
Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

AI Planning
3. PDDL

How to Explain Your Problems to a Computer

Jörg Hoffmann

Winter Term 2019/2020

Jörg Hoffmann AI Planning Chapter 3: PDDL 1/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

Agenda

1 Introduction

2 Schematic Encodings

3 PDDL Grammar

4 History and Extensions [for Reference]

5 Conclusion

Jörg Hoffmann AI Planning Chapter 3: PDDL 2/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

PDDL

What is PDDL?

Once you decided for STRIPS/FDR/whatever, you still need to
design an input syntax that your computer can read.
That input syntax in the planning area is PDDL: The Planning
Domain Definition Language.
In particular, PDDL is used in the International Planning
Competitons (IPC).

Why PDDL? It’s just a fact of life:

→ PDDL is the de-facto standard input language in the planning area.

→ To complete this course (and for doing a BSc/MSc/PhD in the FAI
group) you must know this language.

(When I started to work in planning, everybody used their own input
language = needing an interpreter every time you talk to your neighbor.)

Jörg Hoffmann AI Planning Chapter 3: PDDL 4/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

Our Agenda for This Chapter

2 Schematic Encodings: Explains the main design principle behind
PDDL.

3 PDDL Grammar: Outlines the syntax, with example snippets.

4 History and Extensions: Summary of what’s out there and how we
got there. (I’ll skip this and leave it for you to read at home; and
no, it’s not exam-relevant.)

Jörg Hoffmann AI Planning Chapter 3: PDDL 5/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

Schematic Encodings

Schematic encodings use variables that range over objects:

Predicates instead of STRIPS propositions. Arity: number of vars.

Action schemas instead of STRIPS actions. Arity: number of vars.

Analogy: propositional logic vs. predicate logic (PL1).

Set of objects in PDDL is finite!

→ Like predicate logic, PDDL describes the world in a schematic way
relative to a set of objects. This makes the encoding much smaller and
easier to write.

→ Most planners translate the schematic input into (propositional)
STRIPS in a pre-process, by instantiating the variables in all possible
ways. This is called grounding.

Jörg Hoffmann AI Planning Chapter 3: PDDL 7/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

Schematic Actions: Example

The schematic action:

x ∈ {car1 , car2}
y1 ∈ {SB ,KL},
y2 ∈ {SB ,KL}, y1 6= y2

({at(x, y1)}, {at(x, y2)}, {at(x, y1)})

corresponds to the actions:

({at(car1 ,SB)}, {at(car1 ,KL)}, {at(car1 ,SB)}),
({at(car1 ,KL)}, {at(car1 ,SB)}, {at(car1 ,KL)}),
({at(car2 ,SB)}, {at(car2 ,KL)}, {at(car2 ,SB)}),
({at(car2 ,KL)}, {at(car2 ,SB)}, {at(car2 ,KL)})

Jörg Hoffmann AI Planning Chapter 3: PDDL 8/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

Schematic Actions: Quantification

Example

∃x ∈ {A,B ,C} : at(x,SB) is a short-hand for?
at(A,SB)∨ at(B ,SB)∨ at(C ,SB).

Quantification in Formulas

Finite disjunctions ϕ(o1) ∨ · · · ∨ ϕ(on) represented as
∃x ∈ {o1, . . . , on} : ϕ(x).
Finite conjunctions ϕ(o1) ∧ · · · ∧ ϕ(on) represented as
∀x ∈ {o1, . . . , on} : ϕ(x).

Quantification over Effects

Finite list of conditional effects WHEN ϕ(oi) DO ψ(oi) represented as
∀x ∈ {o1, . . . , on} : WHEN ϕ(oi) DO ψ(oi).

Jörg Hoffmann AI Planning Chapter 3: PDDL 9/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

Questionnaire

Question!

Is the grounding process polynomial in the size of its input?

(A): Yes (B): No

→ If an action schema has k parameters, and there are n objects each of these
parameters can be instantiated with, then there are nk grounded actions. Same
for predicates. Grounding is exponential in operator and predicate arity.

In practice, this is often Ok, many domains have maximum arity 2 or 3.

However, this is NOT always so! (E.g., natural language generation
→ Next Chapter)

Grounding typically leads to more efficient planning in the cases where it is
feasible; in the other cases, lifted planning is needed.

There has been little research on lifted planning in the last 2 decades.

→ We are currently taking up such research in FAI: Instruction planning in
Minecraft!

Jörg Hoffmann AI Planning Chapter 3: PDDL 10/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

PDDL Basics

The Planning Domain Definition Language (PDDL):

Variants used by almost all implemented planning systems.

Supports a formalism comparable to what we have outlined above
(including schematic operators and quantification).

Syntax inspired by the Lisp programming language: e.g., prefix
notation for formulas

(and (or (on A B) (on A C))

(or (on B A) (on B C))

(or (on C A) (on A B)))

The planner input is separated into a domain file (predicates, types,
action schemas) and a problem file (objects, initial state, goal).

→ Some examples to get your feet wet:
http://fai.cs.uni-saarland.de/hoffmann/PlanningForDummies.zip

Jörg Hoffmann AI Planning Chapter 3: PDDL 12/30

http://fai.cs.uni-saarland.de/hoffmann/PlanningForDummies.zip


Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

PDDL Domain Files

A PDDL domain file consists of:

1. (define (domain <name>)

2. A requirements definition (use “:adl :typing” by default).

3. Definitions of types (each object variable has a type).

4. Definitions of predicates.

5. Definitions of action schemas.

Jörg Hoffmann AI Planning Chapter 3: PDDL 13/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

Domain File Types and Predicates: Example Blocksworld

(define (domain Blocksworld)

(:requirements :adl :typing)

(:types block - object

blueblock smallblock - block)

(:predicates (on ?x - smallblock ?y - block)

(ontable ?x - block)

(clear ?x - block))

Jörg Hoffmann AI Planning Chapter 3: PDDL 14/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

Action Schema: Example Blocksworld

(:action fromtable

:parameters (?x - smallblock ?y - block)

:precondition (and (not (= ?x ?y))

(clear ?x)

(ontable ?x)

(clear ?y))

:effect

(and (not (ontable ?x))

(not (clear ?y))

(on ?x ?y)))

Jörg Hoffmann AI Planning Chapter 3: PDDL 15/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

PDDL Grammar: Action Schema

(:action <name>

List of parameters:

(?x - type1 ?y - type2 ?z - type3)

The precondition is a formula:

<predicate>

(and <formula> ... <formula>)

(or <formula> ... <formula>)

(not <formula>)

(forall (?x1 - type1 ... ?xn - typen) <formula>)

(exists (?x1 - type1 ... ?xn - typen) <formula>)

Jörg Hoffmann AI Planning Chapter 3: PDDL 16/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

PDDL Grammar: Action Schema, ctd.

The effect is a combination of literals, conjunction, conditional
effects, and quantification over effects:

<predicate>

(not <predicate>)

(and <effect> ... <effect>)

(when <formula> <effect>)

(forall (?x1 - type1 ... ?xn - typen) <effect>)

Jörg Hoffmann AI Planning Chapter 3: PDDL 17/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

PDDL Problem Files

A PDDL problem file consists of:

1. (define (problem <name>)

2. (:domain <name>)

– to which domain does this problem belong?

3. Definitions of objects belonging to each type.

4. Definition of the initial state (list of ground predicates initially true).

5. Definition of the goal (a formula like action preconditions).

Jörg Hoffmann AI Planning Chapter 3: PDDL 18/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

Problem File: Example Blocksworld

(define (problem example)

(:domain Blocksworld)

(:objects a b c - smallblock)

d e - block

f - blueblock)

(:init (clear a) (clear b) (clear c)

(clear d) (clear e) (clear f)

(ontable a) (ontable b) (ontable c)

(ontable d) (ontable e) (ontable f))

(:goal (and (on a d) (on b e) (on c f)))

)

Jörg Hoffmann AI Planning Chapter 3: PDDL 19/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

Example Run of FF

In sub-directory “hanoi” of:

http://fai.cs.uni-saarland.de/hoffmann/PlanningForDummies.zip

Executing “../ff -o domain.pddl -f p-n3.pddl” gives:

ff: found legal plan as follows

step 0: MOVE D1 D2 PEG3

1: MOVE D2 D3 PEG2

2: MOVE D1 PEG3 D2

3: MOVE D3 PEG1 PEG3

4: MOVE D1 D2 PEG1

5: MOVE D2 PEG2 D3

6: MOVE D1 PEG1 D2

0.00 seconds total time

Jörg Hoffmann AI Planning Chapter 3: PDDL 20/30

http://fai.cs.uni-saarland.de/hoffmann/PlanningForDummies.zip


Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

PDDL History

The development of PDDL is mainly driven by the International
Planning Competition (IPC):

1998: PDDL [McDermott et al. (1998)]

STRIPS and ADL.

2000: “PDDL subset for the 2000 competition” [Bacchus (2000)]

STRIPS and ADL.

2002: PDDL2.1, Levels 1-3 [Fox and Long (2003)]

Numeric and temporal planning.

2004: PDDL2.2 [Hoffmann and Edelkamp (2005)]

Derived predicates and timed initial literals.

2006: PDDL3 [Gerevini et al. (2009)]

Soft goals and trajectory constraints.

Jörg Hoffmann AI Planning Chapter 3: PDDL 22/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

PDDL in 2002

Maria Fox and Derek Long promoted numeric and temporal planning:

PDDL2.1 level 1: As in IPC’00.

PDDL2.1 level 2: Level 1 plus numeric fluents. Comparisons
between numeric expressions are allowed as logical atoms:

(>= (fuel) (* (dist ?x ?y) (consumption)))

Effects can modify fluents by numeric expressions:

(decrease (fuel) (* (dist ?x ?y) (consumption)))

PDDL2.1 level 3: Level 2 extended with action durations. Actions
take an amount of time given by the value of a numeric expression:

(= ?duration (/ (dist ?x ?y) (speed))

Conditions/effects are applied at either start or end of action:

(at start (not (at ?x))) (at end (at ?y))

Jörg Hoffmann AI Planning Chapter 3: PDDL 23/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

PDDL in 2004

PDDL2.1 was (and is still today) considered a challenge, so Stefan
Edelkamp and I made only two relatively minor language extensions for
PDDL2.2:

Derived predicates: Predicates that are not affected by the actions.
Their value is instead derived via a set of derivation rules of the
form IF ϕ(x) THEN P (x).
Example: Flow of current in an electricity network.

(:derived (fed ?x)

(exists ?y (and (connected ?x ?y) (fed ?y))))

Timed Initial Literals: Literals that will become true, independently
of the actions taken, at a pre-specified point in time.
Example: Opening/closing times.

(at 9 (shop-open)) (at 18 (not (shop-open)))

Jörg Hoffmann AI Planning Chapter 3: PDDL 24/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

PDDL in 2006

Actually, Gerevini & Long thought that PDDL2.2 is still not enough, and
extended it with various complex constructs for expressing preferences
over soft goals, as well as trajectory constraints, to obtain PDDL3 . . .

. . . which I am not gonna describe here :-)

In 2008, Malte Helmert offered to introduce an FDR encoding as the
front-end language.

Only few people wanted to invest the work of replacing their planner
front-end, and the language ended up not being used. (Legacy system
STRIPS, remember?)

Jörg Hoffmann AI Planning Chapter 3: PDDL 25/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

PDDL for Planning under Uncertainty

There are numerous formalism variants, and numerous people made their
own private PDDL extensions as needed for their work.
→ PDDL is less standardized for planning under uncertainty.

As used in the uncertainty tracks of the IPC:

2004, 2006, 2008: Probabilistic PDDL (PPDDL) [Younes et al.

(2005)]. Probability distributions over action effects:
(probabilistic 0.166 (dice-1)

0.166 (dice-2) ... 0.17 (dice-6))

2006, 2008: PPDDL with non-deterministic extension [Bonet and

Givan (2006)]. Non-deterministic action effects:
(oneof (dice-1) (dice-2) ... (dice-6))

2011: Relational Dynamic Influence Diagram Language (RDDL)
[Sanner (2010)]. Provides support for stochastic environment
behaviour, e.g. traffic.

Jörg Hoffmann AI Planning Chapter 3: PDDL 26/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

Summary

PDDL is the de-facto standard for classical planning, as well as
extensions to numeric/temporal planning, soft goals, trajectory
constraints.

PDDL is used in the International Planning Competition (IPC).

PDDL uses a schematic encoding, with variables ranging over
objects similarly as in predicate logic. Most implemented systems
use grounding to transform this into a propositional encoding.

PDDL has a Lisp-like syntax.

Jörg Hoffmann AI Planning Chapter 3: PDDL 28/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

References I

Fahiem Bacchus. Subset of PDDL for the AIPS2000 Planning Competition. The
AIPS-00 Planning Competition Comitee, 2000.

Blai Bonet and Robert Givan. 5th international planning competition:
Non-deterministic track – call for participation. In Proceedings of the 5th
International Planning Competition (IPC’06), 2006.

Maria Fox and Derek Long. PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

Alfonso Gerevini, Patrik Haslum, Derek Long, Alessandro Saetti, and Yannis
Dimopoulos. Deterministic planning in the fifth international planning competition:
PDDL3 and experimental evaluation of the planners. Artificial Intelligence,
173(5-6):619–668, 2009.

Jörg Hoffmann and Stefan Edelkamp. The deterministic part of ipc-4: An overview.
Journal of Artificial Intelligence Research, 24:519–579, 2005.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela
Veloso, Daniel Weld, and David Wilkins. The PDDL Planning Domain Definition
Language. The AIPS-98 Planning Competition Comitee, 1998.

Jörg Hoffmann AI Planning Chapter 3: PDDL 29/30



Introduction Schematic Encodings PDDL Grammar History and Extensions Conclusion References

References II

Scott Sanner. Relational dynamic influence diagram language (rddl): Language
description. Available at
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf, 2010.

Håkan L. S. Younes, Michael L. Littman, David Weissman, and John Asmuth. The
first probabilistic track of the international planning competition. Journal of
Artificial Intelligence Research, 24:851–887, 2005.

Jörg Hoffmann AI Planning Chapter 3: PDDL 30/30

http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf

	Introduction
	

	Schematic Encodings
	

	PDDL Grammar
	

	History and Extensions [for Reference]
	

	Conclusion
	

	
	References

