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Adieu Graphplan, Hello FF! (Here: Gripper Benchmark)
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Graphplan = state of the art before 2000.

FF = state of the art after 2000.
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We Need to Understand Heuristic Functions!

(A) WHY does FF work so well in many benchmarks?

(B) HOW can we predict whether or not it does, in a given benchmark?

→ Search space surface analysis is a method to understand the informedness of
heuristic functions, and therewith the behavior of heuristic search.

(A) You can use it to understand a heuristic function you developed.

(B) Planning systems can use a prediction to assess the heuristic functions
available, and choose a suitable heuristic automatically based on the
planning task description (the PDDL input).

→ Word of caution: Search space surface analysis does not work for every
heuristic! Sometimes, the analysis is too complicated, or no strong behaviors are
present. An alternative is to measure the error relative to h∗ [e.g., Helmert and
Mattmüller (2008); Helmert and Röger (2008)].
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A Preview: Visualized State Spaces

→ Vertices = states, arcs = state transitions. Green: goal states.
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A Preview: h+ in Gripper Benchmark

→ Observations? The goal states lie at the bottom of an inclined plane.

Heuristic search ≈ “dropping a marble onto this surface”. (Hence:
slide 4)
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A Preview: h+ in Logistics Benchmark1

→ Observations? The goal states lie at the bottom of (what basically
looks like) two inclined planes.

1The Logistics benchmark domain is similar to, but not identical to, our “Logistics”
illustrative example.
Jörg Hoffmann AI Planning Chapter 18: Search Space Surface Analysis 8/63
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A Preview: h+ and hFF in Towers of Hanoi

h+ hFF

→ Do you “see” the 6 discs on the left-hand side? Each disc = one plateau.
(Note the self-similarity of the plateaus.)

→ What can we say about h+(Hanoi)? h+(Hanoi) = n, not 2n. (On the initial
state, with n discs.)

→ What to conclude from the comparison left vs. right? The surface under hFF

is “basically like” that under h+, just a little more noisy.
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Restrictions (on our Search Space Surface Analysis here)

Progression search, unit costs.

→ More general cases are relevant, but haven’t been researched yet.

FDR planning.

→ Helps automatic analysis (anyway, more general than STRIPS).

Solvable planning tasks.

→ Simplifies the discussion a bit; traditionally, heuristic search is
used only on solvable cases.

(Although it can help dramatically also on unsolvable cases, e.g.
[Hoffmann et al. (2014); Steinmetz and Hoffmann (2017)].)
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Restrictions, ctd.

The heuristic function we investigate is h+.

→ h+ is not actually used in practice, but its most popular
approximation hFF has a similar search space surface (cf. slide 9 and
[Hoffmann (2003)]).

There is a myriad of things one could measure:

→ Min/max/mean size/diameter of local minima/flat regions/goal
regions . . . (in fact, my first software empirically analyzing search
surfaces measured > 150 parameters).

Here, we consider only the three things that exhibit interesting
behavior in the planning benchmarks:

→ Behavior with respect to dead ends, and the exit distance of local
minima and benches.
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Our Agenda for This Chapter

2 Search Space Surface Properties: Defines and illustrates the
relevant features of the search space surface.

3 Manual Surface Analysis: Summarizes my manual analysis of h+

in the benchmarks, and details an example proof.

4 On the Connection Between Causal Graphs and h+: Shows
how the example proof can be lifted to look, not at the example, but
at any planning task whose causal graph and domain transition
graphs have similar properties.

5 Automatic Surface Analysis: Shows how to exploit the causal
graph based result for automatic search space surface analysis.
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Dead Ends

Definition (Dead End). Let Π be a solvable FDR planning task, and let
h be a safe heuristic for Π. A state s in Π is a dead end if h∗(s) =∞; s
is recognized under h if h(s) =∞, and unrecognized under h if
h(s) 6=∞.

→ Recognized dead ends do not threaten performance because search
will ignore them. (And hFF(s) =∞ iff h+(s) =∞, cf. Chapter 9.)

Definition. Let Π be a solvable FDR planning task with state space ΘΠ,
and let h be a safe heuristic for Π. We say that ΘΠ is:

(i) undirected if, for all s→ s′ in ΘΠ, s′ → s is in ΘΠ as well;
(ii) harmless if it is not undirected but does not contain any dead ends;
(iii) recognized if it contains dead ends, but they are all recognized;
(iv) unrecognized if it contains an unrecognized dead end.

→ Undirected ΘΠ for solvable Π cannot contain dead ends because we
can always go back to I and attach a plan from there.
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State Space Classes wrpto Dead-Ends: Illustration

(a) (b)
h = ∞ h = ∞ h = ∞

h = ∞ h = ∞ h = ∞ h = ∞

(c)

h < ∞ h < ∞ h = ∞

h < ∞ h < ∞ h = ∞ h = ∞

(d)

→ (a) is undirected, (b) is harmless, (c) is recognized, (d) is unrecognized.
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Questionnaire

Question!

How to get an unrecognized dead end under h+? Give an example.

→ For example, “The Relaxed Doomed Dompteur”:

P = {alive, haveRing, haveTiger , tamedTiger , haveJump}.
Initial state I: alive.

Goal G: alive, haveJump.

Actions A: (no “tameTiger” action)

getRing: pre alive; add haveRing

getTiger : pre alive; add haveTiger

jumpTamedTiger : pre alive, haveRing, tamedTiger ; add haveJump

jumpTiger : pre alive, haveRing, haveTiger ; add haveJump; del alive

(To make this task solvable – and thus adhere to our restrictions, cf. slide 10 – e.g.
re-include tameTiger , but add an action “throw away the handbook that explains how
to tame a tiger”. Applying that action then leads into the unrecognized dead-end.)

→ More common examples: Resource consumption (h+ won’t notice if there is
insufficient fuel); puzzles challenging to avoid fatal mistakes (e.g. FreeCell, Sokoban).
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Dead Ends in “Logistics”

Initial state I: t = A, p = C.

Goal G: t = A, p = D.

Actions A: dr(X,Y ), lo(X), ul(X).

→ Does this task contain any dead ends? No. Its state space is
undirected.

Initial state I: t = A, p = C.

Goal G: t = A, p = D.

Actions A: dr(X,Y ), lo(X), ul(X).

→ What about this one? Yes: If we drive down the one-way street from
B to E, we end up in a dead end. That dead end is recognized under h+.
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Where is the Exit?

Definition (Exit, Exit Distance). Let Π = (V,A, c, I,G) be a solvable
FDR planning task with state space ΘΠ, let h be a heuristic for Π, and
let s be a state with 0 < h(s) <∞.

An exit for s is a state s′ reachable from s so that ΘΠ has a transition
s′ → s′′ where h(s′′) < h(s). The exit distance exd(s) of s under h is
the length of a shortest path to an exit, or exd(s) =∞ if no exit exists.

The maximal exit distance of Π is defined as maxs:0<h(s)<∞ exd(s).

→ An exit is a state reaching which enables us to improve the heuristic
value, relative to our current state s.
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Local Minima and Benches

Definition (Local Minima, Benches). Let Π = (V,A, c, I,G) be a
solvable FDR planning task with state space ΘΠ, and let h be a heuristic
for Π.

A path in ΘΠ is monotone if it contains no transition s1 → s2 so that
h(s1) < h(s2). A state s with 0 < h(s) <∞ is a local minimum under h
if there exists no monotone path to an exit; else, s is a bench under h.

→ From a local minimum, we cannot improve the heuristic value without
temporarily making it worse; from a bench, we can.
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Exits, Local Minima, and Benches: Illustration
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→ Red: local minimum; blue: bench.
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Local Minima and Benches in Gripper Benchmark Domain

→ There are no local minima here.

→ The maximal exit distance is 1 (e.g., the flat row in the middle).
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Local Minima and Benches in Towers of Hanoi

→ There are no local minima here.

→ The maximal exit distance is 25 = 32, from initial state to exit off topmost
plateau: Solve 5-discs to be able to move the bottom disc into place.
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A Bad Case: h+ in the Blocksworld (→ Chapter 9)

CD

B

C

B

A
A

Initial State Goal State

Optimal plan? 〈putdown(A), unstack(B,D), stack(B,C),
pickup(A), stack(A,B)〉.

Optimal relaxed plan? 〈stack(A,B), unstack(B,D), stack(B,C)〉.

Observe: What can we say about the search space surface at the initial
state here? The initial state lies on a local minimum under h+, together
with the successor state s where we stacked A onto B. All direct other
neighbors of these two states have a strictly higher h+ value.
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A Simple (Yet Important) Connection

Proposition (Unrecognized Dead Ends =⇒ Local Minima). Let
Π = (V,A, c, I,G) be a solvable FDR planning task. If Π contains an
unrecognized dead end, then Π contains a local minimum s with
exd(s) =∞.

Proof. Let s be an unrecognized dead end with minimal heuristic value
among all unrecognized dead ends. Then s cannot have a path to a state
with strictly smaller heuristic value. So there is no exit reachable from s,
and in particular no monotone path to an exit.
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Questionnaire
Initial state: t = A, f = D, p = C.

Goal: t = A, f = D, p = D.

Actions: drt(X,Y ), drf (X,Y ), lo(X), ul(X).

Load/unload requires the forklift!

E.g., the precondition of lo(X) is
p = X, t = X, f = X.

Question!

What is the maximal exit distance under h+ in this example?

(A): 3 (B): 6

→ 3 is valid in the initial state: h+(s) = 6, and exd(s) = 3 because h+ remains
constant along the path drt(A,B), drt(B,C), drf (D,C) and decreases after
lo(C). But 3 is not valid in general.

→ 6 is an upper bound because any exit path must at most bring both truck
and forklift to the current position of the package. The worst case occurs when
t = D, f = D, p = A.
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Manual Analysis: What to Analyze, and How

Surface has a myriad of properties: Which properties to look at?

Those that exhibit relevant/interesting behavior, in your setting.

Find those empirically.

Completely build/analyze state spaces of small examples; sample into state
spaces of large examples.

→ I did this for h+, and found that the parameters defined in the previous
section were the (only) ones with relevant/interesting behavior.

Surface depends on the planning task: Which tasks to look at?

You want results that hold for classes of tasks, not just single tasks.

The only way to do that are proofs.

Identify sub-classes that exhibit interesting behaviors. (If you’re lucky,
these classes will not be too restricted for anybody to care.)

→ For h+, “classes := benchmark domains” works just fine.

Jörg Hoffmann AI Planning Chapter 18: Search Space Surface Analysis 27/63



Introduction Surface Properties Manual Surface Analysis Causal Graphs Automatic Conclusion References

Proved Surface Properties under h+
[Hoffmann (2002, 2005)]
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Legend: x-axis: 4 classes regarding dead ends, each domain in “highest” class of any
of its instances. y-axis: Does there exist a constant bound on exit distance from bench
states and/or local minimum states in the domain? [lm,bench] where both exist, [lm]
where only the latter exists; lm=0 means no local minima at all. Bottom right crossed
out since unrecognized dead ends imply infinite exit distance, cf. slide 24.
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Surface Properties under h+ in Gripper Benchmark

Empirical result (see picture): In this particular instance of the Gripper
benchmark, under h+ there aren’t any local minima and the maximal exit
distance is 1.
Theoretical result (see previous slide): The same is true for every
instance of the Gripper benchmark.
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Proved Surface Properties under h+: So What?
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→ Intuition: Left-bottom domains are
“easy” for heuristic search with h+

approximations, because h+ is highly
informed; right-top domains are
“difficult”.

Proposition (Left-Bottom is Easy). Let Π = (V,A, c, I,G) be a solvable
FDR planning task. If the exit distance from local minima and benches in Π is
bounded by D, then enforced hill-climbing using h+ generates
≤ h+(I) ∗

∑D+1
d=0 |A|d states before returning a plan.

Proof. In each loop iteration during enforced hill-climbing, breadth-first search
generates a state with strictly smaller h+ value in depth D + 1 at the latest.

→ So, is FF polynomial-time in these domains? Not provably, because it does
not use h+, and we have not proved anything about hFF.
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How to prove this??

. . . sit down, consider each of the 25 domains in turn, have fun.

Identify patterns: (that apply across domains)

(a) Absence of dead ends: In many domains, all actions are invertible and thus
the state spaces are undirected. (In others, it’s a little, but not much, more
complicated than that.)

(b) Absence of local minima: Given a state s, show how to construct a
monotone path ~as to an exit.
→ Typically, this works by considering an optimal relaxed plan ~a+s for s,
and constructing ~as by using only the actions in ~a+s . This path is
monotone because, for any state si it traverses, a relaxed plan ~a+si for si
can be obtained from ~a+s by replacing some actions with their inverses.

(c) Exit distance: How long does ~as need to be until we can obtain ~a+si by
removing an action from ~a+s , without replacement?

→ We now illustrate (b) with a detailed example.
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Local Minimum Proof

Initial state: t = A, f = D, p = C.

Goal: t = A, f = D, p = D.

Actions: drt(X,Y ), drf (X,Y ), lo(X), ul(X).

→ We identify a monotone exit path ~as for the inital state s := I, and thereby
prove that this state is not a local minimum.

→ Namely, the path ~as will be:

I = s
drt(A,B)−−−−−−→ s1

drt(B,C)−−−−−−→ s2
drf (D,C)−−−−−−→ s3

lo(C)−−−→ s′

s3 will be the exit state: h+(s′) < h+(s3) = h+(s).

Proof in two steps:

1 Lemma 1: Every state si traversed by ~as has h+(si) ≤ h+(s).

2 Lemma 2: h+(s′) < h+(s).

=⇒ h+ on ~as can only decrease, and at the path’s end (or, possibly, earlier
than that already) is strictly smaller than h+(s).
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Local Minimum Proof: Illustration

Initial state: t = A, f = D, p = C.

Goal: t = A, f = D, p = D.

Actions: drt(X,Y ), drf (X,Y ), lo(X), ul(X).

I = s
drt(A,B)−−−−−−→ s1

drt(B,C)−−−−−−→ s2
drf (D,C)−−−−−−→ s3

lo(C)−−−→ s′
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Local Minimum Proof: Lemma 1

Initial state: t = A, f = D, p = C.

Goal: t = A, f = D, p = D.

Actions: drt(X,Y ), drf (X,Y ), lo(X), ul(X).

I = s
drt(A,B)−−−−−−→ s1

drt(B,C)−−−−−−→ s2
drf (D,C)−−−−−−→ s3

lo(C)−−−→ s′

Lemma 1: Every state si traversed by ~as has h+(si) ≤ h+(s).

Proof. h+(s) = 6; an optimal relaxed plan for s is ~a+
s := 〈drt(A,B), drt(B,C),

drf (D,C), lo(C), drt(C,D), ul(D)〉.
Any state si traversed by the path ~as results from s by executing a sub-sequence ~asi(t)
of the truck-moving actions in ~a+

s , as well as a sub-sequence ~asi(f ) of the forklift-moving
actions in ~a+

s . (Each of these may be empty.)

Obtain the relaxed plan ~a+
si for si by replacing, in ~a+

s , ~asi(t) and ~asi(f ) with the
respective inverse action sequences ~asi(t) and ~asi(f ).

Then ~a+
si is a relaxed plan for si because ~asi(t) and ~asi(f ) are applicable in si, and

achieve the same sets of truck and forklift positions as ~asi(t) and ~asi(f ) when starting
from s. These sets of values all become true under relaxed plan execution, and thus the
remainder of the relaxed plan works as before.
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Local Minimum Proof: Lemma 1 Example

Initial state: t = A, f = D, p = C.

Goal: t = A, f = D, p = D.

Actions: drt(X,Y ), drf (X,Y ), lo(X), ul(X).

I = s
drt(A,B)−−−−−−→ s1

drt(B,C)−−−−−−→ s2
drf (D,C)−−−−−−→ s3

lo(C)−−−→ s′

Lemma 1: Every state si traversed by ~as has h+(si) ≤ h+(s).

(From proof:) “Then ~a+si is a relaxed plan for si because ~asi(t) and ~asi(f ) are
applicable in si, and achieve the same sets of t and f values as ~asi(t) and ~asi(f ).”

Example s2: ~as(t) = 〈drt(A,B), drt(B,C)〉; ~as(t) = 〈drt(C,B), drt(B,A)〉.

Executing ~a+s in s Executing ~a+s2 in s2
s t = A; f = D; p = C s2 t = C; f = D; p = C

drt(A,B) t = A,B; f = D; p = C drt(C,B) t = B,C; f = D; p = C
drt(B,C) t = A,B,C; f = D; p = C drt(B,A) t = A,B,C; f = D; p = C

drf (D,C) t = A,B,C; f = C,D; p = C
lo(C) t = A,B,C; f = C,D; p = C, T

drt(C,D) t = A,B,C,D; f = C,D; p = C, T
ul(D) t = A,B,C,D; f = C,D; p = C,D, T
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Local Minimum Proof: Lemma 1 Illustration

Initial state: t = A, f = D, p = C.

Goal: t = A, f = D, p = D.

Actions: drt(X,Y ), drf (X,Y ), lo(X), ul(X).

I = s
drt(A,B)−−−−−−→ s1

drt(B,C)−−−−−−→ s2
drf (D,C)−−−−−−→ s3

lo(C)−−−→ s′
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Local Minimum Proof: Lemma 2

Initial state: t = A, f = D, p = C.

Goal: t = A, f = D, p = D.

Actions: drt(X,Y ), drf (X,Y ), lo(X), ul(X).

I = s
drt(A,B)−−−−−−→ s1

drt(B,C)−−−−−−→ s2
drf (D,C)−−−−−−→ s3

lo(C)−−−→ s′

Lemma 2: h+(s′) < h+(s).

Proof. By Lemma 1, h+(s3) ≤ 6 = h+(s) due to the relaxed plan ~a+s3 =
〈drt(C,B), drt(B,A), drf (C,D), lo(C), drt(C,D), ul(D)〉.
Now, s′ is reached from s3 by applying lo(C). We can obtain a relaxed plan ~a+s′
for s′, from ~a+s3 , by removing lo(C).

This works because the only variable value deleted by lo(C), in the state transition

s3
lo(C)−−−→ s′, is p = C. This value is not needed by any action other than by

lo(C) itself; in particular, the value is not needed anywhere in ~a+s′ .

→ Intuition: p moves egoistically: towards its own goal, and no other variable
relies on values of p.
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Local Minimum Proof: Lemma 2 Example

Initial state: t = A, f = D, p = C.

Goal: t = A, f = D, p = D.

Actions: drt(X,Y ), drf (X,Y ), lo(X), ul(X).

I = s
drt(A,B)−−−−−−→ s1

drt(B,C)−−−−−−→ s2
drf (D,C)−−−−−−→ s3

lo(C)−−−→ s′

Lemma 2: h+(s′) < h+(s).

(From proof:) “This works because the only variable value deleted by lo(C), in

the state transition s3
lo(C)−−−→ s′, is p = C. This value is not needed by any action

other than by lo(C) itself; in particular, the value is not needed anywhere in ~a+s′ .”

Executing ~a+s3 in s3 Executing ~a+
s′ in s′

s3 t = C; f = C; p = C s′ t = C; f = C; p = T
drt(C,B) t = B,Cf = C; p = C drt(C,B) t = B,C; f = C; p = T
drt(B,A) t = A,B,C; f = C; p = C drt(B,A) t = A,B,C; f = C; p = T
drf (C,D) t = A,B,C; f = C,D; p = C drf (C,D) t = A,B,C; f = C,D; p = T

lo(C) t = A,B,C; f = C,D; p = C, T
drt(C,D) t = A,B,C,D; f = C,D; p = C, T drt(C,D) t = A,B,C,D; f = C,D; p = T

ul(D) t = A,B,C,D; f = C,D; p = C,D, T ul(D) t = A,B,C,D; f = C,D; p = D,T
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Local Minimum Proof: Lemma 2 Illustration

Initial state: t = A, f = D, p = C.

Goal: t = A, f = D, p = D.

Actions: drt(X,Y ), drf (X,Y ), lo(X), ul(X).

I = s
drt(A,B)−−−−−−→ s1

drt(B,C)−−−−−−→ s2
drf (D,C)−−−−−−→ s3

lo(C)−−−→ s′
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Proof by Example?

Initial state: t = A, f = D, p = C.

Goal: t = A, f = D, p = D.

Actions: drt(X,Y ), drf (X,Y ), lo(X), ul(X).

→ So we’ve got our proof for s = I. What about all the other states s?

→ Argument summary: There is an egoistic variable v0; let the first action
affecting v0 in the optimal relaxed plan ~a+s be a0. We can construct a path ~as
using only actions from ~a+s , bringing all supporting variables into the values
required by the precondition of a0. h+ is monotone on this path because of
invertibility. It decreases strictly after executing a0.

Package at x 6= D: v0 = p, a0 = lo(x), support: truck and forklift.

Package in truck: v0 = p, a0 = ul(D), support: truck and forklift.

Package at D: v0 = t or f , a0 = drt(X,Y ) or drf (X,Y ), support: none.

→ Similar proof arguments work in many domains. Indeed, we can abstract
from the domain and apply the same proof considering just the causal graph!
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Questionnaire

V : M : {MajHome,Bar ,Pool ,Shield}; S1, S2 : {MajHome,Bar ,Pool}.
Initial state I: M = Bar , S1 = MajHome, S2 = MajHome.
Goal G: M = MajHome, S1 = MajHome, S2 = MajHome.
Actions A:
lift(x): pre S1 = x, S2 = x, M = x; eff M = Shield
drop(x): pre S1 = x, S2 = x, M = Shield ; eff M = x
go(i, x, y): pre Si = x; eff Si = y

Question!

Who is “egoistic”, who is “supporting”, and what is a shortest
monotone exit path under h+ for the initial state?

→ Majestix (variable “M”) is egoistic, the two other guys (“Servants”, variables S1

and S2) are “supporting”.

The shortest monotone exit path is go(1,MajHome,Bar), go(2,MajHome,Bar):
h+(I) = 4, same in the states s1 and s2 traversed by these actions (we can invert these
actions in the relaxed plan, as before). Applying lift(Bar) in s2, h+ decreases to 3.
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Here’s what we looked at so far . . .

. . . and moving the package/truck/forklift does not affect anything else.
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. . . and here’s what we get by removing irrelevant detail!

. . . and every action affects only one variable.
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Reminder: Causal Graphs, DTGs, Invertible Transitions

Reminder: → Chapter 5

Let Π = (V,A, c, I,G) be an FDR planning task. The causal graph of Π is the
directed graph CG(Π) with vertices V and an arc (u, v) whenever there exists
an action a ∈ A so that either (i) there exists a ∈ A so that prea(u) and
eff a(v) are both defined, or (ii) there exists a ∈ A so that eff a(u) and eff a(v)
are both defined.

Let v ∈ V . The domain transition graph (DTG) of v is the arc-labeled directed
graph with vertices Dv, and, for every d, d′ ∈ Dv and a ∈ A where either (i)
prea(v) = d and eff a(v) = d′ or (ii) prea(v) is not defined and eff a(v) = d′, an

arc d
a−→ d′.

We write d
a−→ϕ d′ where ϕ = prea\ {v = d} is the arc’s outside condition.

We say that d→ϕ d′ is invertible if there exists an arc d′ →ϕ′ d where ϕ′ ⊆ ϕ.
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In other words:

. . . and every action affects only one variable.
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The Connection Between Causal Graphs and h+

Theorem. Let Π = (V,A, c, I,G) be a solvable unit-cost FDR planning
task such that CG(Π) is acyclic and, for all v ∈ V that are not leaves in
CG(Π), all value transitions of v are invertible. Then Π does not contain
any local minima under h+.

Proof Intuition:

The leaf variables in CG(Π) (no outgoing arcs) are egoistic because no
other variable depends on them. Invertibility is required only for the
support variables.

“Every action affects only one variable” is ensured because otherwise the
(ii) arcs in CG(Π) would yield a cycle.

The (i) arcs in CG(Π) are the “supports” arrows on the previous slide.

→ Rather than just two independent support variables, we can have
arbitrary acyclic support. Basically, we might need a driver to first get into
the truck so the truck can move, etc. This does not break our previous
constructions. The root variables in CG(Π) (no incoming arcs) will move
freely (truck and forklift, or driver and forklift in an extended example).
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Acyclic + Invertible: Illustration (Recall: Chapter 5)

ClientServant

Each variable “moves on its own”; we only have servant-client
dependencies, forming an acyclic graph.

In each such pair, the servant provides preconditions for the client.

Because there exists a relaxed plan, the servant can reach all these
preconditions: because all the servant’s moves are invertible, it can travel
between all of them. Furthermore, while doing so, by Lemma 1 the
servant’s moves can be replaced with the corresponding inverse moves in
the relaxed plan, hence h+ can never increase along these paths.
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The Connection Between Causal Graphs and h+, ctd.

Theorem. Let Π = (V,A, c, I,G) be a solvable unit-cost FDR planning
task such that CG(Π) is acyclic and, for all v ∈ V that are not leaves in
CG(Π), all value transitions of v are invertible. Then Π does not contain
any local minima under h+.

Proof Sketch. Argument summary (cf. slide 40): (1) There is an egoistic variable v0;
let the first action affecting v0 in the optimal relaxed plan ~a+

s be a0. (2) We can
construct a path ~as using only actions from ~a+

s , bringing all supporting variables into
the values required by the precondition of a0. (3) h+ is monotone on this path
because of invertibility, and (4) decreases strictly after executing a0. (5) Every action
affects only one variable.

Let s be any state in Π with 0 < h+(s) < ∞. (1) holds because the support
dependencies, CG(Π) class (i) arcs, are acyclic: We can order the variables
topologically; the last variable whose goal is not yet achieved moves egoistically (no
other variable can depend on it). (2) holds by the acyclic + invertible result of
Chapter 5: Due to the acylic support (and as h+(s) < ∞), we get this path by
iteratively pushing subgoal sequences to earlier variables. We can apply the argument
from Lemma 1 to obtain (3), and the argument from Lemma 2 to obtain (4). (5)
holds because otherwise the class (ii) arcs would yield a cycle in CG(Π). QED.
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Questionnaire

V : M : {MajHome,Bar ,Pool ,Shield}; S1, S2 : {MajHome,Bar ,Pool}.
Initial state I: M = Bar , S1 = MajHome, S2 = MajHome.
Goal G: M = MajHome, S1 = MajHome, S2 = MajHome.
Actions A:
go(i, x, y): pre Si = x; eff Si = y
lift(x): pre S1 = x, S2 = x, M = x; eff M = Shield
drop(x): pre S1 = x, S2 = x, M = Shield ; eff M = x

Question!

What are the causal graph CG(Π) arcs in this example?

→ (S1,M) and (S2,M).

Question!

Does this example contain local minima under h+?

→ No: The causal graph is acylic (cf. above); the non-leaf variables S1 and S2

are invertible; so our theorem applies.

Jörg Hoffmann AI Planning Chapter 18: Search Space Surface Analysis 50/63



Introduction Surface Properties Manual Surface Analysis Causal Graphs Automatic Conclusion References

ps. An example where this analysis does NOT apply . . .

Recall slide 23: (a local minimum)

CD

B

C

B

A
A

Initial State Goal State

The causal graph in the Blocksworld:

on−A on−B on−C

clear−A clear−B clear−C
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Automatic Surface Analysis is (Very!) Hard

Terminology: global search space surface analysis considers the entire
state space; local search space surface analysis considers one particular
state s.

→ Both kinds of analysis are, for h+, as hard as planning itself:

Theorem (Automatic Analysis is Hard). Deciding whether a planning
task contains a dead end is PSPACE-complete; same, under h+, for
local minima and for deciding whether exd(s) ≤ K for all states s.

Deciding whether a state s is a dead end is PSPACE-complete; same,
under h+, for local minima and for deciding whether exd(s) ≤ K.

(Proof omitted.)

→ AND we must perform this analysis in very little runtime. (As a
pre-process to the actual search)
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To the Rescue: Causal Graphs!

Fast automatic search space surface analysis!

We can test very fast (split seconds) whether or not our theorem’s
(slide 47) prerequisite holds.

This is basically a sufficient condition/special case where answering
the questions on the previous slide is easy.

Does this yield useful information in many domains?

→ As stated: no. The criterion applies in hardly any domain. (Of the
table on slide 28, it applies only in Logistics).

But:

The result can be generalized.

We can design a local variant of the criterion and apply it to sample
states, thus obtaining relevant information about any domain!
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The TorchLight Tool

Proof Structure: (generalizes theorem in previous section)

(A) Given optimal relaxed plan for s, sufficient criterion for “s is no local
minimum”.

(B) Sufficient criterion for “(A) will apply to all s”.

Global Analysis:

Test criterion (B).

Only sufficient, not necessary.

And what about domains with local minima?

Approximate Local Analysis:

Randomly sample states s.

Generate a (not necessarily optimal) relaxed plan; test criterion (A).

Success rate = percentage of s where criterion applies.
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Hoffmann vs. TorchLight

Airport

Blocksworld−Arm

Depots

Driverlog

Freecell

Mprime

Mystery

Pipesworld−NoTank

Pipesworld−Tank

PSR

Rovers

Satellite

Zenotravel

Simple−Tsp

Transport

Tyreworld

Elevators

Ferry

Gripper

Hanoi

Logistics

Miconic−STRIPS

Movie

Grid

Blocksworld−NoArm

Zenotravel [95]

Depots [81]

Grid [80]

Pipesworld−NoTank [76]

Blocksworld−NoArm [57]

Freecell [56]

PSR [50]

Mprime [49]

Pipesworld−Tank [40]

Mystery [39]

Blocksworld−Arm [30]

Airport [0]

Hanoi [0]

Ferry [100]

Gripper [100]

Elevators [100]

Logistics [100]

Miconic−STRIPS [100]

Movie [100]

Driverlog [100]

Rovers [100]

Satellite [100]

Simple−Tsp [100]

Transport [100]

Tyreworld [100]

Success rate: average
per-domain from single
sample state
per-instance.
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Hoffmann vs. TorchLight

Airport

Blocksworld−Arm

Depots

Driverlog

Freecell

Mprime

Mystery

Pipesworld−NoTank

Pipesworld−Tank

PSR

Rovers

Satellite

Zenotravel

Simple−Tsp

Transport

Tyreworld

Elevators

Ferry

Gripper

Hanoi

Logistics

Miconic−STRIPS

Movie

Grid

Blocksworld−NoArm

Zenotravel [95]

Depots [81]

Grid [80]

Pipesworld−NoTank [76]

Blocksworld−NoArm [57]

Freecell [56]

PSR [50]

Mprime [49]

Pipesworld−Tank [40]

Mystery [39]

Blocksworld−Arm [30]

Airport [0]

Hanoi [0]

Ferry [100]

Gripper [100]

Elevators [100]

Logistics [100]

Miconic−STRIPS [100]

Movie [100]

Driverlog [100]

Rovers [100]

Satellite [100]

Simple−Tsp [100]

Transport [100]

Tyreworld [100]

Not all domains are
“fully recognized” . . .

. . . mostly because
Hoffmann is too
optimistic.
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Hoffmann vs. TorchLight

Airport

Blocksworld−Arm

Depots

Driverlog

Freecell

Mprime

Mystery

Pipesworld−NoTank

Pipesworld−Tank

PSR

Rovers

Satellite

Zenotravel

Simple−Tsp

Transport

Tyreworld

Elevators

Ferry

Gripper

Hanoi

Logistics

Miconic−STRIPS

Movie

Grid

Blocksworld−NoArm

Zenotravel [95]

Depots [81]

Grid [80]

Pipesworld−NoTank [76]

Blocksworld−NoArm [57]

Freecell [56]

PSR [50]

Mprime [49]

Pipesworld−Tank [40]

Mystery [39]

Blocksworld−Arm [30]

Airport [0]

Hanoi [0]

Ferry [100]

Gripper [100]

Elevators [100]

Logistics [100]

Miconic−STRIPS [100]

Movie [100]

Driverlog [100]

Rovers [100]

Satellite [100]

Simple−Tsp [100]

Transport [100]

Tyreworld [100]

Some new domains are
“fully recognized” . . .

. . . mostly because
Hoffmann is too
pessimistic.
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Hoffmann vs. TorchLight

Airport

Blocksworld−Arm

Depots

Driverlog

Freecell

Mprime

Mystery

Pipesworld−NoTank

Pipesworld−Tank

PSR

Rovers

Satellite

Zenotravel

Simple−Tsp

Transport

Tyreworld

Elevators

Ferry

Gripper

Hanoi

Logistics

Miconic−STRIPS

Movie

Grid

Blocksworld−NoArm

Zenotravel [95]

Depots [81]

Grid [80]

Pipesworld−NoTank [76]

Blocksworld−NoArm [57]

Freecell [56]

PSR [50]

Mprime [49]

Pipesworld−Tank [40]

Mystery [39]

Blocksworld−Arm [30]

Airport [0]

Hanoi [0]

Ferry [100]

Gripper [100]

Elevators [100]

Logistics [100]

Miconic−STRIPS [100]

Movie [100]

Driverlog [100]

Rovers [100]

Satellite [100]

Simple−Tsp [100]

Transport [100]

Tyreworld [100]

Success rates are more
than a “yes/no”
answer!
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TorchLight Performance Summary

Very fast. (Almost always, Fast Downward’s “clever
STRIPS-2-FDR” translator → Chapter 2, which TorchLight uses to
translate PDDL input to FDR, takes more runtime.)

Global analysis succeeds (answer “I proved that there are no local
minima at all in this planning task”) in 4 domains of the table on
slide 28.

Approximate local analysis yields success rates that nicely
correspond to how challenging the domain is for planners using
delete relaxation heuristics (cf. previous slide).

→ Concretely, comparing runtime distributions for benchmark sets A
vs. B whose success rate is below (A) vs. above (B) a threshold T ,
the average runtime of FF is statistically significantly smaller in A
than in B. The same goes for LAMA.
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Summary

Analyzing the search space surface is one methodology (amongst others)
to understand the behavior of a heuristic function and therewith the
performance of heuristic search.

Usually, the analysis is manual; if we manage to make it automatic, then
we can use it for automatic solver self-configuration. Automatic search
space surface analysis is as hard as the planning problem itself.

A dead end is a state from which the goal cannot be reached anymore; the
dead end is recognized if its heuristic value is ∞.

From a local minimum, we cannot improve the heuristic value without
temporarily making it worse; from benches, we can. The exit distance
measures the lookahead needed to improve the heuristic value.

In many planning benchmarks, the exit distance from local minima and/or
benches under h+ is bounded by a small constant. This explains the
success of delete relaxation heuristics.

Such bounds can be proved based on properties of the causal graph and
value transitions of the planning task. This forms the basis of the
TorchLight tool, doing automatic search space surface analysis for h+.
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Reading

Where ‘Ignoring Delete Lists’ Works: Local Search Topology in
Planning Benchmarks [Hoffmann (2005)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/jair05b.pdf

Content: The main paper containing the hand-made analysis.
Introduces the relevant definitions of search space surface properties.
States the results in detail, and summarizes their proofs (the actual
detailed per-domain proofs are in a technical report the paper refers
to). Discusses my early unsuccessful work towards automatic
analysis, and overviews my (empirical) results on how well the
surface under hFF preserves the properties of h+.

An early short version [Hoffmann (2002)] is available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/aips02.ps.gz
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Reading

Analyzing Search Topology Without Running Any Search: On the
Connection Between Causal Graphs and h+ [Hoffmann (2011a)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/jair11.pdf

Content: The main paper containing the automatic analysis. Proves
the connection of h+ search space surface properties to properties of
the causal graph. Devises and evaluates the TorchLight tool.

A short version [Hoffmann (2011b)] is available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/icaps11.pdf

This short paper provides a reasonably accessible summary of the
full results described in the long paper.
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