Al Planning
7. Heuristic Search
How to Avoid Having to Look at a Gazillion States

Jorg Hoffmann

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

Winter Term 2019/2020

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 1/40

Agenda

@ Introduction

© What Are Heuristic Functions?

© How to Use Heuristic Functions?
@ How to Obtain Heuristic Functions?

© Conclusion

Jorg Hoffmann Al Planning

Chapter 7: Heuristic Search

2/40

Introduction
©000

Reminder: Our Long-Term Agenda

Fill in (some) details on these choices:

@ Search space: Progression vs. regression.

@ Search algorithm: Uninformed vs. heuristic; systematic vs. local.

@ Search control: Heuristic functions and pruning methods.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 4/40

Introduction
0e00

Looking at a Gazillion States?

Talk to Parrot I:l
Buy a Dog I:I
Go To Class El
Buy Tuna Fish :I
Buy Arugula El
Buy Milk [:::}__.> IIII
[
Sit Some More I:I
Read A Book I:I

— Use heuristic function to guide the search towards the goal!

Go To Pet Store

Go To School

Start [Go To Supermarket

Go To Sleep

Read A Book

ajainln

Sit in Chair

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 5/40

Introduction
coeo

Heuristic Search

< o
¥ sy,
\\-i[eb
-~~~ _ _COSt estimar. T~ |
.. -—-- ate S o goa
nit ‘*—\b\;\\
st est'\m)a)fe_kl --- ’,’/.

coO

xe

N e
SO
‘6//

o

— Heuristic function h estimates the cost of an optimal path from a
state s to the goal; search prefers to expand states s with small A(s).

Live Demo vs. Breadth-First Search:
http://qiao.github.io/PathFinding. js/visual/

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 6/40

http://qiao.github.io/PathFinding.js/visual/

Introduction
oooe

Our Agenda for This Chapter

@ What Are Heuristic Functions? Gives the basic definition, and
introduces a number of important properties that we will be
considering throughout the course.

© How to Use Heuristic Functions? Recaps the basic heuristic
search algorithms from the Al Core Course, and adds a few new
ones. Gives a few planning-specific algorithms and explanations.

@ How to Obtain Heuristic Functions? Recaps the concept of
“Relaxation” from the Al Core Course: A basic explanation how
heuristic functions are derived in practice.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 7/40

What's a Heuristic?
®0000000

Heuristic Functions

Definition (Heuristic Function). Let II be a planning task with state
space O = (S, L,c, T, I,S%). A heuristic function, short heuristic, for
II is a function h : S + R U {oc}. Its value h(s) for a state s is
referred to as the state’s heuristic value, or h value.

Definition (Remaining Cost, h*). Let Il be a planning task with state
space O = (S, L,c,T,I,S5%). For a state s € S, the state’s remaining
cost is the cost of an optimal plan for s, or oo if there exists no plan for
s. The perfect heuristic for I, written h*, assigns every s € S its
remaining cost as the heuristic value.

— Heuristic functions h estimate remaining cost h*. J

— These definitions apply to both, STRIPS and FDR.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 9/40

What's a Heuristic?
0®000000

Heuristic Functions: The Eternal Trade-Off

What does it mean, “estimate remaining cost”?

@ In principle, the “estimate” is an arbitrary function. In practice, we
want it to be accurate (aka: informative), i.e., close to the actual
remaining cost.

@ We also want it to be fast, i.e., a small overhead for computing h.
@ These two wishes are in contradiction! Extreme cases?

— h = 0: No overhead at all, completely un-informative. h = h*:
Perfectly accurate, overhead=solving the problem in the first place.

— We need to trade off the accuracy of A against the overhead of
computing it. J

— What exactly is “accuracy”? How does it affect search performance?
Interesting and challenging subject! We'll consider this in

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 10/40

What's a Heuristic?
©00®00000

Questionnaire

For root-finding on a map, the straight-line distance heuristic
certainly has small overhead. But is it accurate?

(A): (B):

(C): Sometimes (D): Maybe

— Depends on the map, and our initial location A and goal location B:

@ If there is a direct road from A to B, then straight-line distance is accurate
(exact, in case the road has no curves at all).
@ If, say, A is central Africa and B is Patagonia, and we don't have boats

capable of crossing an ocean, then the heuristic suggests to move to the
African south-east coast while the actual solution is via Asia and North

America . ..

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 11/40

What's a Heuristic?
00080000

Properties of Individual Heuristic Functions

Definition (Safe/Goal-Aware/Admissible/Consistent). Let II be a
planning task with state space Oy = (S, L,c,T,1,S%), and let h be a
heuristic for I1. The heuristic is called:

e safe if, for all s € S, h(s) = oo implies h*(s) = oo,
o goal-aware if h(s) = 0 for all goal states s € S¢;
e admissible if h(s) < h*(s) for all s € S;

o consistent if h(s) < h(s') + c(a) for all transitions s < s'.

— Relationships:

Proposition. Let II be a planning task, and let h be a heuristic for I1. If
h is admissible, then h is goal-aware. If h is admissible, then h is safe. If
h is consistent and goal-aware, then h is admissible. No other
implications of this form hold.

Proof. First two claims: Easy. Third claim: Next slide.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 12/40

What's a Heuristic?
0000000

Consistency: lllustration

Consistency = “heuristic value decrases by at most c(a)”:

h(s) c(a)

h(s’)

Consistent and goal-aware implies admissible: Let s be a state. h*(s) is
the cost of an optimal solution path for s. Induction over that path, backwards from

the goal: (on an optimal path, h* decreases by exactly c(a) in each step)
’ h*(s)

h(s)
. — h*

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 13/40

What's a Heuristic?
00000800

Properties of Individual Heuristic Functions, ctd.

Examples:

@ Is h =Manhattan distance in the 15-Puzzle safe/goal-aware/admissible/
consistent? All yes. Easy for goal-aware and safe (h is never oo).
Consistency: Moving a tile can't decrease h by more than 1.

@ Is h =straight line distance safe/goal-aware/admissible/consistent? All yes.
Easy for goal-aware and safe (h is never oo). Consistency: If you drive
100km, then straight line distance can't decrease by more than 100km.

@ An admissible but inconsistent heuristic: To-Moscow with h(SB) = 1000,
h(KL) = 100.

— In practice, most heuristics are safe and goal-aware, and admissible heuristics
are typically consistent.

What about inadmissible heuristics?

@ Inadmissible heuristics typically arise as approximations of admissible
heuristics that are too costly to compute. (Examples:)

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 14/40

What's a Heuristic?
00000080

Domination Between Heuristic Functions

Definition (Domination). Let IT be a planning task, and let h and h'
be admissible heuristics for II. We say that h' dominates h if h < I/, i.e.,
for all states s in II we have h(s) < h/(s).

— h' dominates h = “h/ provides a lower bound at least as good as h".)

Remarks:

@ Example: h/ =Manhattan Distance vs. h =Misplaced Tiles in
15-Puzzle: Each misplaced tile accounts for at least 1 (typically,
more) in h'.

@ h* dominates every other admissible heuristic.

@ Modulo tie-breaking, the search space of A* under A’ can only be
smaller than that under h. (See [Holte (2010)] for details)

@ In , we will consider much more powerful concepts,
comparing entire families of heuristic functions.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 15/40

What's a Heuristic?
©0000000e

Additivity of Heuristic Functions

Definition (Additivity). Let II be a planning task, and let hq, ..., h, be
admissible heuristics for I1. We say that hq, ..., h, are additive if

hi 4+ ---+ h,, is admissible, i.e., for all states s in II we have
hi(s) 4+ -+ hn(s) < h*(s).

— An ensemble of heuristics is additive if its sum is admissible. J

Remarks:

@ Example: h; considers only tiles 1 ...7, and hy considers only tiles 8
... 15, in the 15-Puzzle: The two estimates are then, intuitively,
“independent” .

(h1 and hgy are orthogonal projections)

@ We can always combine hq,..., h, admissibly by taking the max.
Taking > is much stronger; in particular, > dominates max.

@ In , we will devise a third, strictly more general,
technique to admissibly combine heuristic functions.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 16/40

How to Use it?
®00000000

What Works Where in Planning?

Blind (no h) vs. heuristic:

e For satisficing planning, heuristic search vastly outperforms blind
algorithms pretty much everywhwere.

e For optimal planning, heuristic search also is better (but the
difference is not as huge).
Systematic (maintain all options) vs. local (maintain only a few) :

@ For satisficing planning, there are successful instances of each.

@ For optimal planning, systematic algorithms are required.

— Here, we briefly cover the search algorithms most successful in
planning. For more details (in particular, for blind search), refer to the Al
Core Course.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 18/40

How to Use it?
0®0000000

Reminder: Greedy Best-First Search and A*

Duplicate elimination omitted, uses Al Core Course notation:

function Greedy Best-First Search [A*](problem) returns a solution, or failure
node < a node n with n.state=problem.InitialState
frontier <— a priority queue ordered by ascending h [g + 1], only element n
loop do
if Empty?(frontier) then return failure
n < Pop(frontier)
if problem.GoalTest(n.State) then return Solution(n)
for each action a in problem.Actions(n.State) do
n' < ChildNode(problem,n,a)
Insert(n/, h(n') [g(n) + h(n)], frontier)

— Greedy best-first search explores states by increasing heuristic value h.
A* explores states by increasing plan-cost estimate g + h.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 19/40

How to Use it?
00®000000

Greedy Best-First Search: Remarks

Properties:

e Complete? Yes, with duplicate elimination. (If h(s) = oo states are
pruned, h needs to be safe.)

@ Optimal? No. (Even for perfect heuristics! E.g., say the start state has two
transitions to goal states, one of which costs a million bucks while the other one

is for free. Nothing keeps Greedy Best-First Search from choosing the bad one.)

Technicalities:

@ Duplicate elimination: Insert child node n’ only if n’.State is not
already contained in explored U States(frontier). (Cf. Al Core
Course)

Bottom line: Fast but not optimal = satisficing planning.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 20/40

How to Use it?
000®00000

A*: Remarks

Properties:

o Complete? Same as greedy best-first search.
@ Optimal? Yes, for admissible heuristics.

Technicalities:

@ "Plan-cost estimate” g(s) + h(s) known as f-value f(s) of s.
— If g(s) is taken from a cheapest path to s, then f(s) is a lower
bound on the cost of a plan through s.

e Duplicate elimination: If n’.State¢explored U States(frontier), then
insert ’; else, insert n’ only if the new path is cheaper than the old
one, and if so remove the old path. (Cf. Al Core Course)

Bottom line: Optimal for admissible h = optimal planning,
with such h.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 21/40

How to Use it?
0000e®0000

Weighted A*

Duplicate elimination omitted, uses Al Core Course notation:

function Weighted A* (problem) returns a solution, or failure
node < a node n with n.state=problem.InitialState
frontier < a priority queue ordered by ascending g + Wh, only element n
loop do
if Empty?(frontier) then return failure
n < Pop(frontier)
if problem.GoalTest(n.State) then return Solution(n)
for each action a in problem.Actions(n.State) do
n' < ChildNode(problem,n,a)
Insert(n’, [g(n') + Wxh(n'), frontier)

— Weighted A™* explores states by increasing weighted-plan-cost
estimate g + W x h. J

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 22/40

How to Use it?
00000000

Weighted A*: Remarks

The weight W € R;{ is an algorithm parameter:
@ For W =0, weighted A* behaves like? Uniform-cost search, i.e.,
“cheapest-first on path costs g".
@ For W =1, weighted A" behaves like? A*.
o For W = 10'% weighted A* behaves like? Greedy best-first search
(i.e., if W is large enough, the “g" in “g+ W x h" doesn't matter
anymore.

Properties:

@ For W > 1, weighted A* is bounded suboptimal.

— If h is admissible, then the solutions returned are at most a
factor W more costly than the optimal ones.

Bottom line: Allows to interpolate between greedy best-first search and
A*, trading off plan quality against computational effort.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 23/40

How to Use it?
000000e00

Hill-Climbing

function Hill-Climbing returns a solution
node < a node n with n.state=problem.InitialState
loop do
if problem.GoalTest(n.State) then return Solution(n)
N < the set of all child nodes of n
n <— an element of N minimizing h /* (random tie breaking) */

Remarks:

@ Is this complete or optimal? No.

@ Can easily get stuck in local minima where immediate improvements
of h(n) are not possible.

e Many variations: tie-breaking strategies, restarts, ... (cf. Al Core
Course)

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 24/40

How to Use it?
000000080

Enforced H|||—C||mb|ng [Hoffmann and Nebel (2001)]

function Enforced Hill-Climbing returns a solution
node < a node n with n.state=problem.InitialState
loop do
if problem.GoalTest(n.State) then return Solution(n)
Perform breadth-first search for a node n’ s.t. h(n') < h(n)
n <+ n'

Remarks:

@ Is this optimal? No.

@ Is this complete? See next slide.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 25/40

How to Use it?
00000000e

Questionnaire

function Enforced Hill-Climbing returns a solution
node < a node n with n.state=problem.|InitialState
loop do
if problem.GoalTest(n.State) then return Solution(n)
Perform breadth-first search for a node n’ s.t. h(n’) < h(n)
n<n

Assume that i(s) = 0 if and only if s is a goal state. Is Enforced
Hill-Climbing complete?

— Only when restricting the input to planning tasks that do not contain any reachable
dead-end state s where h(s) # oo:
@ If there is such a state s, then the current node n may at some point end up
containing that state, in which case the algorithm will not find a solution.
@ Say there are no such states. Say the current node n contains the non-goal state
s. Then h(s) > 0, a goal state s’ is reachable from s, and 0 = h(s’) < h(s). So
breadth-first search will terminate with success.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 26/40

How to Obtain it?
©00000000

Heuristic Functions from Relaxed Problems

Gothenburg
o

Edinburgh....

Denmark oCopenhagen

United
& Kingdom
S\ isle of Man 238 Xe
Dubl
Jo " Liverpoolo nt
Ireland . g
Sirmingtiam Amsterdam ¢ Bremen
Cork :
v Bnstol *London Nelher!?nus
: > A ol
“Bel < Colo
I Belgium/ 37" - Germany
5 ~
7= Frankfurt
L s w7 Prague

our,

. Czech Republic

u% is! xf_} Ny =

Saarbruecken Mugieh 1™ \ienao &
- hZufich. !
3 e N e

Nantes e T Austria

g

Problem II: Find a route from Saarbruecken To Edinburgh.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 28/40

How to Obtain it?
©00000000

Heuristic Functions from Relaxed Problems

Edinburgh

K

X

Saarbruecken

Relaxed Problem II': Throw away the map.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search

28/40

How to Obtain it?
©00000000

Heuristic Functions from Relaxed Problems

Edinburgh

Saarbruecken

Heuristic function h: Straight line distance.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search

28/40

How to Obtain it?
0®0000000

How to Relax

P Ng U {oo}
hp

7)/
|

([J

hp

@ You have a class P of problems, whose perfect heuristic 13, you wish
to estimate.

@ You define a class P’ of simpler problems, whose perfect heuristic
hp, can be used to estimate h.

@ You define a transformation — the relaxation mapping R — that
maps instances II € P into instances II' € P’.

@ Given II € P, you let I := R(II), and estimate h}(II) by A}, (II).

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 29/40

Relaxation in Route-Finding

Gotnenourg

Edinburgh s..

Denmark OCoperhagen

Oupin
Ireland °

Franidut

5 7
Saarbruecken

Laugen, -
g

2

Jorg Hoffmann

Problem class P: Route finding.

How to Obtain it?
00®000000

Pl

Edinburgh

Saarbruecken

Perfect heuristic h}, for P: Length of a shortest route.

Simpler problem class P’: Route finding on an empty map.

Perfect heuristic h},, for P’: Straight-line distance.

Transformation R: Throw away the map.

Al Planning

Chapter 7: Heuristic Search

30/40

How to Obtain it?
000®00000

How to Relax During Search: Overview

Attention! Search uses the real (un-relaxed) II. The relaxation is applied only
within the call to h(s)!!!

Problem I —>1 Heuristic Search Solution to IT

state s h(s) = hix(R(I1y))

@ Here, 11, is IT with initial state replaced by s, i.e., I = (P, A, I,G)
changed to (P, A, s,G): The task of finding a plan for search state s.

@ A common student mistake is to instead apply the relaxation once to the
whole problem, then doing the whole search “within the relaxation”.

@ Slides 34 and 32 illustrate the correct search process in detail.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 31/40

How to Obtain it?
0000®0000

How to Relax During Search: Ignoring Deletes

Real problem:

G% @ Initial state I: AC; goal G: AD.
@ Actions A: pre, add, del.
® L L 4 ®) ’
A B Cﬂ D @ drXY, loX,ulX.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
/

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 32/40

How to Obtain it?
0000®0000

How to Relax During Search: Ignoring Deletes

Relaxed problem:

G% @ State s: AC,; goal G: AD.
° PY ‘-4 PY : zitlons_gl-: pre, add.
A B c® b (5) =5: e.g.

(drAB,drBC,drCD,loC,ulD).

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
/

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 32/40

How to Obtain it?
0000®0000

How to Relax During Search: Ignoring Deletes

Real problem:

@ State s: BC, goal G: AD
Py P .‘ﬂ ° Actio:rzg: pre, add, del.
A B C D

@ AC — BC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
|

|

Jorg Hoffmann Al Planning

Chapter 7: Heuristic Search

32/40

How to Obtain it?
0000®0000

How to Relax During Search: Ignoring Deletes

Relaxed problem:

@ State s: BC, goal G: AD.
° PY ° PY -} Aitlons A: pre, add.
A @ h7(s)=5: eg.
A B C D
(drBA, drBC,drCD,loC,ulD)
Greedy best-first search:

(tie-breaking: alphabetic)

We are here
|

Jorg Hoffmann Al Planning

Chapter 7: Heuristic Search 32/40

How to Obtain it?
0000®0000

How to Relax During Search: Ignoring Deletes

Real problem:

@ @ State s: CC, goal G: AD.
Py Py .‘ﬂ ° Actio;rsBél: pre, add, del.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
\

i drAB drBC \‘6
AC BC cc

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 32/40

How to Obtain it?
0000®0000

How to Relax During Search: Ignoring Deletes

Relaxed problem:

G% @ State s: C'C; goal G: AD.
Ps PY ‘-4 PY : zitlons_gl-: pre, add.
A B c® b () =5: e.g.

(drCB,drBA,drCD,loC,ulD).

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
\

5 / 5 V5
drAB drBC
——————0
AC BC cc

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 32/40

How to Obtain it?
0000®0000

How to Relax During Search: Ignoring Deletes

Real problem:

G% @ State s: AC, goal G: AD.
° PY ‘ﬂ PY : gctlf.ns A: pre, add, del.
A B C D uplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
\

AC
Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 32/40

How to Obtain it?
0000®0000

How to Relax During Search: Ignoring Deletes

Real problem:
@ State s: DC; goal G: AD.
@ Actions A: pre, add, del.
® L L L] N T

Greedy best-first search:
(tie-breaking: alphabetic)

We are_here

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 32/40

How to Obtain it?
0000®0000

How to Relax During Search: Ignoring Deletes

Relaxed problem:
@ State s: DC; goal G: AD.
° PY ° PY -} Aitlons A: pre, add.
A B ca p @ h'(s) =5: eg.
(drDC,drCB,drBA,loC,ulD).

Greedy best-first search:
(tie-breaking: alphabetic)

We are_here

5 drAB 5 drBC
O———0—>
AC BC

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 32/40

How to Obtain it?
0000®0000

How to Relax During Search: Ignoring Deletes

® L
A B

Greedy best-first search:
(tie-breaking: alphabetic)

We are_here

Jorg Hoffmann

Al Planning

Real problem:
@ State s: C'T; goal G: AD.

@ Actions A: pre, add, del.

e cC X or.

Chapter 7: Heuristic Search

32/40

How to Obtain it?
0000®0000

How to Relax During Search: Ignoring Deletes

Relaxed problem:

@% @ State s: CT); goal G: AD.
P PY PY Py : zitlons_zl-: pre, add.
A B C (s) =4: eg.

(drCB,drBA,drCD,ulD).

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

5 drAB 5 drBC
O———0—>
AC BC

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 32/40

How to Obtain it?
0000®0000

How to Relax During Search: Ignoring Deletes

Real problem:

E% @ State s: BC, goal G: AD.
Ps PN ‘ﬂ PY : gctul).nstA: tp:e, add, del.
A B C D uplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
X

5 drAB 5 drBC
o———@0—>
AC BC

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 32/40

How to Obtain it?
0000®0000

How to Relax During Search: Ignoring Deletes

Real problem:
G% @ Initial state I: AC; goal G: AD.
@ Actions A: pre, add, del.
@ drXY, loX,ulX.

°
®
[

oe

Greedy best-first search:
(tie-breaking: alphabetic)

5 drAB 5 drBC
oO———O0—>
AC BC

BC cc cT DT DD CD
Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 32/40

How to Obtain it?
00000e000

A Simple Planning Relaxation: Only-Adds

Example: “Logistics” ® ® ® ®
A B c® b

Facts P: {truck(z) |z € {A, B,C, D}}U pack(z) | z € {A,B,C, D, T}}.
Initial state I: {truck(A), pack(C)}.
Goal G: {truck(A), pack(D)}.
Actions A: (Notated as “precondition = adds, — deletes”)

o drive(z,y), where x,y have a road:

“truck(z) = truck(y), ~truck(z)".
o load(x): "truck(x), pack(x) = pack(T), ~pack(zx)".
o unload(x): “truck(z), pack(T) = pack(zx), ~pack(T)".

Only-Adds Relaxation: Drop the preconditions and deletes.
“drive(z,y): = truck(y)"; “load(x): = pack(T)"; “unload(z): = pack(zx)".

— Heuristic value for T is? 1: A plan for the relaxed task is (unload(D)).

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 33/40

How to Obtain it?
000000e00

How to Relax During Search: Only-Adds

Real problem:
@ Initial state I: AC; goal G: AD.
@ @ @ ® @ Actions A: pre, add, del.
A B C D @ drXY,loX,ulX.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
/

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 34/40

How to Obtain it?
000000e00

How to Relax During Search: Only-Adds

@ L L

A B C
Greedy best-first search:
(tie-breaking: alphabetic)

We are here
/

Jorg Hoffmann Al Planning

Relaxed problem:
@ State s: AC; goal G: AD.
@ Actions A: add.
@ h®(s) =1: (ulD).

Chapter 7: Heuristic Search

34/40

How to Obtain it?
000000e00

How to Relax During Search: Only-Adds

Real problem:

@ State s: BC, goal G: AD
‘-;] L]
B (on

@ Actions A: pre, add, del.
o AC Z45, BC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
|

1

\

|

1

\

|

|

|

1 graB o
""" ¢
AC BC

Jorg Hoffmann

Al Planning Chapter 7: Heuristic Search

34/40

How to Obtain it?
000000e00

How to Relax During Search: Only-Adds

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
|

|

\
1
1
|
\

1
|
1 graAB %
—
BC

AC

Jorg Hoffmann Al Planning

Relaxed problem:

@ State s: BC; goal G: AD.

@ Actions A: add.
@ h®(s) =2: (drBA,ulD).

Chapter 7: Heuristic Search

34/40

How to Obtain it?

How to Relax During Search: Only-Adds
Real problem:
E% @ State s: CC; goal G: AD.
@ @ "ﬂ L J @ Actions A: pre, add, del.
A B ¢ D e BC ¥ES cc.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
\

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 34/40

How to Obtain it?

How to Relax During Search: Only-Adds
Relaxed problem:
G% @ State s: CC; goal G: AD.
@ L .'j o @ Actions A: add.
A B c D @ h%(s) =2: (drBA,ulD).

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
\

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 34/40

How to Obtain it?
000000e00

How to Relax During Search: Only-Adds

Real problem:
@ State s: AC; goal G: AD.
@ @ @ ® @ Actions A: pre, add, del.
A B C D @ Duplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
\

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 34/40

How to Obtain it?
000000e00

How to Relax During Search: Only-Adds

E% Real problem:
@ State s: DC; goal G: AD.

@ @ "ﬂ L J @ Actions A: pre, add, del.
A B ¢ D e cCc 2 pe.

Greedy best-first search:
(tie-breaking: alphabetic)

We are_here

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 34/40

How to Obtain it?
000000e00

How to Relax During Search: Only-Adds

E% Relaxed problem:

@ State s: DC,; goal G: AD.
@ Actions A: add.
D @ h®(s) =2: (drBA,ulD).

o
A

- e
[]
[

Greedy best-first search:
(tie-breaking: alphabetic)

We are_here

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 34/40

How to Obtain it?

How to Relax During Search: Only-Adds
Real problem:
@% @ State s: CT; goal G: AD.
@ @ @ L J @ Actions A: pre, add, del.
A B C D e cc S e

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 34/40

How to Obtain it?
000000e00

How to Relax During Search: Only-Adds

mr@-i Relaxed problem:

3 @ State s: CT'; goal G: AD.
{ @ @ ® @ Actions A: add.
A B C D @ h%(s) =2: (drBA,ulD).

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 34/40

How to Obtain it?

How to Relax During Search: Only-Adds
E% Real problem:
@ State s: BC, goal G: AD.
@ @ .ﬂ ® @ Actions A: pre, add, del.
A B C D @ Duplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here
X

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 34/40

How to Obtain it?
000000e00

How to Relax During Search: Only-Adds

Real problem:
@ Initial state I: AC; goal G: AD.
@ Actions A: pre, add, del.
@ drXY,loX,ulX.

® L L
A B C

e

1 wa 1 araB 2 darBc 2
— 2 °

Greedy best-first search:
(tie-breaking: alphabetic)

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 34/40

How to Obtain it?
0000000e0

Only-Adds and Ignoring Deletes are “Native” Relaxations

Native Relaxations: Confusing special case where P’ C P.

P Nj U {c0}

hp

Problem class P: STRIPS planning tasks.
Perfect heuristic h}, for P: Length h* of a shortest plan.
Transformation R: Drop the (preconditions and) delete lists.

Simpler problem class P’ is a special case of P, P’ C P: STRIPS planning
tasks with empty (preconditions and) delete lists.

@ Perfect heuristic for P’: Shortest plan for only-adds respectively delete-free
STRIPS task.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 35/40

How to Obtain it?
00000000e

Questionnaire

Is Only-Adds a “good heuristic” (accurate goal distance
estimates) in ...

(A): Path Planning? (B): Blocksworld?

(C): Freecell? (D): SAT? (#unsatisfied clauses)

— (A): No! The heuristic remains constantly 1 until we reach the actual goal state.

— (B): No: If we build a goal-tower of size 100 on top of a single block that still
needs to move elsewhere, then the heuristic value is 1.

— (C): No: The heuristic value does take into account how many cards are already
“home”, but it is completely independent of the placement of all the other cards. In
particular, dead-ends are essential in Freecell but the heuristic is completely unable to
detect any of them.

— (D): No: Like in Freecell, the most essential part in SAT solving is knowing whether
or not a given partial assignment is still feasible, i.e., whether or not it is a dead-end.
The heuristic is completely unable to detect any of them.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 36/40

Conclusion
°0

Summary

@ Heuristic functions h map states to estimates of remaining cost. A heuristic
can be safe, goal-aware, admissible, and/or consistent. A heuristic may
dominate another heuristic, and an ensemble of heuristics may be additive.

@ Greedy best-first search can be used for satisficing planning, A* can be
used for optimal planning provided h is admissible. Weighted A*
interpolates between the two.

@ Relaxation is a method to compute heuristic functions. Given a problem P
we want to solve, we define a relaxed problem P’. We derive the heuristic
by mapping into P’ and taking the solution to this simpler problem as the
heuristic estimate.

@ During search, the relaxation is used only inside the computation of h(s)
on each state s; the relaxation does not affect anything else.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 38/40

Conclusion
oce

Reading

@ Al Core Course Chapters 4 and 5.

@ A word of caution regarding Artificial Intelligence: A Modern
Approach (Third Edition) [Russell and Norvig (2010)], Sections
3.6.2 and 3.6.3.

Content: These little sections are aimed at describing basically what
| call "How to Relax” here. They do serve to get some intuitions.
However, strictly speaking, they're a bit misleading. Formally, a
pattern database (Section 3.6.3) is what is called a “relaxation” in
Section 3.6.2: as we shall see in , pattern
databases are abstract transition systems that have more transitions
than the original state space. On the other hand, not every
relaxation can be usefully described this way; e.g., critical-path
heuristics () and ignoring-deletes heuristics

() are associated with very different state spaces.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 39/40

References

References |

Jorg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253-302,
2001.

Robert C. Holte. Common misconceptions concerning heuristic search. In Ariel Felner
and Nathan R. Sturtevant, editors, Proceedings of the 3rd Annual Symposium on
Combinatorial Search (SOCS’10), pages 46-51, Stone Mountain, Atlanta, GA, July
2010. AAAI Press.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (Third
Edition). Prentice-Hall, Englewood Cliffs, NJ, 2010.

Jorg Hoffmann Al Planning Chapter 7: Heuristic Search 40/40

	Introduction
	

	What Are Heuristic Functions?
	

	How to Use Heuristic Functions?
	

	How to Obtain Heuristic Functions?
	

	Conclusion
	

	
	References

