
Introduction Compilability Example Proofs The Zoo Conclusion References

AI Planning
17. Comparing Heuristic Functions

hfoo vs. hbar: What’s the Difference Anyway?

Jörg Hoffmann

Winter Term 2019/2020

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 1/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Agenda

1 Introduction

2 The Compilability Framework

3 Example Proofs

4 A Walk Through the Zoo [for Reference]

5 Conclusion

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 2/41

Introduction Compilability Example Proofs The Zoo Conclusion References

“The Zoo”

All the wild (and admissible) animals we’ve learned about:

h1, h2, h3, . . . : Critical path heuristics. hm allows to break up conjunctive
goals into their size-m subgoals.

h+: Optimal delete relaxation heuristic. Estimates remaining cost for s by
the cost of a cheapest plan for s in the delete-relaxed task.

hmax: The max heuristic. hmax allows to break up conjunctive goals into
their size-1 subgoals.

{hα}: Abstraction heuristics, parameterized by abstraction mapping α.
Estimate remaining cost for s by the remaining cost of α(s) within the
abstract state space Θα. Classes of α we looked at are pattern databases
(PDB) and merge-and-shrink abstractions (M&S).

{hLML }: Elementary landmark heuristics, parameterized by action set L.
Estimate remaining cost for s by the cost of the cheapest action in L if L
is a disjunctive action landmark for s, and by 0 otherwise.

Elementary delete relaxation landmark heuristics {hLML+}: Cost of cheapest
action in L+ if L+ is a delete relaxation landmark; 0 otherwise.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 4/41

Introduction Compilability Example Proofs The Zoo Conclusion References

What Do We Know About “The Zoo”?

Ignoring Deletes

hmax ≤
h+

Abstractions

PDB �iu
M&S

Critical Paths

h1 ≤
h2 ≤
h3 ≤
. . .

Landmarks

hLML+

hLML

?

?

hmax = h1 ?

?

?

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 5/41

Introduction Compilability Example Proofs The Zoo Conclusion References

What Do We Want to Know About “The Zoo”?

It’s a big zoo: h1, h2, h3, . . . , h+, hmax, {hα | α PDB},
{hα | α M&S}, {hLML }, {hLML+}.

Given any one planning task, which one should we use? Are perhaps
some heuristics dominated by others?

Are all these differences meaningful anyway? Or can we “simulate”
some framework using another framework?

Restriction: We consider admissible heuristics only.

Of lower bounds h and h′, the bigger one is better.

There is no similarly clear method to decide which one of two
inadmissible heuristics (i.e., heuristics that are neither lower- nor
upper-bounding) is “better”.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 6/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Our Agenda for This Chapter

2 The Compilability Framework: We introduce, and discuss in
detail, what it means for one family of heuristics to be able to
“simulate” another family of heuristics.

3 Example Proofs: We give some concrete compilability and
uncompilability proofs between particular families of heuristics as
introduced in the previous chapters.
In particular, we detail the aforementioned LM-cut heuristic, which
was originally conceived as part of such a proof argument.

4 A Walk Through the Zoo [for Reference]: We briefly summarize
the entire set of compilability results known about our “Zoo” of
admissible heuristics, at this time.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 7/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Domination Between Heuristics

→ The only traditional means of comparing heuristic functions is by
dominance:

Reminder: → Chapter 7

Definition (Domination). Let Π be a planning task, and let h and h′

be admissible heuristics for Π. We say that h′ dominates h if h ≤ h′, i.e.,
for all states s in Π we have h(s) ≤ h′(s).

→ This is a very limited framework because it only allows us to compare
single heuristics, as opposed to classes of heuristics. See next slide.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 9/41

Introduction Compilability Example Proofs The Zoo Conclusion References

What About “The Zoo”?

(Red: Conclusions from standard “domination” concept.)

Ignoring Deletes

hmax≤
h+

Abstractions

PDB

M&S

Critical Paths

h1≤
h2≤
h3≤
. . .

Landmarks

hLML+

hLML

?

?

hmax = h1 ?

?

?

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 10/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Domination Between Classes of Heuristics?

→ To compare classes of heuristics, which question should we ask?

(A) For every h ∈ H, do all h′ ∈ H ′ dominate h?

→ In “The Zoo”: Not useful because we’ll in most cases be able to
choose a trivial h′ ∈ H ′. For example, (A) does not hold for
H =PDB and H ′=M&S because we can choose h′ as a single-state
abstraction.

(B) For every h ∈ H, does there exist h′ ∈ H ′ that dominates h?

→ In “The Zoo”: Not that bad. Captures relation between PDB
and M&S. Some inter-family relations are also identifiable this way.

(C) For every partitioned sum
∑n

i=1 hi[ci](s) of hi ∈ H, does there

exist a partitioned sum
∑k

j=1 h
′
j [c
′
j](s) of h′j ∈ H ′ where∑n

i=1 hi[ci] ≤
∑k

j=1 h
′
j [c
′
j](s)?

→ Additivity is a key feature of many heuristic function families.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 11/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Some Simple Terminology

Start/finish: We will be considering compilations from a “start class” H
into a “finish class” H ′.

Reminder: → Chapter 16

h[ci] is h computed on Π with cost function replaced by ci.

Closedness:

A class H of heuristics is closed if h ∈ H implies h[ci] ∈ H for any
cost function ci.

All of our families (Critical Paths, PDB, etc.) are closed: All our
heuristics can be applied to any cost function.

We consider only closed H for the rest of this Chapter, allowing us
to do cost partitioning within classes of heuristics.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 12/41

Introduction Compilability Example Proofs The Zoo Conclusion References

The Compilability Framework

Definition (Compilability Between Heuristics). Let H and H ′ be closed
classes of admissible heuristic functions. We say that H can be compiled into
H ′, written H � H ′, if there exists an algorithm with:
(i) Input: Task Π, state s, heuristic h ∈ H for Π.
(ii) Output: Heuristics h′1, . . . , h

′
k ∈ H ′ for Π, and cost partitioning c′1, . . . , c

′
k

for Π, such that h(s) ≤
∑k
i=1 h

′
i[c
′
i](s).

[≤ h∗(s): partitioned sum admissible, cf. Chapter 16]
(iii) Runtime: Polynomial in the size of the input.

If we can fix k = 1, we say that H can be compiled into individual H ′, and
write �i. If we can fix h′1, . . . , h

′
k and c′1, . . . , c

′
k for all states s in Π, we say

that H can be universally compiled into H ′, and write �u.

→ H can be compiled into H ′ if, given a state s and h ∈ H, we can efficiently
obtain an at least as good lower bound for s by a partitioned sum of h′i ∈ H ′.
→ If we need only one h′, then the compilation is individual. If we can fix one
combination of h′ for all states of Π, then the compilation is universal.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 13/41

Introduction Compilability Example Proofs The Zoo Conclusion References

“Heuristic h” as an Algorithm Input/Output?

“Data Structure h”: We overload h to denote (a) the heuristic
function itself as usual, and (b) a data structure allowing to compute h
in time polynomial in the size of that structure.

For abstraction heuristics with abstraction mapping α, the data
structure is the abstract state space Θα.

For hm, the data structure is the task Π and the set of all m-tuples
of facts.

For hLML+ , the data structure is the task Π and the action set L+.

For h∗ and hLML , the data structure is the state space, for h+ it is
the state space of the delete-relaxed problem.
→ Exponentially large in ‖Π‖ as these h are hard to compute.

→ Computational efficiency is important when examining how to compile
heuristics into each other. Our compilation framework inputs, and
outputs, representations allowing to compute h efficiently.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 14/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Questionnaire

Question!

Say H = {h∗}. Does there exist a family H ′ of heuristic functions
into which H can be compiled?

(A): Yes (B): No

→ Yes, for example H ′ := {h∗}. Note that this is computable in time polynomial in
the size of the input which contains h∗ (cf. previous slide).

→ H can be compiled into H ′ only if either (1) the heuristics h′i ∈ H ′ cannot be
computed in time polynomial in ‖Π‖, or (2) the number k of such heuristics produced
is not polynomial in ‖Π‖. Otherwise, we could compute h∗ in time polynomial in ‖Π‖.

Namely, if {h∗} were compilable into a family H ′ of heuristic functions, with both (1)
and (2) being false, then for any task Π and state s we could efficiently find h′i ∈ H ′,
and a cost partitioning c′i, such that h∗(s) ≤

∑k
i=1 h

′
i[c
′
i](s). By admissibility, we also

have
∑k

i=1 h
′
i[c
′
i](s) ≤ h∗(s), hence h∗(s) =

∑k
i=1 h

′
i[c
′
i](s). So we could then

compute h∗(s) in polynomial time, and in consequence in particular decide plan
existence in polynomial time, getting P=PSPACE (and thus in particular P=NP).

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 15/41

Introduction Compilability Example Proofs The Zoo Conclusion References

The Compilability Framework: Remarks

→ H can be compiled into H ′ if, given a state s and h ∈ H, we can efficiently
obtain an at least as good lower bound for s by a partitioned sum of h′i ∈ H ′.
→ If we need only one h′, then the compilation is individual. If we can fix one
combination of h′ for all states of Π, then the compilation is universal.

The per-state compilation is needed because good cost partitionings are
state-dependent (cf. Chapter 16).

“Efficient” means that we can find the “structure h′i” in polynomial time.
Without this restriction, the compilation would be useless (e.g., everything
could be compiled into h∗).

The special case �iu is (B) on slide 11. Examples:

PDB �iu M&S: Given a PDB heuristic h, we can in time polynomial in the
PDB’s size construct an M&S heuristic h′ dominating h (cf. Chapter 13).

We do not have hLML+ �iu hLML : Because “data structure hLML+” has size
polynomial in ‖Π‖ while “data structure hLML ” has size exponential in ‖Π‖.
(In other words: hLML+ but not hLML can be computed in polynomial time.)

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 16/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Compiling Combinations of h ∈ H

Theorem. Let H and H ′ be closed classes of admissible heuristic functions,
where H � H ′. Then there exists an algorithm with:

(i) Input: Task Π, state s, h1, . . . , hn ∈ H, cost partitioning c1, . . . , cn.

(ii) Output: Heuristics h′1, . . . , h
′
k ∈ H ′ for Π, and cost partitioning

c′1, . . . , c
′
k, such that

∑n
i=1 hi[ci](s) ≤

∑k
j=1 h

′
j [c
′
j](s).

(iii) Runtime: Polynomial in the size of the input.

Proof. Notation Π with cost function ci by Π[ci]. Because H is closed,
hi[ci] ∈ H, so with H � H ′ we efficiently get heuristics h′i,1, . . . , h

′
i,ki
∈ H ′ for

Π[ci], and a cost partitioning c′i,1, . . . , c
′
i,ki

for Π[ci], so that

hi[ci](s) ≤
∑ki
l=1 h

′
i,l[c
′
i,l](s). We set h′1, . . . , h

′
k := h′1,1, . . . , h

′
n,kn

and
c′1, . . . , c

′
k := c′1,1, . . . , c

′
n,kn

.

By construction,
∑n
i=1 hi[ci](s) ≤

∑k
j=1 h

′
j [c
′
j](s). It remains to show that

c′1, . . . , c
′
k is a cost partitioning for Π. To see this, observe that∑ki

l=1 c
′
i,l(a) ≤ ci(a) for all i because c′i,1, . . . , c

′
i,ki

is a cost partitioning for

Π[ci]; and
∑n
i=1 ci(a) ≤ c(a) because c1, . . . , cn is a cost partitioning for Π.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 17/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Transitivity and Reflexivity

Corollary (Compilability is Transitive). Let H, H ′, and H ′′ be closed classes
of admissible heuristic functions, where H � H ′ and H ′ � H ′′. Then H � H ′′.
Proof. Need: Efficient algorithm taking Π, s, and h ∈ H, and delivering
h′′1 , . . . , h

′′
k ∈ H ′′ and cost partitioning c′′1 , . . . , c

′′
k with h(s) ≤

∑k
j=1 h

′′
j [c′′j](s).

Since H � H ′, we get h′1, . . . , h
′
n ∈ H ′ and a cost partitioning c′1, . . . , c

′
n ∈ H ′

with h(s) ≤
∑n
i=1 h

′
i[ci](s). Since H ′ � H ′′, by the theorem on the previous

slide we get h′′1 , . . . , h
′′
k ∈ H ′′ and cost partitioning c′′1 , . . . , c

′′
k with∑n

i=1 h
′
i[ci](s) ≤

∑k
j=1 h

′′
j [c′′j](s), which is what we needed.

Proposition (Compilability is Reflexive). Let H be a closed class of
admissible heuristic functions. Then H � H.

Proof. Simply set k := 1, h′1 := h and c′1 := c.

→ We can think of “�” like “≤ for classes of heuristics”.

Notation: If H � H ′ and H ′ � H, we write H ≡ H ′.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 18/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Questionnaire

Question!

Consider STRIPS planning, and H = {h+}. Does there exist a
family H ′ of heuristic functions into which H can be compiled?

(A): Yes (B): No

→ Yes, but same (1) and (2) as on slide 15. Otherwise, we could compute h+ in time
polynomial in ‖Π‖, because on STRIPS tasks without delete lists we have h+ = h∗.

Namely, if {h+} were compilable into a family H ′ of heuristic functions, with both (1)
and (2) being false, then for any STRIPS task Π+ with empty delete lists, and any
state s, we could efficiently find h′i ∈ H ′, and a cost partitioning c′i, such that
h+(s) ≤

∑k
i=1 h

′
i[c
′
i](s) ≤ h∗(s). Because Π+ has empty delete lists, we have

h+(s) = h∗(s). So we would get h+(s) =
∑k

i=1 h
′
i[c
′
i](s) and could compute h+(s) in

polynomial time, implying that P=NP.

Note: We restrict to STRIPS here only to make the question easier to answer.
Delete-free STRIPS planning can be simulated in FDR, so the same result holds there.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 19/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Before We Begin

In what follows, we’ll look at a few example compilability and
uncompilability proofs.

I’ve basically selected some simple examples for illustration, and one
example because it is interesting and important in practice.

All these examples are from [Helmert and Domshlak (2009)].

We’ll ignore from now on the heuristics that cannot be computed in
time polynomial in ‖Π‖: h+ and hLML .

By definition, no h can be compiled into such heuristics, unless h
itself already uses an exponentially large “data structure h”.

As for compiling such heuristics into other h, cf. slide 15 and
slide 19.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 21/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Learning Things About “The Zoo”, Part I

Ignoring Deletes

hmax ≤
(h+)

Abstractions

PDB �iu
M&S

Critical Paths

h1 ≤
h2 ≤
h3 ≤
. . .

Landmarks

hLML+

(hLML)

?

?

hmax = h1 ?

?

?

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 22/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Example Proof: hLM
L+ to PDB

Theorem (hLM
L+ 6�PDB). Let H be the family of elementary delete

relaxation landmark heuristics hLML+ , and let H ′ be the family of
abstraction heuristics hα where α is a projection. Then H 6� H ′.

Proof. Consider the unit-cost STRIPS planning task family
Πn = (Pn, An, c, I,G) where Pn = {q1, . . . , qn, g}, I = ∅, G = {g}, and
An = {setupi, goal i | 1 ≤ i ≤ n} where setupi adds qi with an empty
precondition at cost 1, and goal i adds g with precondition qi at cost 0.
Let L+ := {setupi | 1 ≤ i ≤ n}.
L+ is a delete relaxation landmark for I, and hLML+(I) = 1. However, for
any h′ = πV ′ where V ′ 6= V , we have h′(I) = 0.

For construction in time polynomial in ‖Π‖ (and thus in the
representation of hLML+), the size of ΘπV ′ must be polynomial in n, thus

V ′ 6= V for large n. Hence
∑k

i=1 h
′
i(s) = 0 for any efficiently

constructible h′1, . . . , h
′
k ∈ H ′.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 23/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Example Proof: hLM
L+ to M&S

Theorem (hLM
L+ �iM&S). Let H be the family of elementary delete

relaxation landmark heuristics hLML+ , and let H ′ be the family of
abstraction heuristics hα where α is constructed by merge-and-shrink
abstraction. Then H �i H ′.
Proof Sketch. Assume a planning task Π with cost function c, a state s, and a
delete relaxation landmark L+ for s. We construct a merge-and-shrink
abstraction α so that hα(s) ≥ hLML+(s), as follows.

We first compute the set F− of all facts that can be reached from s under the
delete relaxation when not using any action from L+.

Then we run merge-and-shrink, aggregating states so that we obtain α with an
image of just two abstract states, p− and p+, and

α(s) =

{
p− s ⊆ F−
p+ s 6⊆ F−

Since L+ is a delete relaxation LM for s, all goal states s are mapped to p+.
But I is mapped to p−. All abstract transitions from p− to p+ must use an
action from L+. Hence hα(s) ≥ mina∈L+ c(a) = hLML+(s) as desired.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 24/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Learning Things About “The Zoo”, Part II

Ignoring Deletes

hmax ≤
(h+)

Abstractions

PDB �iu
M&S

Critical Paths

h1 ≤
h2 ≤
h3 ≤
. . .

Landmarks

hLML+

(hLML)

?

?

hmax = h1
hLML+ 6�PDB

hLML+ �iM&S

?

?

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 25/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Example Proof: hLM
L+ to h1

Theorem (hLM
L+ �iu h1). Let H be the family of elementary delete

relaxation landmark heuristics hLML+ , and let H ′ = {h1} be the family that
contains only h1. Then H �iu H ′.

Proof. Assume a planning task Π with action set A and cost function c,
and L+ ⊆ A. We show that, for all states s, hLML+(s) ≤ h1(s). Let s be
any state. If L+ is not a delete relaxation landmark for s, then
hLML+(s) = 0 and trivially hLML+(s) ≤ h1(s). Similar if h1(s) =∞. Assume
that neither is the case.

Because L+ is a delete relaxation landmark for s, there exists no relaxed
plan for s using actions A \ L+. As h1 returns ∞ iff no relaxed plan
exists (cf. Chapter 9), h1(s) returns ∞ when not allowing to use any
action from L+. But h1(s) 6=∞, so the critical path for h1(s) must
make use of at least one of the actions in L+. Hence
h1(s) ≥ mina∈L+ c(a) = hLML+(s) as desired.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 26/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Learning Things About “The Zoo”, Part III

Ignoring Deletes

hmax ≤
(h+)

Abstractions

PDB �iu
M&S

Critical Paths

h1 ≤
h2 ≤
h3 ≤
. . .

Landmarks

hLML+

(hLML)

?

?

hmax = h1
hLML+ 6�PDB

hLML+ �iM&S

?

h1 �iu hLML+

?

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 27/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Example Proof: h1 to hLM
L+

Theorem (h1 � hLM
L+). Let H = {h1} be the family that contains only

h1, and let H ′ be the family of elementary delete relaxation landmark
heuristics hLML+ . Then H � H ′.

Proof. LM-cut!

Reminder: (Rough Intuition!) → Chapter 15

Get L as a cut between the initial state and the “0-cost goal zone”;
reduce the cost of each action in L by mina∈L c(a); iterate.

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 28/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Example Proof: h1 to hLM
L+

Theorem (h1 � hLM
L+). Let H = {h1} be the family that contains only

h1, and let H ′ be the family of elementary delete relaxation landmark
heuristics hLML+ . Then H � H ′.

Proof. LM-cut!

Reminder: (Rough Intuition!) → Chapter 15

Get L as a cut between the initial state and the “0-cost goal zone”;
reduce the cost of each action in L by mina∈L c(a); iterate.

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 28/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Example Proof: h1 to hLM
L+

Theorem (h1 � hLM
L+). Let H = {h1} be the family that contains only

h1, and let H ′ be the family of elementary delete relaxation landmark
heuristics hLML+ . Then H � H ′.

Proof. LM-cut!

Reminder: (Rough Intuition!) → Chapter 15

Get L as a cut between the initial state and the “0-cost goal zone”;
reduce the cost of each action in L by mina∈L c(a); iterate.

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 28/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Example Proof: h1 to hLM
L+

Theorem (h1 � hLM
L+). Let H = {h1} be the family that contains only

h1, and let H ′ be the family of elementary delete relaxation landmark
heuristics hLML+ . Then H � H ′.

Proof. LM-cut!

Reminder: (Rough Intuition!) → Chapter 15

Get L as a cut between the initial state and the “0-cost goal zone”;
reduce the cost of each action in L by mina∈L c(a); iterate.

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 28/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Example Proof: h1 to hLM
L+

Theorem (h1 � hLM
L+). Let H = {h1} be the family that contains only

h1, and let H ′ be the family of elementary delete relaxation landmark
heuristics hLML+ . Then H � H ′.

Proof. LM-cut!

Reminder: (Rough Intuition!) → Chapter 15

Get L as a cut between the initial state and the “0-cost goal zone”;
reduce the cost of each action in L by mina∈L c(a); iterate.

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 28/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Example Proof: h1 to hLM
L+

Theorem (h1 � hLM
L+). Let H = {h1} be the family that contains only

h1, and let H ′ be the family of elementary delete relaxation landmark
heuristics hLML+ . Then H � H ′.

Proof. LM-cut!

Reminder: (Rough Intuition!) → Chapter 15

Get L as a cut between the initial state and the “0-cost goal zone”;
reduce the cost of each action in L by mina∈L c(a); iterate.

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 28/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm in Detail

Assume: I = {i}; G = {g}; for all a we have |prea| ≥ 1. (Without loss of
generality: this can be achieved with simple transformations.)

Assume: h1(s) 6=∞; else, return L+
1 = ∅, so that hLM

L+
1

=∞ (cf. Chapter 15).

Input: Planning task Π, state s.
Output: Delete relaxation landmarks L+

i for s along with a cost partitioning ci.

i := 1
loop do

Compute h1[c](s); if h1[c](s) = 0 then stop
For each a, select pa ∈ prea with maximal h1(s, {p})
Build a graph L whose nodes are the facts, and

with a labeled arc pa
a−→ q whenever q ∈ eff a

L+
i := the labels of a cut in L between i and

the part of L from which g can be reached with 0 cost
ci(a) := min

a∈L+
i
c(a) for the actions in L+

i , and ci(a) := 0 elsewhere

For a ∈ L+
i , subtract min

a∈L+
i
c(a) from c(a)

i := i + 1

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 29/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm: Detailed Example

Facts i, g, A,B,C.

I = {i}; G = {g}.
Actions (unit cost):

carA pre i eff A;

carB pre i eff B;

carC pre i eff C;
combineF ilms pre A,B,C eff g.

i (0)

A (1) B (1) C (1)

g (2)

Compute h1(s); if h1(s) = 0 then stop

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 30/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm: Detailed Example

Facts i, g, A,B,C.

I = {i}; G = {g}.
Actions (unit cost):

carA pre i eff A;

carB pre i eff B;

carC pre i eff C;
combineF ilms pre A,B,C eff g.

i (0)

A (1) B (1) C (1)

g (2)

carA carB carC

combineF ilms
For each a, select pa ∈ prea with maximal
h1(s, {p})

Build a graph whose nodes are the facts,
and with a labeled arc pa

a−→ q whenever
q ∈ eff a

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 30/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm: Detailed Example

Facts i, g, A,B,C.

I = {i}; G = {g}.
Actions (unit cost):

carA pre i eff A;

carB pre i eff B;

carC pre i eff C;
combineF ilms pre A,B,C eff g.

i (0)

A (1) B (1) C (1)

g (2)

carA carB carC

combineF ilms L+
1 := {combineF ilms}

c1(combineF ilms) := 1, and c1(a) := 0
elsewhere

c(combineF ilms) := 0

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 30/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm: Detailed Example

Facts i, g, A,B,C.

I = {i}; G = {g}.
Actions (unit cost):

carA pre i eff A;

carB pre i eff B;

carC pre i eff C;
combineF ilms pre A,B,C eff g.

i (0)

A (1) B (1) C (1)

g (1)

Compute h1(s); if h1(s) = 0 then stop

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 30/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm: Detailed Example

Facts i, g, A,B,C.

I = {i}; G = {g}.
Actions (unit cost):

carA pre i eff A;

carB pre i eff B;

carC pre i eff C;
combineF ilms pre A,B,C eff g.

i (0)

A (1) B (1) C (1)

g (1)

carA carB carC

combineF ilms
For each a, select pa ∈ prea with maximal
h1(s, {p})

Build a graph whose nodes are the facts,
and with a labeled arc pa

a−→ q whenever
q ∈ eff a

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 30/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm: Detailed Example

Facts i, g, A,B,C.

I = {i}; G = {g}.
Actions (unit cost):

carA pre i eff A;

carB pre i eff B;

carC pre i eff C;
combineF ilms pre A,B,C eff g.

i (0)

A (1) B (1) C (1)

g (1)

carA carB carC

combineF ilms L+
2 := {carA}

c2(carA) := 1, and c2(a) := 0 elsewhere

c(carA) := 0

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 30/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm: Detailed Example

Facts i, g, A,B,C.

I = {i}; G = {g}.
Actions (unit cost):

carA pre i eff A;

carB pre i eff B;

carC pre i eff C;
combineF ilms pre A,B,C eff g.

i (0)

A (0) B (1) C (1)

g (1)

Compute h1(s); if h1(s) = 0 then stop

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 30/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm: Detailed Example

Facts i, g, A,B,C.

I = {i}; G = {g}.
Actions (unit cost):

carA pre i eff A;

carB pre i eff B;

carC pre i eff C;
combineF ilms pre A,B,C eff g.

i (0)

A (0) B (1) C (1)

g (1)

carA carB carC

combineF ilms
For each a, select pa ∈ prea with maximal
h1(s, {p})

Build a graph whose nodes are the facts,
and with a labeled arc pa

a−→ q whenever
q ∈ eff a

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 30/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm: Detailed Example

Facts i, g, A,B,C.

I = {i}; G = {g}.
Actions (unit cost):

carA pre i eff A;

carB pre i eff B;

carC pre i eff C;
combineF ilms pre A,B,C eff g.

i (0)

A (0) B (1) C (1)

g (1)

carA carB carC

combineF ilms L+
3 := {carB}

c3(carB) := 1, and c3(a) := 0 elsewhere

c(carB) := 0

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 30/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm: Detailed Example

Facts i, g, A,B,C.

I = {i}; G = {g}.
Actions (unit cost):

carA pre i eff A;

carB pre i eff B;

carC pre i eff C;
combineF ilms pre A,B,C eff g.

i (0)

A (0) B (0) C (1)

g (1)

Compute h1(s); if h1(s) = 0 then stop

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 30/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm: Detailed Example

Facts i, g, A,B,C.

I = {i}; G = {g}.
Actions (unit cost):

carA pre i eff A;

carB pre i eff B;

carC pre i eff C;
combineF ilms pre A,B,C eff g.

i (0)

A (0) B (0) C (1)

g (1)

carA carB carC

combineF ilms
For each a, select pa ∈ prea with maximal
h1(s, {p})

Build a graph whose nodes are the facts,
and with a labeled arc pa

a−→ q whenever
q ∈ eff a

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 30/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm: Detailed Example

Facts i, g, A,B,C.

I = {i}; G = {g}.
Actions (unit cost):

carA pre i eff A;

carB pre i eff B;

carC pre i eff C;
combineF ilms pre A,B,C eff g.

i (0)

A (0) B (0) C (1)

g (1)

carA carB carC

combineF ilms L+
4 := {carC}

c4(carC) := 1, and c4(a) := 0 elsewhere

c(carC) := 0

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 30/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm: Detailed Example

Facts i, g, A,B,C.

I = {i}; G = {g}.
Actions (unit cost):

carA pre i eff A;

carB pre i eff B;

carC pre i eff C;
combineF ilms pre A,B,C eff g.

i (0)

A (0) B (0) C (0)

g (0)

Compute h1(s); if h1(s) = 0 then stop

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 30/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm: Detailed Example

Facts i, g, A,B,C.

I = {i}; G = {g}.
Actions (unit cost):

carA pre i eff A;

carB pre i eff B;

carC pre i eff C;
combineF ilms pre A,B,C eff g.

i (0)

A (0) B (0) C (0)

g (0) Output:

L+
1 = {combineF ilms};

c1(combineF ilms) = 1.

L+
2 = {carA}; c2(carA) = 1.

L+
3 = {carB}; c3(carB) = 1.

L+
4 = {carC}; c4(carC) = 1.

Heuristic∑4
i=1 h

LM

L+
i

[ci](I) = 4 > 2 = h1(I).

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 30/41

Introduction Compilability Example Proofs The Zoo Conclusion References

LM-cut Algorithm: Why Does This Work?

→ We still need to prove the slide 26 Theorem:

Proof. Assume that h1(s) 6=∞ (else we return the empty landmark).

Say LM-cut stops after k iterations. We need to prove that (a)∑k
i=1 h

LM

L+
i

[ci](s) ≥ h1(s), and (b) LM-cut runs in time polynomial in ‖Π‖.

If h1(s) = 0, both (a) and (b) hold trivially. Else, consider the first iteration of the
LM-cut algorithm, characterized by the sum h(s) + h′(s), where h(s) = hLM

L+
1

(s) with

cost function c1, and h′(s) is h1(s) with cost function c− c1. We prove that
h1(s) ≤ h(s) + h′(s). Applying this recursively to the second iteration and so forth
proves (a); as the number of 0-cost actions increases strictly in each iteration, and as
each iteration takes time polynomial in ‖Π‖, we have (b).

As h(s) = hLM

L+
1

(s) = min
a∈L+

i
c(a), proving h1(s) ≤ h(s) + h′(s) comes down to

proving that reducing action costs c by c1 does not decrease h1(s) by more than
min

a∈L+
i
c(a). Observe that h1(s) corresponds exactly to cheapest paths in the graph

G. Such paths enter the “0-cost goal zone” (blue on previous slide) exactly once,
hence subtracting c1 (the step into the “0-cost goal zone”) reduces their cost by at
most min

a∈L+
i
c(a) (the cost of that step). This concludes the proof.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 31/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Questionnaire

Observe: We designed LM-cut to find a partitioned-sum LM heuristic that
dominates h1. The very first thing that LM-cut does is “Compute h1(s)”.

Question!

Does this mean that LM-cut is completely useless?

(A): Yes (B): No

→ From a practical perspective, the answer is “NO!!!”. While the proof requires
only

∑k
i=1 h

LM
L+

i

[ci](s)≥h1(s), it can happen that
∑k
i=1 h

LM
L+

i

[ci](s)>h
1(s).

Intuitively, LM-cut accounts for conjunctive requirements. E.g., the precondition
{A,B,C} on slide 30, where

∑k
i=1 h

LM
L+

i

[ci](s) = h∗(s) = 4 whereas h1(s) = 2.

→ In practice, LM-cut almost always yields lower bounds way better than h1!

→ From a theory perspective, compilability is about representation, not about
computation so long as it takes polynomial time.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 32/41

Introduction Compilability Example Proofs The Zoo Conclusion References

What We Learned About “The Zoo”

Ignoring Deletes

hmax ≤
(h+)

Abstractions

PDB �iu
M&S

Critical Paths

h1 ≤
h2 ≤
h3 ≤
. . .

Landmarks

hLML+

(hLML)

?

?

hmax = h1
hLML+ 6�PDB

hLML+ �iM&S

?

h1 ≡ hLML+

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 34/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Further Known Results

Corollaries of what we’ve seen:

Since hmax = h1 and h1 ≡ hLML+ : hmax ≡ hLML+ .

Since h1 ≡ hLML+ , and hLML+ 6�PDB: h1 6�PDB, and since hmax = h1:
hmax 6�PDB. Further, since h1 ≤ hm: hm 6�PDB.

Since h1 ≡ hLML+ , and hLML+ �iM&S: h1 �iM&S, and since
hmax = h1: hmax �iM&S.

Additional results:

PDB 6� hm [Helmert and Domshlak (2009)].

Since PDB�M&S: M&S6� hm, and since h1 ≤ hm and h1 ≡ hLML+ :
M&S 6� hLML+ .

hm 6�M&S [Helmert et al. (2014)].

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 35/41

Introduction Compilability Example Proofs The Zoo Conclusion References

The Zoo as We Know It

(Showing only strongest results, e.g. PDB6� hm not PDB 6� h1.)

Ignoring Deletes

hmax ≤
(h+)

Abstractions

PDB �iu
M&S

Critical Paths

h1 ≤
h2 ≤
h3 ≤
. . .

Landmarks

hLML+

(hLML)

hmax 6�PDB

hmax �iM&S

hmax ≡ hLML+

hmax = h1

hLML+ 6�PDB

hLML+ �iM&S

M&S6� hLML+

h1 6�PDB

h1 �iM&S

hm 6�M&S

PDB6� hm

h1 ≡ hLML+

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 36/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Summary

Algorithms for computing admissible heurisics can be compared by
the strength of the lower bounds they can produce efficiently.

A family H of admissible heuristics can be compiled into family H ′,
written H � H ′, if for every state s and h ∈ H we can efficiently
construct a partitioned sum of heuristics h′ ∈ H ′ so that
h ≤

∑
h′[c].

If H � H ′, then partitioned sums over H can be compiled into
partitioned sums over H ′ as well. Compilability is transitive and
reflexive.

Delete relaxation landmarks cannot be compiled into PDBs, but can
be compiled into merge-and-shrink; they are equivalent to h1 (and
thus to hmax as well). All other results are negative.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 38/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Remarks

Compilability of delete relaxation landmarks into merge-and-shrink
but not PDBs is yet another indication of the superiority of
merge-and-shrink.

The most surprising result was that we can efficiently find delete
relaxation landmarks compiling h1. The implementation, LM-cut, is
one of the strongest admissible heuristic available. In particular, it
yields much better heuristic values than h1 (i.e., it dominates h1 in
theory, and vastly outperforms it in practice).

All other results being negative show non-domination, i.e., the
respective techniques, for example critical path heuristics and
merge-and-shrink, are incomparable (none dominates the other).

Practice is another story, as polynomial-time overhead often does
matter.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 39/41

Introduction Compilability Example Proofs The Zoo Conclusion References

Reading

Landmarks, Critical Paths and Abstractions: What’s the Difference
Anyway? [Helmert and Domshlak (2009)].

Available at:

http://ai.cs.unibas.ch/papers/helmert-domshlak-icaps2009.pdf

Content: The only publication on the compilability framework, to date.
Briefly introduces the framework against the (fixed) background of
admissible sums via cost partitioning, and delete relaxation landmark
heuristics. Provides detailed proofs for the compilations/lack thereof
between landmarks and PDBs/M&S, and between landmarks and h1.
Briefly mentions non-compilability of PDBs into hm. Runs experiments
showing the excellent performance of the LM-cut heuristic, that
implements the compilation of h1 into landmarks.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 40/41

http://ai.cs.unibas.ch/papers/helmert-domshlak-icaps2009.pdf

Introduction Compilability Example Proofs The Zoo Conclusion References

References I

Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Alfonso Gerevini, Adele Howe, Amedeo Cesta,
and Ioannis Refanidis, editors, Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), pages 162–169. AAAI Press,
2009.

Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nissim. Merge & shrink
abstraction: A method for generating lower bounds in factored state spaces.
Journal of the Association for Computing Machinery, 61(3):16:1–16:63, 2014.

Jörg Hoffmann AI Planning Chapter 17: Comparing Heuristic Functions 41/41

	Introduction
	

	The Compilability Framework
	

	Example Proofs
	

	A Walk Through the Zoo [for Reference]
	

	Conclusion
	

	
	References

