ : N and have multiple instances
of the same ghost state (e.g., monoγ1(n1), monoγ2(n2), and monoγ3(n3)).

To understand better how one defines a
γ in terms of Own (b), we need to make precise

what the resource algebraM is. Unfortunately, the precise definition ofM is a bit gnarly
(see [5]), because we need to combine all the resource algebras that we want to use into
a single resource algebra M. To nevertheless illustrate the connection between a

γ and
Own (b), we pick a single kind of resources here, M := Auth(N,max), for the sake of
simplicity. For this concrete choice of ghost state, we can define:

a
γ
:= Own ([γ 7→ a])

where [γ 7→ a] is a singleton map. We can then prove the standard ghost state rules:

ResAlloc
a ∈ V

⊢ |⇛∃γ. a γ
ResSep
a

γ ∗ b γ ⊣⊢ a · b γ
ResPers
a

γ ⊢ � |a| γ
ResValid
a

γ ⊢ a ∈ V

ResUpd
a⇝ B

a
γ ⊢ |⇛∃b ∈ B. b γ

Exercise 119 Verify the rules ResAlloc, ResSep, ResPers, ResValid, and ResUpd. •

Guarded Fixpoints The last piece missing of the base logic are guarded fixpoints µx.P .
The general construction of these fixpoints requires some additional machinery that we
touch on in Section 9.2. But for fixpoints of type X → UPred(M), we can sketch their
construction. For a function F : (X → UPred(M)) → (X → UPred(M)), we define

138 Draft of February 14, 2022



step-indexed approximations of its fixpoint by:

f0(x) := True fn+1(x) := F (fn)(x) f(x) := {(n, r) | (n, r) ∈ fn+1(x)}

If every recursive occurrence in F is guarded by a later, one can show that it is guarded in
the following sense:

guarded(F ) := ∀g1, g2. ▷(∀x. g1(x) ⇐⇒ g2(x)) ⊢ ∀x. F (g1)(x) ⇐⇒ F (g2)(x)

which suffices to prove the fixpoint equation:

Lemma 111. If F is guarded, then f is a fixpoint, meaning F (f)(x) = f(x).

9.1.2 Program Logic

Let us now turn to the program logic of Iris, which we define using the connectives of the
base logic. We start with the weakest precondition.

Weakest Precondition wp e {v . Q(v)}
We define the weakest precondition as a guarded fixpoint:

wp v {v . Q(v)} := |⇛Q(v)

wp e {v . Q(v)} := ∀h. SI(h) −∗ |⇛progress(e, h)
∗ ∀e′, h′. (e, h) ; (e′, h′) −∗ |⇛▷ SI(h′) ∗ wp e′ {v . Q(v)}

if e /∈Val

In the base case, when the argument is a value v , we have to prove the postcondition Q(v)

(after potentially) updating the ghost state. Otherwise, if e is a proper expression, we get to
assume the state interpretation SI(h) (explained below) and have to show two conditions:
(1) the current expression e can make progress in the heap h where progress(e, h) :=

∃e′, h′. (e, h) ; (e′, h′) and (2) for any successor expression e′ and heap h′, we have to
show the weakest precondition and the state interpretation after an update to the ghost
state and after a later.

The updates in both cases makes sure that we can always update our ghost state when
we prove a weakest precondition. These updates are instrumental for working with the
state interpretation below and for verifying code which relies on auxiliary ghost state.

The later in the second case ensures that the weakest precondition can be defined as a
guarded fixpoint. Moreover, it ties program steps to laters in our program logic (i.e., in the
rules LaterPureStep, LaterNew, LaterLoad, and LaterStore). In fact, this later in the
definition of the weakest precondition is responsible for the intuition: “▷P means P holds
after the next step of computation”. More concretely, if one proves a weakest precondition
wp e {v . Q(v)} under the assumption ▷P then, after the next step of computation, the goal
becomes ▷wp e′ {v . Q(v)}. We can then use the rule LaterMono to remove the later in
front of wp e′ {v . Q(v)} and in front of ▷P .

The State Interpretation The state interpretation answers two questions: (1) “how can
we prove progress of e in arbitrary heaps?” and (2) “how does the points-to assertion ℓ 7→ v

relate to the weakest precondition?” With the state interpretation SI(h), we can control
which heaps h we have to consider in the weakest precondition. It is like a small invariant
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that we maintain throughout the execution of e (i.e., we will show that it holds initially
and the weakest precondition preserves it for every step). We use the state interpretation
SI(h) to tie the heap h in the weakest precondition to the points-to assertions ℓ 7→ v in our
program logic.

To tie SI(h) and ℓ 7→ v together, we use ghost state. More concretely, we use the
ExMap := Auth(Loc fin−⇀ Ex(Val)) resource algebra and fix a ghost name γheap:

SI(h) := EGMγheap(h) ℓ 7→ v := ℓ Z⇒γheap v

From the ExMap resource algebra, we then obtain the following ghost theory for the state
interpretation and the points-to assertions:

ℓ 7→ v ∗ ℓ 7→ w ⊢ False ℓ 7→ v ∗ SI(h) ⊢ h(ℓ) = v

ℓ 7→ v ∗ SI(h) ⊢ |⇛ℓ 7→ w ∗ SI(h[ℓ 7→ w])

ℓ /∈ dom h

SI(h) ⊢ |⇛SI(h[ℓ 7→ v ]) ∗ ℓ 7→ v

Exercise 120 Suppose we use GhostMap instead of ExMap in the state interpretation.
Are there interesting examples that make use of the additional fractions? •

Soundness With the state interpretation in hand, we can proceed to prove the soundness
of the rules of the program logic.

Value
Q(v) ⊢ wp v {w. Q(w)}

Wand
(∀v . Q(v) −∗ Q′(v)) ∗ wp e {w. Q(w)} ⊢ wp e

{
w. Q′(w)

}
WpBind
wp e {v .wpK[v ] {w. Q(w)}} ⊢ wpK[e] {w. Q(w)}

WpUpd
|⇛wp e {v . Q(v)} ⊢ wp e {v . Q(v)}

LaterPureStep
e→pure e

′

▷wp e′ {v . P (v)} ⊢ wp e {v . P (v)}
LaterNew
▷(∀ℓ. ℓ 7→ v −∗ Q(ℓ)) ⊢ wp new(v) {w. Q(w)}

LaterLoad
ℓ 7→ v ∗ ▷(ℓ 7→ v −∗ Q(v)) ⊢ wp ! ℓ {w. Q(w)}

LaterStore
ℓ 7→ v ∗ ▷(ℓ 7→ w −∗ Q()) ⊢ wp ℓ← w {w. Q(w)}

The rules Value, Wand, WpBind, and WpUpd follow from the definition of the weakest
precondition. They are completely agnostic about the language that we use (aside from
knowing that it exists) and agnostic about the state interpretation that we have chosen.

Exercise 121 Prove the rules Value, Wand, WpBind, and WpUpd.
Hint: Two of the rules require Löb induction. •

The rules LaterPureStep, LaterNew, LaterLoad, and LaterStore are specific to
the language. They depend on our concrete choice of the state interpretation and constructs
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of the language. We define the notion of pure steps e→pure e
′ as:

e→pure e
′ := (∀h. (e, h) ; (e′, h)) ∧ (∀h, h′′, e′′. (e, h) ; (e′′, h′′)⇒ h′′ = h ∧ e′′ = e′)

The first part ensures progress and the second part that there are no possible steps to
expressions which are not e′.

Exercise 122 Prove the rules LaterPureStep, LaterNew, LaterLoad, and LaterStore.
•

9.1.3 Adequacy

Now that we have seen the model of Iris propositions and the model of the weakest precon-
dition, one interesting question remains: “What do we prove when we prove entailments in
Iris?” To answer this question, we will prove a series of adequacy results that can be used
to lift results proven in Iris to results about programs (and their executions) in the meta
logic. Concretely, we prove the following adequacy results:

Lemma 112 (Adequacy of the Program Logic). If (e, h) ;n (e′, h′) and ⊢ |⇛SI(h) ∗
wp e {v . ϕ(v)}, then (e′, h′) is either progressive or e′ is a value v and ϕ(v) holds.

Proof. We unfold the weakest precondition n times and obtain the desired result about e′

and h′ under a number of laters and updates. The main result then follows with Lemma 113.

Note that technically these theorems need to quantify over the ghost name γheap that
is chosen for the heap. We have omitted it here for simplicity.

Lemma 113 (Adequacy for the Base Logic). If ⊢ (|⇛▷)nϕ, then ϕ holds.

The adequacy theorem for the base logic states that pure propositions (under a potential
nesting of later modalities and update modalities) are true at the meta level. From it and
the adequacy result of the program logic (i.e., Lemma 112), we can deduce the following
two corollaries:

Theorem 114 (Safety). If {True} e {v . ϕ(v)}, then e safely terminates in (potentially
multiple) values v such that ϕ(v) holds, or e diverges.

Theorem 115 (Consistency). It is impossible to prove falsity, meaning True ̸⊢ False.
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9.2 Full Model

Notably, what is still missing from our discussion above is how invariants and timelessness
are integrated into the program logic. As it turns out, compared to what we have discussed
so far, the addition is a (relatively) localized change:

we use fancy updates |⇛E1 E2P in the definition of the weakest precondition.

Since fancy updates (as we will recall below) have built-in support for invariants and
timelessness, the weakest precondition will inherit this support.

Integrating Fancy Updates At a high level, the integration of fancy updates into the
weakest precondition is very simple: we replace every update |⇛P with a fancy update
|⇛E1 E2P . This change, however, means that we have to decide which masks E1 and E2 we

want to use and where we want to place them. As it turns out, there is ample room for
different design decisions as it comes to the masks and these decisions impact when and
how long invariants can be opened. For example, the choice that has been made for the
weakest precondition wpE e {v . Q(v)} that we have been working with is that invariants can
be opened around the entire expression—from the start to the postcondition. In contrast,
for a concurrent language, we would have to ensure that invariants can only be opened for
a single step (otherwise other threads could observe inconsistent states).

While the choice of masks in the weakest precondition is important, it will not be the
focus of these notes. We refer the reader to Jung et al. [5] for a more detailed discussion of
the construction of the weakest precondition with fancy updates. Instead, in these notes,
we will focus on the model of the fancy updates and how it allows us to work with invariants
and timelessness.

9.2.1 Fancy Updates

Before we proceed to the model of fancy updates |⇛E1 E2P , let us briefly recall their meaning
and their rules. In short, the idea of a fancy update |⇛E1 E2P is, among others, that P holds
after opening all the invariants which are in E1, performing some ghost state updates, and
then closing all the invariants that are in E2. This idea is also reflected by the rules for
the modality:

FancyInv
N ⊆ E

P
N ⊢ |⇛E E\N ▷P ∗ (▷P −∗ |⇛E\N E True)

FancyReturn
P ⊢ |⇛E E P

FancyBind
|⇛E1 E2P ∗ (P −∗ |⇛E2 E3Q) ⊢ |⇛E1 E3Q

FancyUpd
|⇛P ⊢ |⇛E E P

FancyMaskFrame
|⇛E1 E2P ⊢ |⇛E1⊎E E2⊎E P

FancyIntroMask
E2 ⊆ E1

|⇛E1 E1P ⊢ |⇛E1 E2 |⇛E2 E1P

FancyTimeless
timeless(P )

▷P ⊢ |⇛E E P

FancyWp
|⇛E E wpE e {v . Q(v)} ⊢ wpE e {v . Q(v)}

The most important rule is, of course, FancyInv. The rule FancyInv allows to open
the invariant N (as long as its namespace is still contained in the mask) and we get ▷P and
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a way to close the invariant again (i.e., to restore the mask again) (▷P −∗ |⇛E\N E True).
Together with the other rules, we can use this rule to open, modify, and then close invariants
again all as part of proving a fancy update |⇛E E P . Intuitively, the fancy update |⇛E E P

collects all the updates to the invariants in E and updates to ghost state that we do while
proving |⇛E E P and we can then apply them by executing the fancy update at a weakest
precondition.

The rules FancyReturn and FancyBind are mirrored from the update modality |⇛P
and offer us similar compositionality. The rule FancyUpd allows us to turn an update into
a fancy update, the rule FancyMaskFrame allows us to frame part of our mask (to open
the invariants in E later), and the rule FancyIntroMask allows us to break a fancy update
into two separate fancy updates with a smaller mask. The rule FancyTimeless allows us
to eliminate the later in front of timeless propositions and the rule FancyWp allows us to
eliminate a fancy update at a weakest precondition.4

Exercise 123 Derive the rule TimelessStrip. •

Timelessness To discuss the model of fancy updates, we need to shed some light on
timelessness in Iris. Intuitively, a proposition P is timeless if its complete behavior is
determined by its behavior at step-index 0. In terms of the base logic, we express this
property as:

timeless(P ) := ▷P ⊢ ▷False ∨ P

The definition says that P is timeless if ▷P either means the step-index is 0 (the left
branch) or P already holds at the current step-index (the right branch).

Exercise 124 Why can we not define timeless(P ) := ▷P ⊢ P? •

Exercise 125 Prove the following rules for UPred(M) using the definition of the model:

TimelessPure
timeless(ϕ)

TimelessOwn
timeless(Own (b))

•

Exercise 126 Derive

TimelessPers
timeless(P )

timeless(�P )

TimelessSep
timeless(P ) timeless(Q)

timeless(P ∗Q)

TimelessOr
timeless(P ) timeless(Q)

timeless(P ∨Q)

TimelessAnd
timeless(P ) timeless(Q)

timeless(P ∧Q)

TimelessAll
∀x. timeless(P (x))

timeless(∀x. P )

TimelessExists
∀x. timeless(P (x))

timeless(∃x. P )

•

4This rule requires the above mentioned change to the definition of the weakest precondition compared
to the simplified model presented in the previous section.
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So why can we eliminate laters from timeless propositions when we prove weakest
preconditions and fancy updates? The reason is that we are working with a hierarchy
of monads in Iris: the weakest precondition wp e {v . Q(v)} is defined in terms of fancy
updates |⇛E1 E2P , which in turn are built up from a composition of the update monad |⇛P
and the timeless monad ⋄ P .

The timeless monad ⋄ P := ▷False ∨ P satisfies the following properties:

TimelessReturn
P ⊢ ⋄ P

TimelessBind
(⋄ P ) ∗ (P −∗ ⋄Q) ⊢ ⋄Q

TimelessLater
timeless(P )

▷P ⊢ ⋄ P

Various connectives of the logic, as we have seen, are timeless and the timeless monad
allows us to strip laters off of them.

Exercise 127 Prove TimelessReturn, TimelessBind, and TimelessLater. •

Fancy Update Model Given the timelessness monad, we are now fully equipped to discuss
the model of the fancy update modality |⇛E1 E2P :

|⇛E1 E2P := wsat ∗ E1
γen −∗ |⇛⋄ (wsat ∗ E2

γen ∗ P )

Let us unpack this definition step by step. First, similar to the model of invariants for
our logical relation in Section 4, we have a notion of world satisfaction wsat (discussed
below) that will store the invariants. And just as before, world satisfaction is threaded
through our proofs (here by fancy updates). Besides world satisfaction, the fancy updates
consist of a composition of the monad for ghost state updates |⇛P and the monad for
timelessness ⋄ P . Thus, it inherits many of the properties of both monads. The last piece
to the puzzle is the ghost state E γen . This piece of ghost state tracks which invariants are
currently closed. We will use it, together with an additional piece of ghost state E γdis , in
the definition of wsat to distinguish open and closed invariants.

Exercise 128 Derive the rules FancyReturn, FancyBind, FancyUpd, and FancyTime-
less. •

World Satisfaction Ghost Theory Before we discuss the model of world satisfaction, let
us turn to the ghost theory that we need to make invariants and fancy updates work.
In this ghost theory, invariants will have a name ι : N instead of a namespace N . The
namespace invariants are obtained as P

N
:= ∃ι ∈ N . P ι.

The ghost theory of world satisfaction wsat has three interesting rules:

InvAlloc
E infinite

wsat ∗ (▷P ) ⊢ |⇛∃ι ∈ E . P ι ∗ wsat
InvOpen
P

ι ∗ wsat ∗ {ι} γen ⊢ |⇛(▷P ) ∗ wsat ∗ {ι} γdis

InvClose
P

ι ∗ wsat ∗ (▷P ) ∗ {ι} γdis ⊢ |⇛wsat ∗ {ι} γen

The rule InvAlloc allows us to allocate a new invariant P if we own ▷P . The rule InvOpen
allows us to open the invariant ι and obtain ▷P . The rule InvClose allows us the close the
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invariant ι by returning ▷P . To use InvOpen, we need to know that ι is currently enabled
and we get back a token {ι} γdis witnessing that ι is now disabled. To use InvClose, we
need to know that ι is currently disabled and we get back a token {ι} γen witnessing that
ι is now enabled.

The ghost state for the enabled and disabled invariants are sets of invariant names E
with ⊎ as the monoid operation. More concretely, for the enabled invariants γen we pick
the resource algebra (P(N),⊎) and for the disabled invariants, we pick the resource algebra
(Pfin(N),⊎). At any given point, we can have infinitely many enabled tokens (e.g., with
⊤ γen), but there can only ever be finitely many disabled tokens (i.e., {ι} γdis), which is
sufficient because there will only be finitely many invariants at a time.

Exercise 129 Derive the rules FancyMaskFrame, FancyIntroMask, and FancyInv. •

Broken World Satisfaction Given the intuition about invariants and the ghost theory of
world satisfaction, let us now attempt to define them:

P
ι
:= ◦[ι 7→ ag(P )]

γinv

wsat := ∃I : N fin−⇀ iProp. •[ι 7→ ag(P ) | ι 7→ P ∈ I] γinv ∗ ∗ι7→P∈I(▷P ∗ {ι}
γdis) ∨ ( {ι} γen

)

In this definition, we introduce an additional piece of ghost state γinv which connects
the invariant connective P

ι to world satisfaction. The idea is that we use the agreement
resource algebra to synchronize the P in P

ι with the P that we work with in the definition
of world satisfaction. And for every invariant ι 7→ P ∈ I (i.e., every currently allocated
invariant), we are in one of two states: either (1) the invariant is currently closed, which
means we store ▷P and {ι} γdis in world satisfaction, or (2) the invariant is currently open,
which means we only store the token {ι} γen in world satisfaction. In either case, we can
facilitate the token exchange witnessed by InvOpen and InvClose.

Exercise 130 Derive the rules InvAlloc, InvOpen and InvClose. •

Unfortunately, this model of world satisfaction is broken!

9.2.2 Step-Indexed Types

To understand why the model of world satisfaction (from Section 9.2.1) is broken, we have
to carefully look at the resource algebras that are involved. To model invariants, we use
the following three resource algebras:

(P(N),⊎) (Pfin(N),⊎) Auth(N fin−⇀ Ag(iProp))

The first two resource algebras are not problematic, but with the third one we have to be
careful. Recall that the model of Iris propositions iProp is UPred(M) for a specific resource
algebra M . If we now refer to iProp in the resource algebra M , then we have constructed
a cycle. Concretely, ignoring the details of multiple copies of the same ghost state for a
moment, we have constructed the following cycle:

iProp := UPred(M) M := (P(N),⊎)× (Pfin(N),⊎)× Auth(N fin−⇀ Ag(iProp))

Through M , the the type iProp refers to itself in its own definition. And what is even
worse, this form of a cyclic definition neither has an inductive nor a coinductive solution,
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because UPred(M) uses M in a negative occurrence. In fact, strongly simplified UPred(M)

consists of sets of elements of M , which has a strictly larger cardinality than M—and
iProp cannot have a larger cardinality than itself.

So what do we do? How can we build a model of impredicative invariants nonetheless?
The answer to these questions is step-indexing. Beyond using step-indexing in the definition
of UPred(M), we have to use a form of step-indexing in our types and our resources (akin
to the kind of step-indexed worlds that are required for logical relations for languages with
higher-order state).

Step-Indexed Types and Resources Applying step-indexing to types and resource alge-
bras is beyond the scope of these notes. It requires generalizing our notion of types to
“(complete) ordered families of equivalences” and generalizing our notion of resource alge-
bras to “cameras”. The rough idea is that equality x = y, validity V, and and various other
definitions of the model all become parametric in a step-index, which is threaded through
every construction. For a detailed description, we refer the reader to Jung et al. [5].

Once the generalization to step-indexed types and resources is completed, one can in-
troduce a new type former ▶A which roughly does the same as the later modality ▷P on
propositions. And just like there are guarded fixpoints µx.P of those propositions where
recursive occurrences are guarded by a later ▷P , one can show that there are guarded fix-
points of those types where every recursive occurrence is guarded by a type-level later ▶A.
For Iris, the resulting equation that can be solved in the step-indexed world is (roughly):

iProp := UPred(M) M := (P(N),⊎)× (Pfin(N),⊎)× Auth(N fin−⇀ Ag(▶iProp))

The price one has to pay for working with step-indexed types is that it would be unsound
to put P into the definition of wsat without a guarding ▷. The reader may have wondered
why we include ▷P in the definition of wsat and not just P . The answer is that, if one
wants to give a model of wsat in terms of step-indexed types, then the model only makes
sense if P is guarded by a later. For a more extensive discussion of world satisfaction and
invariants, we refer again to Jung et al. [5].
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10 Concurrency

Up to this point, all the programs and languages that we have considered were sequential :
there was only ever a single thread of execution. We will now develop techniques to reason
about concurrent languages and programs. Before we dive into the details of concurrent
languages (see Section 10.1), program logics for concurrent programs (see Section 10.2),
and logical relations for concurrent languages (see Section 10.3), we start with a concrete
example:

Concurrent Increment Consider the following code snippet, which concurrently incre-
ments a counter:

ecount := let r = new(0) in (inc(r) ∥ inc(r)) where inc(r) := r← ! r + 1.

The expression ecount creates a new reference r and then, in parallel, increments the value
of r twice. Executing two expressions e1 and e2 in parallel (i.e., e1 ∥ e2) here means that
the execution of e1 and e2 are interleaved in an arbitrary order. For example, the execution
could proceed by first reading r on the left side (currently 0), then r could be read on the
right side (still 0), then r could be set to 1 on the right side, and, finally, r could be set to
1 (again) on the left side. In the end, following this interleaving, r will store the value 1

and not, as one might hope, the value 2.
The fact that concurrent programs execute in an arbitrary interleaving makes them

notoriously hard to reason about, because different interleavings can result in different
outcomes. For example, the state after executing ecount can either be r 7→ 1 or r 7→ 2,
depending on the order in which we execute the left and right side. Since we do not
know upfront which interleaving will be chosen during the execution, we have to take all
interleavings into account when we reason about the behavior of ecount. This may sound
easy for an example as simple as ecount, but if we imagine using ecount in a larger program,
then the number of interleavings can quickly get out of hand.

In this section, we will develop modular reasoning principles for concurrent programs
based on separation logic. We will see how we can reason about the interleavings of
ecount, how to modularly compose concurrent programs, and how we can get back to more
sequential reasoning by, for example, using locks around the reference r.

A note on data races For readers familiar with concurrent programming in languages
such as C and Java, the expression ecount may seem horribly broken: it has a data race.
Typically, one speaks of a data race if two threads can access the same location ℓ and at least
one of them is writing to ℓ. In languages such as C and Java, data races mean the behavior
of the program becomes somewhat unpredictable and, in the case of C, even undefined.
In the following, we will work with a sequentially consistent memory model, which does
not prohibit data races, since they are required to implement high-level primitives such as
locks and channels. In languages such as C and Java, the corresponding constructs are
known as atomics and can be used in the same fashion as the references in our language.
The normal references in these languages, known as non-atomics, are not modeled in our
language for the sake of simplicity (and, similarly, we also do not model weak memory).
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10.1 A Concurrent Language

We extend the terms of our language by two new constructs:

Terms e ::= · · · | CAS(e1, e2, e3) | fork{e}
Evaluation Contexts K ::= · · · | CAS(e1, e2,K) | CAS(e1,K,v3) | CAS(K,v2,v3)

The operation CAS(e1, e2, e3) is a “compare-and-set” operation. It evaluates e1, e2, and e3
to a location ℓ, a value v , and a value w. Afterwards, it replaces the value at location ℓ

by the value w if it is currently v . The compare-and-set operation is a synchronization
primitive, which we can use to communicate between threads. We will come back to how
it enables synchronization below.

The operation fork{e} forks off a new thread executing e and immediately returns. For
example, after executing fork{e1} ; e2 the expressions e1 and e2 are executing in parallel.
The fork operation is analogous to, for example, spawn in C-like languages. We will see
how to derive the parallel connective e1 ∥ e2 from the fork primitive below.

Operational Semantics To handle concurrency, we extend the operational semantics by
several new rules and a new type of reduction:

h(ℓ) = v v comparable

(CAS(ℓ,v , w), h) ;b (true, h[ℓ 7→ w])

h(ℓ) ̸= v v comparable

(CAS(ℓ,v , w), h) ;b (false, h)

(e, h) ;b (e′, h′)

(K[e], h) ; (K[e′], h′, []) (K[fork{e}], h) ; (K[()], h, [e])

(e, h) ; (e′, h′, Tf )

(Tl ++[e] ++Tr, h) ;t (Tl ++[e′] ++Tr ++Tf , h
′)

We extend the base reduction (e, h) ;b (e, h′) by two rules for compare-and-set: if
the value in the heap and v are equal then we replace it and otherwise, the heap remains
untouched. The compare-and-set operation returns a boolean indicating whether it was
successful or not. The values that we want to compare with a compare and swap must be
comparable, meaning they are integers, booleans, locations, unit, or simple options.

Moreover, we extend the contextual reduction ;. Before, we just executed base reduc-
tions in an arbitrary evaluation context. Now, additionally, it becomes possible to fork off
new threads with fork{e}. To keep track of the forked off threads, the contextual seman-
tics (e, h) ; (e′, h′, T ) steps to a triple with the third component being a list of the newly
forked threads.

Finally, the thread pool reduction (T, h) ;t (T ′, h′) reduces an arbitrary expression
in the thread pool using the contextual semantics. As a consequence, the thread pool
reduction enables any interleaving between the threads, since it does not dictate an order
in which the threads have to be executed.

Synchronization and Communication From the perspective of someone who is used to
programming in concurrent languages, the above extension to our sequential language
may seem a bit strange: seemingly, there is no built-in way to share data (e.g., via a

148 Draft of February 14, 2022



lock or a channel). As it turns out, we do not need to include these (more user-friendly)
communication primitives, because we can derive them from our low-level “compare-and-
set” CAS(e1, e2, e3) operation. To illustrate this point, let us implement a “spin lock”:

mklock() := ref(false)

lock(l) := if CAS(l, false, true) then () else lock(l)

unlock(l) := l← false

We can create a spin lock with mklock, acquire a lock with lock and release it again with
unlock. Internally, the lock is just represented as a reference to a boolean such that the
reference is true while someone is holding the lock and false while the lock is available.
To acquire the lock, we “spin” on the location ℓ until it becomes false, so until the lock is
released. To release the lock, we simply set the location ℓ to false.

For the lock implementation to be correct, we need to know that it is not possible
for two threads to acquire the lock at the same time. That is where our synchronization
primitive CAS(e1, e2, e3) comes in: it checks whether the value stored at ℓ is currently false

and, in the same instruction, sets it to true so other lock attempts will not succeed. If
CAS(e1, e2, e3) was not a single instruction (i.e., if it would take more than one step to
execute), then we could end up in a similar situation as for the expression ecount where two
threads first read and then write a new value without coordination (or synchronization)
between them.

By taking the low-level route of including primitives such as compare-and-set instead
of high-level primitives such as locks, we work closer to the instructions that are offered by
modern processors. It also means we can verify the implementation of a spin lock or a ticket
lock. In fact, there exists an entire field dedicated to implementing data structures (not
just locks) directly using low-level synchronization primitives (for performance reasons)
known as fine-grained concurrency. By working directly with “compare-and-set” (or similar
primitives), we retain the option to verify fine-grained concurrent data structures while, at
the same time, not giving up the option to work with high-level synchronization primitives
(since we can derive them).

In the implementation of the spin lock, we use a form of “message passing” to commu-
nicate: one thread waits for another to send him a signal in the form of updating state.
We can use the same pattern to implement the parallel connective e1 ∥ e2:

e1 ∥ e2 := let r = new(false) in fork{e2 ; r← true} ; e1 ; await(r)
await(x) := if !x then () else await(x)

We create a reference r and fork off e2 as a new thread. We then use r to signal that the
new thread is finished and await the signal in the original thread (after executing e1). This
way, we can be sure that at the end of the execution in the first thread also the execution
of e2 is completed.

Exercise 131 An alternative to the paradigm of shared-memory and locking is message-
passing via so-called channels:

CHAN(A) := ∃α. {chan : 1→ α, send : A→ α→ 1, receive : α→ A}

A channel can be created with the operation chan. A value of type A can be exchanged
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over a channel via the methods send and receive. Both send and receive wait until the
other party (i.e., another thread) is ready and then transfer the value in a “hand shake”.

In this exercise, it is your task to implement channels. Make sure that if two threads
try to receive a value at the same time, but only one thread is ready to send, then only one
thread will receive the value while the other waits for another sender to arrive. Similarly,
make sure that if two threads try to send a value at the same time, but only one thread is
ready to receive, then only one thread will send the value while the other waits for another
receiver to arrive. •

10.2 A Concurrent Separation Logic

So now that we have concurrency in our language, how can we prove anything about
concurrent programs? As it turns out, separation logic is especially well equipped to
reason about concurrent programs, because we already have built-in, fine-grained control
over which data is shared (using invariants) and which data is exclusively owned (using
ordinary points-to assertions). To reason about concurrent programs, we extend our logic
with the following rules for our new primitives:

SucCAS
v1 comparable

ℓ 7→ v1 ∗ ▷(ℓ 7→ v2 −∗ Q(true)) ⊢ wp CAS(ℓ,v1,v2) {v . Q(v)}

FailCAS
v1 ̸= v3 v1 comparable

ℓ 7→ v3 ∗ ▷(ℓ 7→ v3 −∗ Q(false)) ⊢ wp CAS(ℓ,v1,v2) {v . Q(v)}

Fork
wp e { .True} ∗ ▷Q() ⊢ wp fork{e} {v . Q(v)}

Coq Mechanization In Coq, the CAS primitive is derived from the more general ex-
pression CmpXchg, which will not only return the result of the comparison, but also the
current value (as a pair of the value and a boolean). We will always use it in the CAS form
CAS(e1, e2, e3) := π2(CmpXchg(e1, e2, e3)). The tactics to manipulate it are wp_cmpxchg,
wp_cmpxchg_suc, and wp_cmpxchg_fail.

Invariants And that is it—well, almost. There is one more piece of our logic that has to
change to support concurrency.5 In a concurrent setting, the invariant opening rule In-
vOpen is no longer sound. In the presence of other threads, we can no longer assume the
expression e in a weakest precondition wp e {v . Q(v)} executes from e to a value v without
interruption and, hence, we can no longer keep invariants open for the entire execution.
Other threads may execute at arbitrary points during the execution of e. As a conse-
quence, we have to make sure that they cannot observe inconsistent states which violate

5Of course, in the model of the logic more than just the one rule changes. But in terms of the rules that
we have discussed so far, only a single rule needs to change to support concurrency.
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the invariant. To remain sound, we modify the invariant opening rule as follows:

InvOpen
P ∗ ▷R ⊢ wpE\N e {v . ▷R ∗Q(v)} N ⊆ E e atomic

P ∗ R N ⊢ wpE e {v . Q(v)}

We only allow opening invariants around atomic expressions e. An expression e is atomic
if it executes in a single step to a value. For example, the expressions CAS(ℓ,v , w), ℓ←v ,
and ! ℓ are all atomic. Since atomic expressions can, by definition, not be interrupted
(since they are a single, atomic step), we can open invariants around them and, if needed,
temporarily break them before we restore them immediately afterwards.

Example: Coin Flip Let us now see our new logic in action. For our first example, we
consider a coin flip6:

flip() = let r = new(0) in fork{r← 1} ; ! r

In a coin flip, we allocate a reference r storing 0 initially. We then fork off a new thread
which eventually will write 1 to r. Subsequently, we dereference r, leading to two possible
outcomes: if the forked-off thread has executed already, then the result will be 1, otherwise
it will be 0.

Lemma 116.

{True} flip()
{
v .v = 0 ∨v = 1

}
Proof.

Context: Goal:
wp flip()

{
v .v = 0 ∨v = 1

}
r 7→ 0 fork{r← 1} ; ! r
We allocate the invariant:

r 7→ 0 ∨ r 7→ 1
N

fork{r← 1} ; ! r
Using WpBind and Fork.

r 7→ 0 ∨ r 7→ 1
N

wp r← 1 { .True} ∗ wp ! r
{
v .v = 0 ∨v = 1

}
First Goal

r 7→ 0 ∨ r 7→ 1
N

wp r← 1 { .True}
Using InvOpen (and timelessness).
r 7→ 0 ∨ r 7→ 1 wp⊤\N r← 1

{
. r 7→ 0 ∨ r 7→ 1

}
Follows trivially with Store.
Second Goal

r 7→ 0 ∨ r 7→ 1
N

wp ! r
{
v .v = 0 ∨v = 1

}
Using InvOpen (and timelessness).
r 7→ 0 ∨ r 7→ 1 wp⊤\N ! r

{
v . (v = 0 ∨v = 1) ∗ (r 7→ 0 ∨ r 7→ 1)

}
Follows trivially with Load.

6Note that this is not a cryptographically secure technique for sampling random numbers.
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Example: Lock For our next example, we return to the spin lock example:

mklock() := ref(false)

lock(l) := if CAS(l, false, true) then () else lock(l)

unlock(l) := l← false

Typically, a lock is supposed to guard some exclusive piece of data (e.g., a reference to a
mutable list) which “becomes available” (i.e., we may access it) upon acquiring the lock
and has to be returned upon releasing the lock (i.e., we may no longer access it).

In Iris, we will specify a lock with the predicate lock(ℓ, P ), which means that ℓ is a
lock guarding the resource P (an Iris assertion). For this notion of a lock, we then want
to show the following specification witnessing the exchange of P between lock and unlock:

{P}mklock() {v . ∃ℓ.v = ℓ ∗ lock(ℓ, P )} {lock(ℓ, P )} lock(ℓ) { . P}

{lock(ℓ, P ) ∗ P} unlock(ℓ) { .True}

One can think of a lock lock(ℓ, P ) as an invariant P that is tied to program code. We
open it with lock and we, subsequently, close it again with unlock. While the lock is “open”,
we can freely use (and break) P , but at the time when we want to “close” it again, we have
to return (and restore) P . In fact, that is exactly how we define lock(ℓ, P ):

lock(ℓ, P ) := ℓ 7→ true ∨ (ℓ 7→ false ∗ P ) N

Given the definition of lock(ℓ, P ), the verification of the lock operations is straightfor-
ward. We show the case for lock.

Lemma 117.

{lock(ℓ, P )} lock(ℓ) { . P}
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Proof.

Context: Goal:
lock(ℓ, P ) wp lock(ℓ) { . P}
By Löb induction.
lock(ℓ, P ) ∗ ▷�wp lock(ℓ) { . P} wp lock(ℓ) { . P}
Executing for one step.
lock(ℓ, P ) ∗�wp lock(ℓ) { . P} if CAS(ℓ, false, true) then () else lock(ℓ)

By binding on CAS.
lock(ℓ, P ) ∗�wp lock(ℓ) { . P}

wp CAS(ℓ, false, true) {v .wp ifv then () else lock(ℓ) { . P}}
By opening the invariant.
(ℓ 7→ true ∨ ℓ 7→ false ∗ ▷P ) ∗�wp lock(ℓ) { . P}

wp CAS(ℓ, false, true) {v . (ℓ 7→ true ∨ ℓ 7→ false ∗ P ) ∗ wp ifv then () else lock(ℓ) { . P}}
Case ℓ 7→ true.

By FailCAS.
ℓ 7→ true ∗�wp lock(ℓ) { . P}

(ℓ 7→ true ∨ ℓ 7→ false ∗ ▷P ) ∗ wp if false then () else lock(ℓ) { . P}
�wp lock(ℓ) { . P} wp if false then () else lock(ℓ) { . P}
Which is trivial.
Case ℓ 7→ false ∗ ▷P.
By SucCAS.
ℓ 7→ true ∗ P ∗�wp lock(ℓ) { . P}

(ℓ 7→ true ∨ ℓ 7→ false ∗ ▷P ) ∗ wp if true then () else lock(ℓ) { . P}
P ∗�wp lock(ℓ) { . P} wp if true then () else lock(ℓ) { . P}
Which is trivial.

Exercise 132 To simplify working with locks, we define the following syntactic sugar:

with(l) { e } := lock(l) ; let x := e in unlock(l) ; x

Verify the following specification:

(P −∗ wp e {v . P ∗Q(v)}) ∗ lock(ℓ, P ) ⊢ wp with(ℓ) { e } {v . Q(v)} •

Exercise 133 In the specification of the spin lock, there is nothing that prevents us from
releasing a lock twice if P is not exclusive (which it typically will be). We can enforce that
the lock is released only once by incorporating an exclusive token locked(γ) := ex()

γ :

{P}mklock() {v . ∃ℓ, γ.v = ℓ ∗ lockγ(ℓ, P )} {lockγ(ℓ, P )} lock(ℓ) { . locked(γ) ∗ P}

{lockγ(ℓ, P ) ∗ locked(γ) ∗ P} unlock(ℓ) { .True}

Define lockγ(ℓ, P ) and prove the above rules. Moreover, show that:

{locked(γ) ∗ lockγ(ℓ, P )} assert (!ℓ == true) { .True}
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Hint: It is possible to reuse the specification of the lock operations for this exercise,
so you do not have to duplicate their proofs. •

Exercise 134 With our lock, we can define a mutex that gives mutually exclusive access
to a memory cell:

mkmutex(x) := (mklock(), new(x))

acquire(m) := lock(π1(m)) ; (π2(m), λ . unlock(π1(m)))

The idea here is that acquiring a mutex hands out a reference to the memory protected by
it, as well as an abstraction to release it again.

Prove the following specification, for a suitably defined predicate mutex:

{P (x)}mkmutex(x) {m.mutex(m,P )}

{mutex(m,P )} acquire(m) {(ℓ, r). ℓ 7→: P ∗ {ℓ 7→: P} r() { .True}}

where ℓ 7→: P := ∃v . ℓ 7→ v ∗ P v . •

Exercise 135 The spin lock implementation uses a form of signaling to share the owner-
ship of P between multiple threads. A similar strategy works also for the parallel connective
e1 ∥ e2. Prove the following specification for the parallel connective e1 ∥ e2:

Parallel
wp e1 { . Q1} ∗ wp e2 { . Q2} ⊢ wp e1 ∥ e2 { . Q1 ∗Q2}

Hint: You need an invariant with three states: an initial state, a state where e2
has finished executing, and a final state where the main thread has acknowledged the
termination of e2. •

Example: Parallel Counter Let us now return to the parallel increment counter from
the motivating example ecount. We are going to discuss a slightly modified version of the
example, which returns the value of r in the end and which protects the accesses of r by
a lock:

e′count := let r = new(0) in let l = mklock() in (inc(l, r) ∥ inc(l, r)) ; with(l) { ! r }
inc(l, r) := with(l) { r← ! r + 1 }

In this example, we can for the first time see the true strength of using separation
logic for reasoning about concurrent programs. There are infinitely many interleavings of
the expression e′count differing on when which thread will acquire and release the lock l

(and which thread increments first). However, there are no interesting differences in these
interleavings and, hence, we can summarize the behavior of e′count concisely in a single
specification:

{True} e′count
{
v .v = 2

}
The specification completely hides all of the implementation details of e′count that are
irrelevant for external observers (including the fact that a new thread is spawned and that
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references are allocated).

Lemma 118.

{True} e′count
{
v .v = 2

}
Proof Sketch. For the lock l, we use use the following resource:

P := ∃n1, n2 : N. r 7→ n1 + n2 ∗ γ1
1/2
↪→ n1 ∗ γ2

1/2
↪→ n2

Here, the ghost variable γi
q
↪→ ni (from the resource algebra (((0, 1],+),Ag(N))) denote the

contributions of each thread i to the value of r. For each thread i, we keep one half of the

ghost variable guarded by the lock (i.e., γi
1/2
↪→ ni) and give the other half to the thread i.

After joining both threads, we own γ1
1/2
↪→ 1 and γ2

1/2
↪→ 1 and can, hence, show that ! r

will result in 2.

Exercise 136 Prove {True} e′count
{
v .v = 2

}
by extending the proof sketch with rigorous

detail. •

10.3 A Concurrent Logical Relation

The most remarkable thing about updating our logical relation from Section 7 to concur-
rency is that there is nothing remarkable at all. The definitions of the type interpretations
VJAKδ, EJAKδ, and GJAKδ stay exactly the same—except for the fact that we use the con-
current weakest precondition, of course. And, without trouble, we can reprove the semantic
soundness theorem:

Theorem 119 (Semantic Soundness). If ∆ ; Γ ⊢ e : A, then ∆ ; Γ ⊨ e : A.

Proof. In the cases for references, we can only open the invariant for atomic expressions,
but the expressions in our type system are atomic, so the proof carries over unchanged. We
leave the new cases for our concurrency primitives as an exercise (see Exercise 137).

Exercise 137 Prove the following compatibility lemmas for the new connectives:

∆ ; Γ ⊨ e : 1

∆ ; Γ ⊨ fork{e} : 1

∆ ; Γ ⊨ e1 : ref A ∆ ; Γ ⊨ e2 : A ∆ ; Γ ⊨ e3 : A A comparable

∆ ; Γ ⊨ CAS(e1, e2, e3) : bool

Note that in the typing rule for CAS, we need to make sure that values of type A are
comparable to make sure the compare-and-set does not get stuck. Comparable types are
integers, booleans, unit, references (to arbitrary types), and sums of simple types. •

More interesting than the changes to the logical relation are the implications for our
semantic typing proofs. Not every data type that we have discussed so far is semantically
well-typed in the presence of concurrency. The reason is that for some semantic safety
proofs (e.g., for the Symbol ADT), we relied on opening invariants for multiple steps of

155 Draft of February 14, 2022



computation. Since, in the presence of concurrency, we can keep invariants only open for
a single step, these proofs break down. And that is for a good reason: if we think of, for
example, the Symbol ADT, then concurrent executions of the mkSym function can cause
the creation of symbols that are below the counter value. (We leave it as a thought exercise
to think of a concrete example.)

Fortunately, even in a concurrent setting, we can recover the proofs for our data struc-
tures and verify some interesting new ones. One central aspect here is that, if we want, we
can get back to sequential reasoning by using locks. That is, if a data structure is properly
locked, then after acquiring the lock, we are the only ones in the critical section and can
hence rely on sequential reasoning. So let us now turn to interesting examples of data
structures that we can verify in the presence of concurrency.

Example: Locked Data Structure We start with a simple, locked data structure: a
redundant counter. In a redundant counter, we have two references which both store the
value of the counter:

COUNTER := ∃α. {counter : 1→ α, get : α→ int, inc : α→ 1}
Counter := pack{ counter() := (new(0), new(0),mklock()),

get(c1, c2, l) := with(l) { assert (! c1 == ! c2) ; ! c1 }
inc(c1, c2, l) := with(l) { c1← ! c2 + 1 ; c2← ! c1 }}

Lemma 120.

∅ ; ∅ ⊨ Counter : COUNTER

Proof Sketch. We allocate the two counter references and store them in the lock as:

P := ∃n : N. c1 7→ n ∗ c2 7→ n

The rest is straightforward using the specification of the lock.

Exercise 138 Modify the Symbol ADT to use locks around its operations. Prove that,
with locks, it is again semantically well-typed. •

Example: Channels For our next example, we look at channels again—this time with an
implementation and a type system:

CHAN(A) := ∃α. {chan : 1→ α, send : A× α→ 1, receive : α→ A}
Chan := pack{chan = chan, send = send, receive = receive}
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where the operations on channels as follows:

chan() := (mklock(),mklock(), new(None)),

send((s, r, c), a) := with(s)


assert (!c = None);

c← Some(a);

await{!c = None}


receive(s, r, c) := with(r)


await{!c ̸= None};
let a = unwrap(!c) in

c← None;

a


unwrap(o) := match o with None⇒ assert (false) | Some(k)⇒ k end

await{e} := await(λ . e)

await(f) := if f() then () else await(f)

A channel consists of two locks s and r and a reference c: the lock s is for the sender,
the lock r for the receiver, and the reference c is for the exchange of the value. The sender
will acquire the sender lock, send the value over the channel (by writing to c), and then
wait to a receiver to take it our of the channel before returning. The receiver will acquire
the receiver lock, wait for a value to appear on the channel (by reading c), and then take
it out of the channel (signaling the sender the exchange is finished) and return the value.

Lemma 121.

∅ ; ∅ ⊨ Chan : CHAN

As usual, our goal is to prove that our channel implementation is semantically well-
typed (in Lemma 121). The proof is somewhat involved, yet it does not require any
new machinery. In the following, we will sketch the high-level idea of the proof and leave
completing the proof as an exercise (see Exercise 139). Let us begin by collecting a number
of observations about the channel implementation and their consequences for our proof:

a) The sender and the receiver use different locks while working on the same underlying
data. As a consequence, a sender can exclude other senders from operating concurrently
on the channel data, but it will not—and should not—exclude a concurrent receiver
from operating on the data. In fact, it would be plain wrong to exclude the receiver,
since the sender cannot make progress without a corresponding receiver.

As a consequence, we cannot store the ownership of c in either the sender or the receiver
lock—the other party will always need access to c even without holding both locks. We
will, thus, set up an additional invariant to control ownership of c (despite the locks r
and s that can be used to share ownership).

b) The reference c serves two purposes: First, it carries over the data from the sending
thread to the receiving thread. Second, it functions as a two-way signal : the sender
uses the reference c to signal the receiver that there is a new value (which the receiver
eagerly awaits) and the receiver uses the reference c to signal the sender that it has
received the new value (which the sender eagerly awaits). It is instrumental that there
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is a clear order who may mutate c at any given point to ensure that the sender and the
receiver do not step on each others feet.

Implementing the mere data exchange from sender to receiver is simple: we set up an
invariant which contains ownership of c such that c is either None, or c is Some(a)

such that a is semantically of type A (written a ∈ τA below). The difficult bit are the
transitions between the two states. For example, consider how the value of c changes
from the perspective of the receiver: Initially, c might store None and the receiver starts
spinning. Eventually, c will change to Some(a) and the receiver exists the loop. But
now the receiver reads c again and expects it to be unchanged, meaning it must still
point to Some(a)—no other thread may have interfered in the meantime. Finally, the
receiver mutates c by updating it None, meaning c will not always stay Some(a), which
rules out monotonicity arguments such as the one-shot example.

Ultimately, we want to enforce the transition system:

c 7→ None c 7→ Some(a)

sender

receiver

where only the sender can go from None to Some(a) and only the receiver can go from
Some(a) to None. Moreover, the sender always starts and ends in the state c 7→ None,
while the receiver can start (and end) in any of the two states.

To encode the state transition system with restrictions on the possible transitions, we
use ghost state. Concretely, we use four tokens •s, •s, •r, and •r, each a separate instance
of the Ex(1) algebra. Each token is exclusive (meaning, for example, •s ∗ •s ⊢ False) and
we can easily allocate them in our proof. We distribute the tokens as follows:

Ps := •s
Pr := •r
Ic := (•s ∗ •r ∗ c 7→ None)

∨(•s ∗ •r ∗ ∃a. c 7→ Some(a) ∗ a ∈ τA)
∨(•s ∗ •r ∗ ∃a. c 7→ Some(a) ∗ a ∈ τA)
∨(•s ∗ •r ∗ c 7→ None)

The proposition Ps is the resource that is guarded by the sender lock—the sender
token •s. The proposition Pr is the resource that is guarded by the receiver lock—the
receiver token •r. The invariant Ic is the invariant that we allocate in the proof. It has
four separate state and five transitions:

1. Initially, we are in the first state •s ∗ •r ∗ c 7→ None, where the receiver token •r, the
sender token •s, and the ownership of c (which initially points to None) are stored in
the invariant.

2. From the initial state, the sender can use its token (guarded by the lock) •s to transition
to the second state: •s ∗ •r ∗ ∃a. c 7→ Some(a) ∗ a ∈ τA. Note that this transition is
impossible for the receiver, since it does not own the token •s, which is required to
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transition to a Some(a) state. In fact, while the sender owns •s, the value of c must
always be None, since the initial state is the only compatible state.

3. After the reference has been updated by the source, the receiver can transition to the
next state: •s ∗ •r ∗ ∃a. c 7→ Some(a) ∗ a ∈ τA. This transition is impossible for the
sender, since it does not have the token •r required for this transition. Moreover, by
taking this transition, the receiver can ensure that no-one will move from Some(a) to
None while it closes the invariant again—until •r is replaced by •r, the sender cannot
do any state transitions.

4. Subsequently, when the receiver sets the value of c to None, we transition to the fourth
state: •s ∗ •r ∗ c 7→ None and, in the process, we swap •r for •r. Since the receiver gets
out •r, it can close its own lock successfully.

5. Finally, the sender is enabled again and it can, after waiting for None to appear in c,
replace •s with •s in the invariant again, returning to the initial state •s∗•r ∗c 7→ None.
By taking out •s, the sender gets back the token that is required for its own lock.

Exercise 139 Prove Lemma 121. •
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