
Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

AI Planning
15. Landmark Heuristics

It’s a Long Way to the Goal, But How Long Exactly?
Part IV: Ticking Off the Items On a To-Do List

Jörg Hoffmann

Winter Term 2019/2020

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 1/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Agenda

1 Introduction

2 Landmarks

3 Landmark Heuristics

4 Detecting Landmarks

5 Conclusion

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 2/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

We Need Heuristic Functions!

→ Landmarks (LMs) are a method to relax planning tasks, and thus
automatically compute heuristic functions h.

We cover 4 of the 5 different methods currently known:

Critical path heuristics: Done. → Chapter 8
Delete relaxation: Basically done. → Chapters 9, 10, and 18
Abstractions: Done. → Chapters 11–13
Landmarks. → This Chapter

→ Each of these have advantages and disadvantages. (We will do a
formal comparison in Chapter 17.)

→ LM heuristics research yielded lots of exciting results since 2009.
They boost the performance of satisficing planning when combined with
delete relaxation heuristics, and they are among the most successful
methods for computing lower-bound estimators.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 4/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Landmarks in a Nutshell

Problem: Bring key B to position 1.

Landmarks:
robot-at-2, robot-at-3, robot-at-4, robot-at-5, robot-at-6, robot-at-7.
lock-open, have-key-A, have-key-B, . . .

→ A landmark is something that every plan for the task must satisfy at
some point.

Find landmarks in a pre-process to planning.
Heuristic value(state) := number of yet un-achieved landmarks.
(“Number of open items on the to-do list”)

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 5/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Before We Begin

Landmarks were originally introduced as a method for problem
decomposition [Hoffmann et al. (2004)].

They traditionally come with a colorful variety of concepts defining
orderings between them.

Here we only discuss the generation of heuristic functions.

We consider only the two most canonical forms of landmarks, and
we do not cover LM orderings at all.

Traditionally, LMs are mostly formulated in STRIPS; we’ll do FDR
(it doesn’t really make a difference here). Remember that “facts” p
in FDR are variable/value pairs.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 6/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Our Agenda for This Chapter

2 Landmarks: We start by defining the two forms of landmarks we
will consider, and we discuss their connections and differences.

3 Landmark Heuristics: We specify how to turn landmarks
(assuming they are provided as input) into heuristic functions. We
introduce a notion of orthogonality which implies additivity.

4 Detecting Landmarks: We state that, in general, detecting
landmarks is computationally hard, and we introduce and discuss the
most commonly used approximation methods.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 7/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Fact Landmarks

“Something that every plan must satisfy at some point.” Take 1:

Definition (Fact Landmark). Let Π = (V,A, c, I,G) be an FDR
planning task, and let s be a state. A fact p is a fact landmark for s if
p 6∈ s, and for every plan 〈a1, . . . , an〉 for s, there exists t so that
p ∈ sJ〈a1, . . . , at〉K.

→ A fact landmark is a variable value that is currently false, but that
must become true at some point along every plan.

→ We’ll often use “LM” for “Landmark”.

→ Any spontaneous ideas for facts that will always be landmarks?
E.g., every goal fact that is not currently true.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 9/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Bartender Fact Landmarks

V : Glass1,Glass2 : {Table,Hand}; Empty1,Empty2 : {0, 1};
Wodka,Tomato : {Bottle,Glass1,Glass2,Shaker}; BloodyMary : {0, 1}.
Initial state I: Glass1 = Table, Glass2 = Table, Empty1 = 1,
Empty2 = 1, Wodka = Bottle, Tomato = Bottle, BloodyMary = 0.
Goal G: BloodyMary = 1.
Actions A: (unit costs)
Take(x): pre Glassx = Table; eff Glassx = Hand
Drop(x): pre Glassx = Hand ; eff Glassx = Table
Fill(x, y): pre Glassx = Hand , Emptyx = 1, y = Bottle; eff y = Glassx
Pour(x, y): pre Glassx = Hand , y = Glassx; eff y = Shaker , Emptyx = 1
Shake(): pre Wodka = Shaker , Tomato = Shaker ; eff BloodyMary = 1

→ What are the fact landmarks for the initial state? BloodyMary = 1,
Wodka = Shaker , Tomato = Shaker . Everything else is not a landmark
because we can use either glass 1 or glass 2.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 10/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Where Fact Landmarks Fail

FindPath example: Actions move(X,Y) pre X eff Y ; init A, goal E.

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

→ Fact LMs for I? B,E.

To the rescue: disjunctive landmarks!

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 11/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Disjunctive Action Landmarks

“Something that every plan must satisfy at some point.” Take 2:

Definition (Disjunctive Action Landmark). Let Π = (V,A, c, I,G) be an
FDR planning task, and let s be a state. A set L ⊆ A is a disjunctive action
landmark for s if every plan for s contains an action a ∈ L. L is minimal if there
exists no L′ (L that is a disjunctive action landmark for s.

→ A disjunctive action LM is a set of actions at least one of which must occur
in every plan. The LM is minimal if it contains no unnecessary actions.

Terminology: The action set induced by a fact p is L(p) := {a ∈ A | p ∈ eff a}.

Proposition (Fact LMs Induce Disjunctive Action LMs). Let Π be an FDR
planning task, let s be a state, and let p be a fact landmark for s. Then L(p) is
a disjunctive action landmark for s.

Proof. Since p must become true at some point, it must be in an action effect.

→ Is L(p) always minimal? No (e.g., 100 actions achieve p, but the
preconditions of all but one of these actions are unreachable).

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 12/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Questionnaire

Fact landmarks p: robot-at-2, robot-at-3, robot-at-4, robot-at-5, robot-at-6,
robot-at-7, lock-open, have-key-A, have-key-B.

Actions: MoveXY (pre robot-at-X[, lock-open for Y = 4]; eff robot-at-Y); PickXY
(pre robot-at-X, key-Y-at-X; eff have-key-Y); DropXY (pre robot-at-X, have-key-Y; eff
key-Y-at-X); OpenLockX for X ∈ {3, 5} (pre robot-at-X, have-key-A; eff lock-open).

Question!

How many of the 9 fact landmarks p induce disjunctive action LMs L(p) of size
|L(p)| > 1? (And how many of the L(p) with |L(p)| > 1 are minimal?)

(A): 0

(C): 8

(B): 7

(D): 9

→ All these p, except robot-at-7, have more than one possible achieving action a
(where p ∈ eff a). Thus (C) is correct. None of the L(p) with |L(p)| > 1 are minimal.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 13/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Induced vs. All Disjunctive Action Landmarks

FindPath example: Actions move(X,Y) pre X eff Y ; init A, goal E.

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

→ Fact LMs for I: B,E.

→ Disjunctive action LMs for I induced by these: {move(A,B)},
{move(C4, E), move(D4, E)}.
→ All minimal disjunctive action LMs for I? {aC , aD} for all
aC ∈ {move(B,C1), move(Ci, Ci+1), move(C4, E)} and aD ∈ {move(B,D1),
move(Di, Di+1), move(D4, E)}.

→ Some disjunctive action LMs are induced by fact LMs; most of them aren’t.

→ Note the difference in the possible numbers of fact/disjunctive action LMs.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 14/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Bartender Disjunctive Action Landmarks

V : Glass1,Glass2 : {Table,Hand}; Empty1,Empty2 : {0, 1};
Wodka,Tomato : {Bottle,Glass1,Glass2,Shaker}; BloodyMary : {0, 1}.
Initial state I: Glass1 = Table, Glass2 = Table, Empty1 = 1,
Empty2 = 1, Wodka = Bottle, Tomato = Bottle, BloodyMary = 0.
Goal G: BloodyMary = 1.
Actions A: (unit costs)
Take(x): pre Glassx = Table; eff Glassx = Hand
Drop(x): pre Glassx = Hand ; eff Glassx = Table
Fill(x, y): pre Glassx = Hand , Emptyx = 1, y = Bottle; eff y = Glassx
Pour(x, y): pre Glassx = Hand , y = Glassx; eff y = Shaker , Emptyx = 1
Shake(): pre Wodka = Shaker , Tomato = Shaker ; eff BloodyMary = 1

Fact landmarks p for I: BloodyMary = 1, Wodka = Shaker , Tomato = Shaker .

→ Disjunctive action landmarks L(p) induced by these? {Shake()},
{Pour(1,Wodka),Pour(2,Wodka)}, {Pour(1,Tomato),Pour(2,Tomato)}.

→ Are these all disjunctive action landmarks for I? No. For example:
{Take(1),Take(2)}, {Fill(1,Wodka),Fill(2,Wodka)}, and
{Fill(1,Tomato),Fill(2,Tomato)}.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 15/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Elementary Landmark Heuristics

Definition (Elementary Landmark Heuristic). Let Π = (V,A, c, I,G) be an
FDR planning task with state space ΘΠ = (S,A, T, I,G), and let L ⊆ A. The
elementary landmark heuristic hLM

L for Π given L is the function hLM
L : S 7→ R+

0

where hLM
L (s) = min {c(a) | a ∈ L} if L is a disjunctive action landmark for s,

and hLM
L (s) = 0 otherwise.

→ If L is indeed a landmark, the elementary landmark heuristic given L returns
the cost of the cheapest action in L; otherwise, it returns 0.

Remarks:

hLM
L is just a formal vehicle to elegantly express the goal distance estimates

derived from LMs in terms of the heuristic functions framework.

It has to be “min” over L, not “max” or “sum”: intended meaning of L is
that the planner may choose which action to use. Neither sum’ing nor
max’ing would be admissible.

If L is induced by a fact landmark p, this just means to “account for the
cheapest action that achieves p”.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 17/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Elementary Landmark Heuristics are Admissible

Theorem (hLM is Admissible). Let Π = (V,A, c, I,G) be an FDR
planning task, and let L ⊆ A. Then hLM

L is consistent and goal-aware,
and thus also admissible and safe.

Proof. Goal-awareness: If s is a goal state, then L is not a landmark for
s (the empty plan does not use any action from L), hence hLM

L (s) = 0.

Consistency: Say sJaK = s′; we need to prove that hLM
L (s) ≤ hLM

L (s′)+
c(a).

If hLM
L (s) = 0, that is trivial. Else, L is a landmark for s and hLM

L (s) =
min {c(a) | a ∈ L} =: cmin, so we need to show that
cmin ≤ hLM

L (s′) + c(a).

Say a 6∈ L. Then L is a landmark for s′ so hLM
L (s′) = cmin = hLM

L (s) and
we are done.

Say a ∈ L. Then, by the definition of cmin, we have cmin ≤ c(a). So
cmin ≤ hLM

L (s′) + c(a) holds simply because 0 ≤ hLM
L (s′).

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 18/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Questionnaire

Question!

Say s is a dead-end state. What are the (a) fact landmarks and
(b) disjunctive action landmarks for s?

→ (a) All facts except those true in s, (b) all action subsets L ⊆ A. The reason
for both is that, in our definitions, “every plan” quantifies over the empty set.

→ A “to-do list” does not make sense for unsolvable problems.

Question!

Say s is a dead-end state. Can hLM
L (s) return ∞?

→ Only for L = ∅, where min {c(a) | a ∈ L} =∞ by convention. For L 6= ∅,
hLM
L returns either 0 or min {c(a) | a ∈ L}, both of which are finite.

→ Practical LM heuristics don’t find empty LMs. Hence (in difference to all
other heuristic functions we consider) they cannot detect dead ends.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 19/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Bartender hLM

V : Glass1,Glass2 : {Table,Hand}; Empty1,Empty2 : {0, 1};
Wodka,Tomato : {Bottle,Glass1,Glass2,Shaker}; BloodyMary : {0, 1}.
Initial state I: Glass1 = Table, Glass2 = Table, Empty1 = 1,
Empty2 = 1, Wodka = Bottle, Tomato = Bottle, BloodyMary = 0.
Goal G: BloodyMary = 1.
Actions A: (unit costs)
Take(x): pre Glassx = Table; eff Glassx = Hand
Drop(x): pre Glassx = Hand ; eff Glassx = Table
Fill(x, y): pre Glassx = Hand , Emptyx = 1, y = Bottle; eff y = Glassx
Pour(x, y): pre Glassx = Hand , y = Glassx; eff y = Shaker , Emptyx = 1
Shake(): pre Wodka = Shaker , Tomato = Shaker ; eff BloodyMary = 1

Induced by fact LMs: {Shake()}, {Pour(1,Wodka),Pour(2,Wodka)},
{Pour(1,Tomato),Pour(2,Tomato)}.
→ hLM

L from this: h = 1; h = 1; h = 1.

Additional disjunctive action landmarks: {Fill(1,Wodka),Fill(2,Wodka)},
{Fill(1,Tomato),Fill(2,Tomato)}, and {Take(1),Take(2)}.
→ hLM

L from this: h = 1; h = 1; h = 1.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 20/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

And Now?

Question!

Is hLM
L a high-quality heuristic function?

(A): Yes. (B): No.

→ Its value is bounded by the cost of the most expensive action in the
task! For unit costs: hLM

L (s) ∈ {0, 1} . . . !

→ For hLM
L to be useful, we need to combine several of them!

How to admissibly combine hLM
L1
, . . . , hLM

Lk
?

max: Works trivially. Also trivially, problem above not solved.∑
: Can solve above problem, and is a sine-qua-non for LM

heuristics (corresponds to “LM counting” in the case of fact LMs).

→ Admissible in general? No, because the same action may be part
of more than one disjunctive action LM. See next slide.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 21/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

When LM Summing (and Counting) is Not Admissble

Planning task:

Goals G: A and B both true.
Initial state I: A and B both false.
Actions: carA effect A cost 1; carB effect B cost 1; fancyCar
effect A and B cost 1.5.

Fact landmarks: A and B.
Induced disjunctive action landmarks: {carA, fancyCar} and
{carB, fancyCar}.
Summed-up heuristic value: 2 > h∗(I) = 1.5.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 22/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Orthogonal Landmarks

Terminology. L1, . . . , Lk ⊆ A are orthogonal if Li ∩ Lj = ∅ for i 6= j.

Theorem (The Sum of Orthogonal hLM is Admissible). Let Π =
(V,A, c, I,G) be an FDR planning task, and let L1, . . . , Lk ⊆ A be orthogonal.

Then
∑k

i=1 h
LM
Li

is consistent and goal-aware, and thus also admissible and safe.

Proof. Goal-awareness: Trivial because all component heuristics are goal-aware.

Consistency: Say sJaK = s′; we need to prove that∑k
i=1 h

LM
Li

(s) ≤
∑k

i=1 h
LM
Li

(s′) + c(a). If any Li is not a landmark for s, then Li

cannot contribute to disvalidating this inequality, so we can ignore that case.

Say a is not a member of any Li. Then all Li still are landmarks for s′ so∑k
i=1 h

LM
Li

(s) =
∑k

i=1 h
LM
Li

(s′) and we are done.

Else, a is a member of exactly one action set, say of Lj . For all i 6= j, Li still is
a landmark in s′ so hLM

Li
(s) = hLM

Li
(s′).

It remains to show that hLM
Lj

(s) ≤ hLM
Lj

(s′) + c(a), which we have by consistency

of hLM
Lj

(cf. slide 18).

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 23/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

The Canonical Landmark Heuristic

Terminology. The compatibility graph for C = {L1, . . . , Ln} has vertices Li

and an arc (Li, Lj) iff Li ∩ Lj = ∅.
Definition (Canonical Heuristic). Let Π be an FDR planning task, let C =
{L1, . . . , Ln} be a collection of action subsets, and let cliques(C) be the set of
all maximal cliques in the compatibility graph for C. Then the canonical
heuristic hC for C is defined as hC(s) = maxD∈cliques(C)

∑
Li∈D h

LM
Li

(s).

→ The canonical heuristic maximizes over all largest orthogonal subsets of our
landmarks collection.

Remarks:

To reduce overlaps, minimal disjunctive action LMs are desirable.

hC is the best possible admissible heuristic we can derive from C using the
orthogonality criterion. Despite this, on slide 22, we get hC = 1.

Better heuristics can be obtained using cost partitioning or hitting sets
(→ Chapter 16).

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 24/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Bartender Orthogonal Landmarks

V : Glass1,Glass2 : {Table,Hand}; Empty1,Empty2 : {0, 1};
Wodka,Tomato : {Bottle,Glass1,Glass2,Shaker}; BloodyMary : {0, 1}.
Initial state I: Glass1 = Table, Glass2 = Table, Empty1 = 1,
Empty2 = 1, Wodka = Bottle, Tomato = Bottle, BloodyMary = 0.
Goal G: BloodyMary = 1.
Actions A: (unit costs)
Take(x): pre Glassx = Table; eff Glassx = Hand
Drop(x): pre Glassx = Hand ; eff Glassx = Table
Fill(x, y): pre Glassx = Hand , Emptyx = 1, y = Bottle; eff y = Glassx
Pour(x, y): pre Glassx = Hand , y = Glassx; eff y = Shaker , Emptyx = 1
Shake(): pre Wodka = Shaker , Tomato = Shaker ; eff BloodyMary = 1

Induced by fact LMs: {Shake()}, {Pour(1,Wodka),Pour(2,Wodka)},
{Pour(1,Tomato),Pour(2,Tomato)}.
Additional disjunctive action LMs: {Fill(1,Wodka),Fill(2,Wodka)},
{Fill(1,Tomato),Fill(2,Tomato)}, {Take(1),Take(2)}.

→ Canonical heuristic hC(I) from these: These Li are all orthogonal, hence
hC(I) = 6 = h∗(I).

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 25/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Questionnaire

Variables: at : {Sy,Ad ,Br ,Pe,Da};
v(x) : {T, F} for x ∈ {Sy,Ad ,Br ,Pe,Da}.
Actions: drive(x, y) where x, y have a road.
Costs: Sy ↔ Br : 1, Sy ↔ Ad : 1.5, Ad ↔ Pe : 3.5,
Ad ↔ Da : 4.
Initial state: at = Sy, v(Sy) = T, v(x) = F for x 6= Sy.
Goal: at = Sy, v(x) = T for all x.

Induced by fact LMs: {drive(Ad ,Pe)}, {drive(Ad ,Da)}, {drive(Sy ,Br)},
{drive(Pe,Ad), drive(Da,Ad), drive(Sy ,Ad)}.
Additional disjunctive action LMs: {drive(Ad ,Sy), drive(Br ,Sy)};
{drive(Pe,Ad)}, {drive(Da,Ad)}, {drive(Sy ,Ad)}.

Question!

Canonical heuristic hC(I) from these?

→ The non-minimal LM {drive(Pe,Ad), drive(Da,Ad), drive(Sy ,Ad)} is subsumed
by the three orthogonal LMs {drive(Pe,Ad)}, {drive(Da,Ad)}, {drive(Sy ,Ad)}.
We get hC(I) = 3.5[Ad → Pe] + 4[Ad → Da] + 1[Sy → Br] + 1[Br → Sy] +
3.5[Pe → Ad] + 4[Da → Ad] + 1.5[Sy → Ad] = 18.5.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 26/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Questionnaire, ctd.

Fact landmarks p: robot-at-2, robot-at-3, robot-at-4, robot-at-5, robot-at-6,
robot-at-7, lock-open, have-key-A, have-key-B. (Unit-cost actions)

Actions: MoveXY (pre robot-at-X[, lock-open for Y = 4]; eff robot-at-Y); PickXY
(pre robot-at-X, key-Y-at-X; eff have-key-Y); DropXY (pre robot-at-X, have-key-Y; eff
key-Y-at-X); OpenLockX for X ∈ {3, 5} (pre robot-at-X, have-key-A; eff lock-open).

Question!

Considering the collection of disjunctive action LMs L(p) induced by these p,
what is the value of the canonical heuristic hC?

(A): 6

(C): 8

(B): 7

(D): 9

→ All of these L(p) are orthogonal, so (D) 9 is correct.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 27/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Elementary Landmark Heuristics in Practice (Up Next!)

“hLM
L (s) = min {c(a) | a ∈ L} if L is a disjunctive action landmark for s,

and hLM
L (s) = 0 otherwise.”

→ So will we keep L fixed, and check for every search state s whether or
not it’s a LM? No, because checking LMs is expensive. Instead, we
design “landmark generation” algorithms, which guarantee to produce
only LMs, but which do not guarantee to produce all LMs.

And then:

(A) Offline generation, online update: Generate LMs L1, . . . , Ln for the
initial state once before planning begins. Maintain flags throughout
search to remember which ones have not been achieved yet.

(B) Online generation: Generate LMs L1, . . . , Ln individually for each s.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 28/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

But How to Detect those Landmarks in the First Place?

Theorem (Checking Landmarks is Hard). Let Π = (V,A, c, I,G) be an FDR
planning task, and let s be a state. It is PSPACE-complete to decide whether
or not a fact p is a fact landmark for s, and it is PSPACE-complete to decide
whether or not an action set L ⊆ A is a disjunctive action landmark for s.

Proof. By a reduction from PlanEx. Given the task Π = (V,A, c, I,G) for
which we need to decide PlanEx, we construct Π′ := (V ∪ {x}, A ∪ {a1, a2}, c′,
I ∪ {x = 0}, G) by introducing a new variable x with domain {0, 1} as well as
two new actions a1, a2 of which a1 sets x from 0 to 1, and a2 has precondition
x = 1 and effect G. (We obtain c′ from c by assigning arbitrary costs to a1, a2.)

Then x = 1 is a fact landmark for I iff Π is unsolvable, and {a1} is a disjunctive
action landmark for I iff Π is unsolvable.

→ Something is a landmark if and only if disallowing it renders the task
unsolvable. Thus, checking landmarks is as hard as deciding solvability.

Note: This theorem can be proved more easily using the situation where “every plan”
quantifies over the empty set, cf. slide 19. I find the present proof more illustrative.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 30/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

So is all lost?

→ How to obtain a collection of disjunctive action landmarks?

Answer: “It is PSPACE-complete to decide whether or not a fact p is a
fact landmark for s, and it is PSPACE-complete to decide whether or
not an action set L ⊆ A is a disjunctive action landmark for s.”

Question!

So is all lost?
(A): Yes. (B): No.

→ We approximate . . . (business as usual). More precisely, we devise
sound but incomplete methods, detecting a subset of the actual
landmarks.

→ Ideas? Goals and necessary subgoals are landmarks.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 31/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Detecting Some LMs, Take 1: Necessary Subgoals

Definition (Necessary Subgoals). Let Π be an FDR planning task, and let s
be a state. A fact p is a necessary subgoal in Π for s if p 6∈ s and either:

(i) p ∈ G; or
(ii) there exists a necessary subgoal q in Π for s so that p ∈

⋂
a∈A,q∈eff a

prea.

→ Necessary subgoals are top-level goals plus shared preconditions.

(“subgoal” here=singleton fact, not fact subset as for critical path heuristics.)

Proposition (Necessary Subgoals are Landmarks). Let Π be an FDR
planning task, and let s be a state. If p is a necessary subgoal in Π for s, then p
is a fact landmark for s.

Proof. By structural induction. The claim holds trivially for necessary subgoals
of kind (i). For (ii), if q is a fact landmark for s, then q must be achieved at
some point which by construction involves achieving p first.

Strategy: Given state s, detect necessary subgoals pi for s by backchaining
from the goal: start at p ∈ G \ s, then iteratively apply (ii) until no more new
necessary subgoals are found.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 32/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Necessary Subgoals vs. Fact Landmarks

FindPath example: Actions move(X,Y) pre X eff Y ; init A, goal E.

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

→ Fact landmarks for I? B,E.

→ Necessary subgoals for I? E.

A B

C1 C2 C3 C4

D4

E

→ Fact landmarks for I? B,C1, C2, C3, E.

→ Necessary subgoals for I? E.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 33/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Bartender Necessary Subgoals

V : HandClean : {0, 1}, Glass1,Glass2 : {Table,Hand};
Empty1,Empty2 : {0, 1};
Wodka,Tomato : {Bottle,Glass1,Glass2,Shaker}; BloodyMary : {0, 1}.
Initial state I: HandClean = 0, Glass1 = Table, Glass2 = Table,
Empty1 = 1, Empty2 = 1, Wodka = Bottle, Tomato = Bottle,
BloodyMary = 0.
Goal G: BloodyMary = 1.
Actions A: (unit costs)
CleanHand(): pre empty; eff HandClean = 1
Take(x): pre HandClean = 1, Glassx = Table; eff Glassx = Hand
Drop(x): pre Glassx = Hand ; eff Glassx = Table
Fill(x, y): pre Glassx = Hand , Emptyx = 1, y = Bottle; eff y = Glassx
Pour(x, y): pre Glassx = Hand , y = Glassx; eff y = Shaker , Emptyx = 1
Shake(): pre Wodka = Shaker , Tomato = Shaker ; eff BloodyMary = 1

→ Fact landmarks p for I: BloodyMary = 1, Wodka = Shaker ,
Tomato = Shaker , HandClean = 1.

→ Necessary subgoals for I? BloodyMary = 1: goal; Wodka = Shaker and
Tomato = Shaker : precondition for Shake(). The landmark HandClean = 1 is
not detected as the backchaining stops at Wodka = Shaker and
Tomato = Shaker which do not yield shared preconditions.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 34/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Questionnaire

Problem: Bring key B to position 1.

Actions: MoveXY (pre robot-at-X[, lock-open for Y = 4]; eff robot-at-Y);
PickXY (pre robot-at-X, key-Y-at-X; eff have-key-Y); DropXY (pre robot-at-X,
have-key-Y; eff key-Y-at-X); OpenLockX for X ∈ {3, 5} (pre robot-at-X,
have-key-A; eff lock-open).

Question!

What are the necessary subgoals for I in this planning task?

→ Just key-B-at-1 and have-key-B: The only action that achieves the goal
key-B-at-1 is to drop key-B at 1, which has preconditions robot-at-1 and
have-key-B. The former is true in I so is not a necessary subgoal. The actions
achieving have-key-B (all PickXB actions) do not share any precondition.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 35/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Detecting Some LMs, Take 2: Delete Relaxation LMs

Definition (Delete Relaxation LM). Let Π = (V,A, c, I,G) be an FDR
planning task, and let s be a state. A fact p [respectively an action set L ⊆ A]
is a delete relaxation landmark for s if p 6∈ s, and for every relaxed plan
〈a+

1 , . . . , a
+
n 〉 for s, there exists t so that p ∈ sJ〈a+

1 , . . . , a
+
t 〉K [respectively so

that at ∈ L].

Proposition (Checking Delete Relaxation LMs is Easy). Let
Π = (V,A, c, I,G) be an FDR planning task, and let s be a state. It can be
decided in polynomial time whether or not a fact p, respectively an action set L,
is a delete relaxation landmark for s.

Proof. To decide whether L is a delete relaxation landmark, simply test
whether (V,A \ L, c, I,G) does not have a relaxed plan.

To decide whether p is a fact landmark, simply test whether p 6∈ s and
(V,A \ {a | p ∈ eff a}, c, I,G) does not have a relaxed plan.

→ Something is a landmark if and only if disallowing it renders the task
unsolvable. For the delete relaxation, this can be checked in polynomial time.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 36/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Detecting Delete Relaxation LMs

How to detect delete relaxation fact LMs?

How to find all? For every fact, run test on previous slide.

Not such a good idea in practice: Relaxed planning is polynomial
time but not dirt-cheap, and there may be 100s–1000s of facts.

A direct method computes all “causal” delete relaxation fact
landmarks by a fixed point computation [Keyder et al. (2010)].

How to detect delete relaxation disjunctive action LMs?

How to find all? For every L ⊆ A, run test on previous slide.

Completely useless idea in practice: Exponentially many L.

Vanilla solution: Use L(p) induced by delete relaxation fact LM p.

Advanced solution LM-cut: [Helmert and Domshlak (2009)]
Get L as a cut between the initial state and the “0-cost goal zone”;
reduce the cost of each action in L by mina∈L c(a); iterate.
We’ll give details in Chapter 17; illustration see next slide.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 37/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Detecting Action LMs: Fact-Induced vs. LM-cut

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

Fact-induced LMs: Fact LMs B and E yield {move(A,B)} and
{move(C4, E),move(D4, E)}. Thus hC(I) = 2.

LM-cut: (blue edges = cost reduced to 0, blue nodes = “0-cost goal zone”)

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

LM-cut LMs:

{move(C4, E),move(D4, E)}, {move(C3, C4),move(D3, D4)},
{move(C2, C3),move(D2, D3)}, {move(C1, C2),move(D1, D2)},
{move(B,C1),move(B,D1)}, {move(A,B)}. Thus hC(I) = 6 = h∗(I).

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 38/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Detecting Action LMs: Fact-Induced vs. LM-cut

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

Fact-induced LMs: Fact LMs B and E yield {move(A,B)} and
{move(C4, E),move(D4, E)}. Thus hC(I) = 2.

LM-cut: (blue edges = cost reduced to 0, blue nodes = “0-cost goal zone”)

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

LM-cut LMs: {move(C4, E),move(D4, E)}

, {move(C3, C4),move(D3, D4)},
{move(C2, C3),move(D2, D3)}, {move(C1, C2),move(D1, D2)},
{move(B,C1),move(B,D1)}, {move(A,B)}. Thus hC(I) = 6 = h∗(I).

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 38/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Detecting Action LMs: Fact-Induced vs. LM-cut

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

Fact-induced LMs: Fact LMs B and E yield {move(A,B)} and
{move(C4, E),move(D4, E)}. Thus hC(I) = 2.

LM-cut: (blue edges = cost reduced to 0, blue nodes = “0-cost goal zone”)

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

LM-cut LMs: {move(C4, E),move(D4, E)}

, {move(C3, C4),move(D3, D4)},
{move(C2, C3),move(D2, D3)}, {move(C1, C2),move(D1, D2)},
{move(B,C1),move(B,D1)}, {move(A,B)}. Thus hC(I) = 6 = h∗(I).

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 38/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Detecting Action LMs: Fact-Induced vs. LM-cut

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

Fact-induced LMs: Fact LMs B and E yield {move(A,B)} and
{move(C4, E),move(D4, E)}. Thus hC(I) = 2.

LM-cut: (blue edges = cost reduced to 0, blue nodes = “0-cost goal zone”)

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

LM-cut LMs: {move(C4, E),move(D4, E)}, {move(C3, C4),move(D3, D4)}

,
{move(C2, C3),move(D2, D3)}, {move(C1, C2),move(D1, D2)},
{move(B,C1),move(B,D1)}, {move(A,B)}. Thus hC(I) = 6 = h∗(I).

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 38/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Detecting Action LMs: Fact-Induced vs. LM-cut

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

Fact-induced LMs: Fact LMs B and E yield {move(A,B)} and
{move(C4, E),move(D4, E)}. Thus hC(I) = 2.

LM-cut: (blue edges = cost reduced to 0, blue nodes = “0-cost goal zone”)

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

LM-cut LMs: {move(C4, E),move(D4, E)}, {move(C3, C4),move(D3, D4)}

,
{move(C2, C3),move(D2, D3)}, {move(C1, C2),move(D1, D2)},
{move(B,C1),move(B,D1)}, {move(A,B)}. Thus hC(I) = 6 = h∗(I).

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 38/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Detecting Action LMs: Fact-Induced vs. LM-cut

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

Fact-induced LMs: Fact LMs B and E yield {move(A,B)} and
{move(C4, E),move(D4, E)}. Thus hC(I) = 2.

LM-cut: (blue edges = cost reduced to 0, blue nodes = “0-cost goal zone”)

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

LM-cut LMs: {move(C4, E),move(D4, E)}, {move(C3, C4),move(D3, D4)},
{move(C2, C3),move(D2, D3)}, {move(C1, C2),move(D1, D2)},
{move(B,C1),move(B,D1)}, {move(A,B)}. Thus hC(I) = 6 = h∗(I).

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 38/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Propagating Landmarks

Remember? ”Heuristic value(state) := number of yet un-achieved
landmarks (number of open items on the to-do list).”

→ Here’s how to “maintain the to-do list”:

Proposition (Propagating Landmarks). Let Π be an FDR planning
task, let L be a disjunctive action LM for I, and let s be a state. If
s = IJ~aK where ~a does not use any action from L, then L is a disjunctive
action LM for s.

Before search, detect disjunctive action landmarks for I.

During forward search, maintain a flag for each L saying whether or
not it was used yet.

For fact LMs p, the flag says whether p has already been true at
some point.

→ This is option (A) on slide 28. Re-computation for each s is option
(B) on slide 28.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 39/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Delete Relaxation LMs: Properties

1. Necessary subgoals ⊆ delete relaxation landmarks ⊆ real landmarks.
2. Delete relaxation landmarks lower-bound h+.

Proposition (Delete Relaxation LM Properties). Let Π be an FDR planning
task, and let s be a state. Then all of the following hold:

(i) If p is a necessary subgoal for s, then p is a delete relaxation LM for s.

(ii) If p respectively L is a delete relaxation LM for s, then it is a LM for s.

(iii) If L1, . . . , Lk are orthogonal delete relaxation LMs for s, then∑k
i=1 h

LM
Li

(s) ≤ h+(s).

Proof. (i): Same argument as in the proof that p is a LM.
(ii): Every real plan for s is a relaxed plan for s, so must use p respectively L.
(iii): Trivial for each hLM

Li
(s); with orthogonality, the claim follows.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 40/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Necessary Subgoals vs. Delete Relaxation LMs vs. LMs

A B

C1 C2 C3 C4

D4

E

Fact LMs for I: B,C1, C2, C3, E. Necessary subgoals for I: E.

→ Delete relaxation fact LMs for I? B,C1, C2, C3, E.

And now: Say init A, (x = 1); goal E, (x = 1); move(D4, E) sets x := 0.

A B

C1

D1

C2

D2

C3

D3

C4

D4

E

x = 1

→ Fact LMs for I? B,C1, C2, C3, C4, E.

→ Delete relaxation fact LMs for I? B,E.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 41/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Questionnaire

P = {alive, haveTiger , tamedTiger , haveJump}.
Short: P = {A, hT , tT , J}.
Initial state I: alive. Goal G: alive, haveJump.
Actions A:
getTiger : pre alive; add haveTiger
tameTiger : pre alive, haveTiger ; add tamedTiger
jumpTamedTiger : pre alive, tamedTiger ; add haveJump
jumpTiger : pre alive, haveTiger ; add haveJump; del alive

Question!

What are, for the initial state in this example, the delete-relaxation fact
landmarks? Are all fact landmarks delete-relaxation fact landmarks?

→ The fact landmarks for the inital state are haveTiger , tamedTiger , and haveJump:
all except alive, because while this is a goal, it is already true in I.

→ The delete-relaxation fact landmarks are only haveTiger and haveJump:
tamedTiger is not a delete-relaxation fact landmark because there exists a
delete-relaxed (but not real) plan which does not tame the Tiger.

→ There are more delete-relaxed plans than real plans. Hence there are less things
(landmarks) shared across all of them.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 42/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Bartender Delete Relaxation Landmarks

V : Glass1,Glass2 : {Table,Hand}; Empty1,Empty2 : {0, 1};
Wodka,Tomato : {Bottle,Glass1,Glass2,Shaker}; BloodyMary : {0, 1};
CustomerHappy : {0, 1}.
Initial state I: Glass1 = Table, Glass2 = Table, Empty1 = 1,
Empty2 = 1, Wodka = Bottle, Tomato = Bottle, BloodyMary = 0,
CustomerHappy = 1.
Goal G: BloodyMary = 1, CustomerHappy = 1.
Actions A: (unit costs)
Take(x): pre Glassx = Table; eff Glassx = Hand
Drop(x): pre Glassx = Hand ; eff Glassx = Table
Fill(x, y): pre Glassx = Hand , Emptyx = 1, y = Bottle; eff y = Glassx
Pour(x, y): pre Glassx = Hand , y = Glassx; eff y = Shaker , Emptyx = 1
Shake(): pre Wodka = Shaker , Tomato = Shaker ; eff BloodyMary = 1
TakePreMix(): pre empty; eff BloodyMary = 1, CustomerHappy = 0

→ Fact landmarks p for I: BloodyMary = 1, Wodka = Shaker ,
Tomato = Shaker .

→ Delete relaxation fact LMs for I? Only BloodyMary = 1. While the
alternative plan TakePreMix () does not work and hence does not affect the real
fact landmarks, it does constitute an alternative relaxed plan and hence no more
facts are shared across plans.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 43/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Questionnaire
Actions: drive(x, y) where x, y have a road.
Costs: Sy ↔ Br : 1, Sy ↔ Ad : 1.5, Ad ↔ Pe : 3.5,
Ad ↔ Da : 4.
Initial state: at = Sy, v(Sy) = T, v(x) = F for x 6= Sy.
Goal: at = Sy, v(x) = T for all x.

Question!

Minimal disjunctive action LMs for I, and hC(I)?

→ {drive(x, y)} for every road (x, y) on the map, so hC(I) = 20 = h∗(I).

Question!

Minimal delete relaxation disjunctive action LMs for I, and hC(I)?

→ {drive(x, y)} for (x, y) ∈ {(Sy ,Br), (Sy ,Ad), (Ad ,Pe), (Ad ,Da)}; we do
not get any of the “driving-back” actions. So hC(I) = 10 = h+(I).

Note: In both cases here, hC(I) is “perfect”. This is not in general so, even if we
detect all disjunctive action LMs. E.g., on slide 22, the disjunctive action LMs are
{carA, fancyCar}, {carB, fancyCar}, {carA, carB, fancyCar}; and
hC(I) = 1 < 1.5 = h+(I) = h∗(I). We get back to this in the Next Chapter.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 44/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Summary

A landmark (LM) is something that every plan must satisfy. A fact LM
must hold at some point on every plan, a disjunctive action LM is a set of
actions one of which must be used by every plan.

Fact LMs induce disjunctive action LMs; however, most disjunctive action
LMs are not induced in this way.

The elementary LM heuristic returns the cost of the cheapest action in a
disjunctive action LM.

Disjunctive action LMs are orthogonal if they are disjoint. Orthogonal
elementary LM heuristics are summed admissibly in the canonical heuristic.

→ Stronger methods are cost partitioning and (even stronger) hitting sets,
to be considered in the Next Chapter.

Checking LMs is hard. Practical methods are sound but incomplete,
detecting some LMs, namely necessary subgoals or delete relaxation LMs.

Vanilla method: Detect (some) fact LMs and use the induced disjunctive
action LMs. Much stronger method LM-cut: Iteratively cut between the
initial state and the “0-cost goal zone”.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 46/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Remarks: LM Definitions

Historical:

Landmarks were originally just fact landmarks, and were introduced as a
means to decompose the task: Find LMs for I in a pre-process, feed them
one-by-one to the planner [Hoffmann et al. (2004)].

Technical:

Various kinds of orderings between landmarks are in use: “A must be
achieved (directly) before B”, “A should be achieved before B or else we
would need to delete B and re-achieve it after A”, . . .

Instead of just facts, we can use arbitrary propositional formulas φ over the
facts (or even quantification over PDDL objects).

If φ is a disjunction of facts, then that corresponds very closely to
disjunctive action landmarks.

I’ve chosen the two particular notions as presented because the “vanilla
method” to compute landmark heuristics is by considering the disjunctive
action landmarks induced by the fact landmarks.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 47/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Remarks: LM Heuristics

Historical:

The idea to generate heuristics based on landmarks was first conceived by
[Zhu and Givan (2003)], never properly published and forgotten all about.

The (basic) idea was re-discovered by the authors of LAMA [Richter et al.
(2008); Richter and Westphal (2010)]. Which subsequently won two IPCs.

Both the initial attempt and LAMA use non-admissible landmarks
heuristics, basically counting the number of non-achieved fact landmarks
(= summing up elementary landmark heuristics induced by fact landmarks,
without ensuring independence).

Technical: (We will consider this in detail in the Next Chapter)

The best admissible landmark heuristics in practice use cost partitioning
[Karpas and Domshlak (2009); Helmert and Domshlak (2009)].

One can use hitting sets over landmarks to obtain even better heuristics,
but these tend to be too costly computationally [Bonet and Helmert
(2010)].

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 48/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Remarks: Detecting LMs

The original LMs detection method found delete relaxation fact
LMs, mostly the necessary subgoals [Hoffmann et al. (2004)].

LAMA does that, plus additional methods based on domain
transition graphs (cf. Chapter 5); it propagates LMs for I to avoid
having to re-detect [Richter and Westphal (2010)].

The first admissible LM heuristic uses the disjunctive action LMs
induced by LAMA’s fact LMs [Karpas and Domshlak (2009)].

The first technique using disjunctive action LMs not induced by fact
LMs was LM-cut [Helmert and Domshlak (2009)]. The iterated cut
algorithm is done anew for every search state. Despite this, LM-cut
is the most successful admissible LM heuristic in practice, to date.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 49/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Remarks: Planning Tools and Performance Using LMs

Original use for probem decomposition gave reasonable speed-ups for FF
and another satisficing heuristic search planner [Hoffmann et al. (2004)].

LAMA [Richter and Westphal (2010)] introduced the idea to use both, a
delete relaxation heuristic and a LM heuristic, in Fast Downward’s
dual-queue greedy best-first search framework. The LM heuristic improves
performance significantly in some domains. LAMA won the 1st prizes for
satisficing planners at IPC’08 and IPC’11.

BJOLP [Karpas and Domshlak (2009); Domshlak et al. (2011)] uses
admissible combination of disjunctive action LMs induced by fact LMs. It
was part of the 1st-prize winning portfolio in the optimal track of IPC’11.

LM-cut [Helmert and Domshlak (2009)] also uses admissible combination
of disjunctive action LMs, but of more general such LMs not induced by
fact LMs (cf. slide 38). It was part of the 1st-prize winning portfolio, and
of the 2nd-prize winning portfolio, in the optimal track of IPC’11. It was
the strongest single-heuristic optimal planner in IPC’11.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 50/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Reading

Ordered Landmarks in Planning [Hoffmann et al. (2004)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/jair04.pdf

Content: The first paper on landmarks. Focusses mostly on ordering
relations and problem decomposition; not directly relevant to the
content of this chapter, but useful as a background read.

Sound and Complete Landmarks for And/Or Graphs [Keyder et al.
(2010)].

Available at:

http://www.dtic.upf.edu/~ekeyder/ECAI10_Landmarks.pdf

Content: A nice and clean “modern” paper on landmarks. Contains,
among other things, the fixed point algorithm computing all (causal)
delete relaxation fact landmarks.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 51/56

http://fai.cs.uni-saarland.de/hoffmann/papers/jair04.pdf
http://www.dtic.upf.edu/~ekeyder/ECAI10_Landmarks.pdf

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Reading, ctd.

Cost-Optimal Planning with Landmarks [Karpas and Domshlak
(2009)].

Available at:

http://iew3.technion.ac.il/~dcarmel/Papers/Sources/ijcai09a.pdf

Content: The “alarm clock” waking LMs up to the modern age of
cost-optimal planning! Admissible combination by going from fact
LMs to disjunctive action LMs, optimal cost partitioning by
compilation to linear programming (→ Next Chapter), LM-A∗ to
handle this path-dependent heuristic.

Recapitulates LAMA’s heuristic along the way so may be used to get
an idea of that one as well.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 52/56

http://iew3.technion.ac.il/~dcarmel/Papers/Sources/ijcai09a.pdf

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Reading, ctd.

Landmarks, Critical Paths and Abstractions: What’s the Difference
Anyway? [Helmert and Domshlak (2009)].

Available at:

http://ai.cs.unibas.ch/papers/helmert-domshlak-icaps2009.pdf

Content: The LM-cut paper. As if LM-cut wasn’t enough, it also
introduces the comparison framework for admissible heuristics
(→ Chapter 17).

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 53/56

http://ai.cs.unibas.ch/papers/helmert-domshlak-icaps2009.pdf

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

Reading, ctd.

Strengthening Landmark Heuristics via Hitting Sets [Bonet and
Helmert (2010)].

Available at:

http://ai.cs.unibas.ch/papers/bonet-helmert-ecai2010.pdf

Content: Introduces the idea to use minimum-cost hitting sets over
disjunctive action landmarks, instead of combining elementary
landmark heuristics. Shows that the minimum-cost hitting set over
sufficiently large collections of delete relaxation disjunctive action
landmarks is equal to h+.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 54/56

http://ai.cs.unibas.ch/papers/bonet-helmert-ecai2010.pdf

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

References I

Blai Bonet and Malte Helmert. Strengthening landmark heuristics via hitting sets. In
Helder Coelho, Rudi Studer, and Michael Wooldridge, editors, Proceedings of the
19th European Conference on Artificial Intelligence (ECAI’10), pages 329–334,
Lisbon, Portugal, August 2010. IOS Press.

Carmel Domshlak, Malte Helmert, Erez Karpas, Emil Keyder, Silvia Richter, Gabriele
Röger, Jendrik Seipp, and Matthias Westphal. BJOLP: The big joint optimal
landmarks planner. In IPC 2011 planner abstracts, pages 91–95, 2011.

Malte Helmert and Carmel Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Alfonso Gerevini, Adele Howe, Amedeo Cesta,
and Ioannis Refanidis, editors, Proceedings of the 19th International Conference on
Automated Planning and Scheduling (ICAPS’09), pages 162–169. AAAI Press,
2009.

Jörg Hoffmann, Julie Porteous, and Laura Sebastia. Ordered landmarks in planning.
Journal of Artificial Intelligence Research, 22:215–278, 2004.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 55/56

Introduction Landmarks Landmark Heuristics Detecting Landmarks Conclusion References

References II

Erez Karpas and Carmel Domshlak. Cost-optimal planning with landmarks. In Craig
Boutilier, editor, Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI’09), pages 1728–1733, Pasadena, California, USA, July 2009.
Morgan Kaufmann.

Emil Keyder, Silvia Richter, and Malte Helmert. Sound and complete landmarks for
and/or graphs. In Helder Coelho, Rudi Studer, and Michael Wooldridge, editors,
Proceedings of the 19th European Conference on Artificial Intelligence (ECAI’10),
pages 335–340, Lisbon, Portugal, August 2010. IOS Press.

Silvia Richter and Matthias Westphal. The LAMA planner: Guiding cost-based
anytime planning with landmarks. Journal of Artificial Intelligence Research,
39:127–177, 2010.

Silvia Richter, Malte Helmert, and Matthias Westphal. Landmarks revisited. In Dieter
Fox and Carla Gomes, editors, Proceedings of the 23rd National Conference of the
American Association for Artificial Intelligence (AAAI’08), pages 975–982, Chicago,
Illinois, USA, July 2008. AAAI Press.

Lin Zhu and Robert Givan. Landmark extraction via planning graph propagation. In
ICAPS 2003 Doctoral Consortium, pages 156–160, 2003.

Jörg Hoffmann AI Planning Chapter 15: Landmark Heuristics 56/56

	Introduction
	

	Landmarks
	

	Landmark Heuristics
	

	Detecting Landmarks
	

	Conclusion
	

	
	References

