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We Need Heuristic Functions!

→ Critical path heuristics are a method to relax planning tasks, and thus
automatically compute heuristic functions h.

We cover 4 of the 5 different methods currently known:

Critical path heuristics: → This Chapter

Delete relaxation: → Chapters 9, 10, and 18

Abstractions: → Chapters 11-13

Landmarks: → Chapter 15

→ Each of these have advantages and disadvantages. (We will do a
formal comparison in Chapter 17.)
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Critical Path Heuristics: Basic Idea

“Approximate the cost of a goal set by the most costly subgoal.”

Assume unit costs. Then h(I) is? 2 (Perth or Darwin).

But: In “the most costly subgoal”, we may use size > 1!

→ It is easiest to understand this approximation in terms of approximate
versions of an equation characterizing h∗ by regression.
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Our Agenda for This Chapter

2 Critical Path Heuristics: Introduces and illustrates the formal
definition.

3 Dynamic Programming Computation: The straightforward
method to compute critical path heuristics.

4 Graphplan Representation: A slightly less straigtforward method
to compute critical path heuristics. I mention this here only
because, historically, it was there first, and its terminology is all over
the planning literature.

5 What about FDR Planning? The above uses STRIPS as this is a
little easier to discuss in the examples. In this section, we point out
on 1 slide that (almost) everything remains exactly the same for
FDR.
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A Regression-Based Characterization of h∗

Definition (r∗). Let Π = (P,A, c, I,G) be a STRIPS planning task.
The perfect regression heuristic r∗ for Π is the function r∗(s) := r∗(s,G)
where r∗(s, g) is the point-wise greatest function1 that satisfies r∗(s, g) ={

0 g ⊆ s
mina∈A,regr(g,a)6=⊥c(a) + r∗(s, regr(g, a)) otherwise

(Reminder Chapter 6: regr(g, a) 6= ⊥ if adda ∩ g 6= ∅ and dela ∩ g = ∅;
then, regr(g, a) = (g \ adda) ∪ prea.)

→ The cost of achieving a subgoal g is 0 if it is true in s; else, it is the
minimum of using any action a to achieve g.

Proposition. Let Π = (P,A, c, I,G) be a STRIPS planning task. Then
r∗ = h∗. (Proof omitted.)

1“point-wise greatest” is needed here, and in the following, only to correctly handle
0-cost actions. We might bother you with an Exercise on this.
Jörg Hoffmann AI Planning Chapter 8: Critical Path Heuristics 8/40
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Critical Path Heuristics: h1

Definition (h1). Let Π = (P,A, c, I,G) be a STRIPS planning task.
The critical path heuristic h1 for Π is the function h1(s) := h1(s,G)
where h1(s, g) is the point-wise greatest function that satisfies h1(s, g) =

0 g ⊆ s
mina∈A,regr(g,a)6=⊥c(a) + h1(s, regr(g, a)) |g| = 1

maxg′∈g h
1(s, {g′}) |g| > 1

→ For singleton subgoals g, use regression as in r∗. For subgoal sets g,
use the cost of the most costly singleton subgoal g′ ∈ g.

→ ”Path” = g1
a1−→ g2 . . . gn−1

an−1−−−→ gn where g1 ⊆ s, gn ⊆ G, gi 6= gj ,
and gi ⊆ regr(gi+1, ai). |gi| = 1 here, |gi| ≤ m for hm (up next).

→ ”Critical path” = Cheapest path through the most costly subgoals gi.

Jörg Hoffmann AI Planning Chapter 8: Critical Path Heuristics 9/40



Introduction Critical Path Heuristics Dynamic Programming Graphplan FDR Conclusion References

The h1 Heuristic in “TSP” in Australia

P : at(x) for x ∈ {Sy,Ad ,Br ,Pe,Ad}; v(x) for
x ∈ {Sy,Ad ,Br ,Pe,Ad}.
A: drive(x, y) where x, y have a road.

c(drive(x, y)) =


1 {x, y} = {Sy,Br}
1.5 {x, y} = {Sy,Ad}
3.5 {x, y} = {Ad ,Pe}
4 {x, y} = {Ad ,Da}

I: at(Sy), v(Sy); G: at(Sy), v(x) for all x.

h1(I) = h1(I,G) = h1(I, {at(Sy), v(Sy), v(Ad), v(Br), v(Pe), v(Da)}) =
max(h1(I, {at(Sy)}), . . . , h1(I, {v(Da)})).

h1(I, {at(Sy)}) = h1(I, {v(Sy)}) = 0.

h1(I, {v(Da)}) = 4 + h1(I, regr({v(Da)}, drive(Ad ,Da))) =
4 + h1(I, {at(Ad)}).

h1(I, {at(Ad)}) = min(3.5 + h1(I, {at(Pe)}), 4 + h1(I, {at(Da)}),
1.5 + h1(I, {at(Sy)})) = 1.5.

So h1(I, {v(Da)}) = 5.5. Further, h1(I, {v(Pe)}) = 5 and h1(I, {v(Br)}) = 1,
hence h1(I) = 5.5.

The critical path is? at(Sy)
drive(Sy,Ad)−−−−−−−−→ at(Ad)

drive(Ad,Da)−−−−−−−−→ at(Da).
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Critical Path Heuristics: The General Case

Definition (hm). Let Π = (P,A, c, I,G) be a STRIPS planning task,
and let m ∈ N. The critical path heuristic hm for Π is the function
hm(s) := hm(s,G) where hm(s, g) is the point-wise greatest function
that satisfies hm(s, g) =

0 g ⊆ s
mina∈A,regr(g,a)6=⊥c(a) + hm(s, regr(g, a)) |g| ≤ m

maxg′⊆g,|g′|=m hm(s, g′) |g| > m

→ For subgoal sets |g| ≤ m, use regression as in r∗. For subgoal sets
|g| > m, use the cost of the most costly m-subset g′.

→ Like h1, basically just replace “1” with “m”.

→ Subgoals of size ≤ m are “atomic” in hm. (Generalization: hC ,
arbitrary set C of atomic subgoals.)

Jörg Hoffmann AI Planning Chapter 8: Critical Path Heuristics 11/40
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Critical Path Heuristics: Properties

Proposition (hm is Admissible). hm is consistent and goal-aware, and thus
also admissible and safe.

Proof Sketch. Goal-awareness is obvious. We need to prove that
hm(s) ≤ hm(s′) + c(a) for all transitions s

a−→ s′. Since s ⊇ regr(s′, a), a critical
path ~p for hm(s′) can be pre-fixed by a to obtain an upper bound on hm(s): all
subgoals at the start of ~p are contained in s′, and are achieved by a in s.

→ Intuition: hm is admissible because it is always more difficult to achieve
larger subgoals (so m-subsets can only be cheaper).

→ Any ideas about what happens when we compare hm+1 to hm?

Proposition (hm gets more accurate as m grows). hm+1 dominates hm.

Proof Intuition: “It is always more difficult to achieve larger subgoals.”

→ Any ideas about what happens when we let m go to ∞?

Proposition (hm is perfect in the limit). There exists m s.t. hm = h∗.

Proof. Setting m := |P |, the case |g| > m will never be used, so hm = r∗.
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Questionnaire

Initial state I: t(A), p(C).

Goal G: t(A), p(D).

Actions A: drXY, loX, ulX.

Question!

In this planning task, what is the value of h1(I)?

(A): 2

(C): 4

(B): 3

(D): 5

→ A critical path is t(A)→ t(B)→ t(C)→ p(T )→ p(D). (C) is correct.

Question!

In this planning task, what is the value of h2(I)?

(A): 5 (B): 8

→ For all subgoals g generated, either |g| ≤ 2, or g must request more than one
position for either the truck or the package, which in this domain will be recognized
i.e. h2(I, g) =∞. Thus h2(I) = r∗(I) and (B) is correct.
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Overview

Basic idea:

“Consider all size-≤ m subgoals g. Initialize hm(s, g) to 0 if g ⊆ s, and
to ∞ otherwise.

Then keep updating the value of each g based on actions applied to the
values computed so far, until the values converge.”

We start with an iterative definition of hm that makes this approach
explicit.

We define a dynamic programming algorithm that corresponds to
this iterative definition.

We point out the relation to general fixed point mechanisms.

Jörg Hoffmann AI Planning Chapter 8: Critical Path Heuristics 15/40
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Iterative Definition of hm

Definition (Iterative hm). Let Π = (P,A, c, I,G) be a STRIPS planning task,
and let m ∈ N. The iterative hm heuristic hm

i is defined by hm
0 (s, g) :={

0 g ⊆ s
∞ otherwise

and hm
i+1(s, g) :={
min[hm

i (s, g),mina∈A,regr(g,a)6=⊥ c(a) + hm
i (s, regr(g, a))] |g| ≤ m

maxg′⊆g,|g′|=m hm
i+1(s, g′) |g| > m

Proposition. Let Π = (P,A, c, I,G) be a STRIPS planning task. Then the
series {hm

i }i=0,... converges to hm.

Proof Sketch: (i) Convergence: If hm
i+1(s, g) 6= hm

i (s, g), then
hm
i+1(s, g) < hm

i (s, g); that can happen only finitely often because each
decrease is due to a new path for g. (ii) If hm

i+1 = hm
i then hm

i satisfies the hm

equation (direct from definition). (iii) No function greater than hm
i at any point

can satisfy the hm equation (easy by induction over i).
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Dynamic Programming

Dynamic Programming Algorithm

new table Tm
0 (g), for g ⊆ P with |g| ≤ m

For all g ⊆ P with |g| ≤ m: Tm
0 (g) :=

{
0 g ⊆ s
∞ otherwise

fn Cost i(g) :=

{
Tm
i (g) |g| ≤ m

maxg′⊆g,|g′|=m Tm
i (g′) |g| > m

fn Next i(g) := min[Cost i(g),mina∈A,regr(g,a)6=⊥ c(a) + Cost i(regr(g, a))]
i := 0
do forever:

new table Tm
i+1(g), for g ⊆ P with |g| ≤ m

For all g ⊆ P with |g| ≤ m: Tm
i+1(g) := Next i(g)

if Tm
i+1 = Tm

i then stop endif
i := i + 1

enddo

Proposition. hm
i (s, g) = Cost i(g) for all i and g. (Proof is easy.)

→ This is very inefficient! (Optimized for readability.) We can use “Generalized
Dijkstra” instead, maintaining the frontier of cheapest m-tuples reached so far.
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Just for the Record: Fixed Point Formulation

Fixed Point Algorithm – Template!

new table Tm(g), for g ⊆ P with |g| ≤ m

For all g ⊆ P with |g| ≤ m: Tm(g) :=

{
0 g ⊆ s
∞ otherwise

fn Cost(g) :=

{
Tm(g) |g| ≤ m
maxg′⊆g,|g′|=m Tm(g′) |g| > m

fn Next(g) := min[Cost(g),mina∈A,regr(g,a)6=⊥ c(a) + Cost(regr(g, a))]

while ∃g ⊆ P, |g| ≤ m : Tm(g) 6= Next(g) do:
select one such g
Tm(g) := Next(g)

endwhile

Proposition. Once the algorithm stops, hm(s, g) = Cost(g) for all g.

Proof Sketch: Similar to that for convergence of hm
i to hm.

→ This algorithm is not fully specified (hence “template”): How to select g s.t.
Tm(g) 6= Next(g)? We will use dynamic programming for simplicity.

Jörg Hoffmann AI Planning Chapter 8: Critical Path Heuristics 18/40
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Example: m = 1 in “Logistics”

Facts P : t(x)x ∈ {A,B,C,D};
p(x)x ∈ {A,B,C,D, T}.
Initial state I: {t(A), p(C)}.
Goal G: {t(A), p(D)}.
Actions A (unit costs): drive(x, y), load(x),
unload(x).
E.g.: load(x): pre t(x), p(x); add p(T ); del p(x).

Content of Tables T 1
i :

i t(A) t(B) t(C) t(D) p(T ) p(A) p(B) p(C) p(D)

0 0 ∞ ∞ ∞ ∞ ∞ ∞ 0 ∞
1 0 1 ∞ ∞ ∞ ∞ ∞ 0 ∞
2 0 1 2 ∞ ∞ ∞ ∞ 0 ∞
3 0 1 2 3 3 ∞ ∞ 0 ∞
4 0 1 2 3 3 4 4 0 4
5 0 1 2 3 3 4 4 0 4

→ So h1(I) = 4. (Cf. slide 13)

Note: This table computation always first finds the shortest path to achieve a subgoal
g. Hence, with unit action costs, the value of g is fixed once it becomes <∞, and
equals the i where that happens. With non-unit action costs, neither is true.
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Example: m = 2 in “Dompteur”

P = {alive, haveTiger , tamedTiger , haveJump}.
Short: P = {A, hT , tT , J}.
Initial state I: alive.

Goal G: alive, haveJump.

Actions A:
getTiger : pre alive; add haveTiger
tameTiger : pre alive, haveTiger ; add tamedTiger
jumpTamedTiger : pre alive, tamedTiger ; add haveJump
jumpTiger : pre alive, haveTiger ; add haveJump; del alive

Content of Tables T 2
i : i A hT tT J A, A, A, hT, hT, tT,

hT tT J tT J J

0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 0 1 ∞ ∞ 1 ∞ ∞ ∞ ∞ ∞
2 0 1 2 2 1 2 ∞ 2 2 ∞
3 0 1 2 2 1 2 3 2 2 3

→ So h2(I) = 3, in contrast to h1(I) = 2.

Note reg A, J in step 2: Each of A and J is reached, but not both together:
jumpTiger deletes A so we can’t regress this subgoal over that action;
jumpTamedTiger yields the regressed subgoal {A, tT} whose value at 1 is ∞.
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Example: m = 1 in “TSP” in Australia

P : at(x) for x ∈ {Sy,Ad ,Br ,Pe,Ad}; v(x) for
x ∈ {Sy,Ad ,Br ,Pe,Ad}.
A: drive(x, y) where x, y have a road.

c(drive(x, y)) =


1 {x, y} = {Sy,Br}
1.5 {x, y} = {Sy,Ad}
3.5 {x, y} = {Ad ,Pe}
4 {x, y} = {Ad ,Da}

I: at(Sy), v(Sy); G: at(Sy), v(x) for all x.

Content of Tables T 1
i :

i at(Sy) at(Ad) at(Br) at(Pe) at(Da) v(Sy) v(Ad) v(Br) v(Pe) v(Da)

0 0 ∞ ∞ ∞ ∞ 0 ∞ ∞ ∞ ∞
1 0 1.5 1 ∞ ∞ 0 1.5 1 ∞ ∞
2 0 1.5 1 5 5.5 0 1.5 1 5 5.5
3 0 1.5 1 5 5.5 0 1.5 1 5 5.5

→ So what is h1(I)? 5.5.
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Example: m = 2 in Very Simple “TSP” in Australia

Facts P : at(Sy), at(Br), v(Sy), v(Br).

Initial state I: at(Sy), v(Sy).

Goal G: at(Sy), v(Sy), v(Br).

Actions A: drive(Sy,Br), drive(Br ,Sy); both cost 1.
drive(Sy,Br):

pre at(Sy); add at(Br), v(Br); del at(Sy).
drive(Br ,Sy):

pre at(Br); add at(Sy), v(Sy); del at(Br).

Content of Tables T 2
i :

i at(Sy) at(Br) v(Sy) v(Br) at(Sy), at(Sy), at(Sy), at(Br), at(Br), v(Sy),
at(Br) v(Sy) v(Br) v(Sy) v(Br) v(Br)

0 0 ∞ 0 ∞ ∞ 0 ∞ ∞ ∞ ∞
1 0 1 0 1 ∞ 0 ∞ 1 1 1
2 0 1 0 1 ∞ 0 2 1 1 1
3 0 1 0 1 ∞ 0 2 1 1 1

→ So h2(I) = 2, in contrast to h1(I) = 1.

NOTE reg at(Sy), v(Br)) in step 1: Each of at(Sy) and v(Br) is reached, but not both
together: drive(Sy,Br) deletes at(Sy) so we can’t regress this subgoal over that action;
drive(Br ,Sy) yields the regressed subgoal {at(Br), v(Br)} whose value at iteration 0 is ∞.
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Runtime

Proposition. Let Π = (P,A, c, I,G) be a STRIPS planning task, and let
m ∈ N be fixed. Then the dynamic programming algorithm runs in time
polynomial in the size of Π.

Proof Sketch. With fixed m, the number of size-m fact sets is polynomial in
the size of Π, so obviously each iteration of the algorithm runs in time
polynomial in that size. The fixed point is reached at the latest at
i + 1 = |P |m + 1, as each path has length at most |P |m.

→ For any fixed m, hm can be computed in polynomial time.

Remarks:

In practice, only m = 1, 2 are used; higher values of m are infeasible.
Remedy: Instead of making all subgoals of size ≤ m atomic, we can
select an arbitrary set C of atomic subgoals.

→ How to choose C? Great results in nogood learning from
dead-ends in forward search [Steinmetz and Hoffmann (2017)].

Jörg Hoffmann AI Planning Chapter 8: Critical Path Heuristics 23/40



Introduction Critical Path Heuristics Dynamic Programming Graphplan FDR Conclusion References

Graphplan Representation: The Case m = 1

1-Planning Graphs

F0 := s; i := 0
while G 6⊆ Fi do

Ai := {a ∈ A | prea ⊆ Fi}
Fi+1 := Fi ∪

⋃
a∈Ai

adda

if Fi+1 = Fi then stop endif
i := i + 1

endwhile

Rings a bell? This was called “relaxed planning graph” in the AI Core
Course. Slide 33 explains why.

Jörg Hoffmann AI Planning Chapter 8: Critical Path Heuristics 25/40



Introduction Critical Path Heuristics Dynamic Programming Graphplan FDR Conclusion References

1-Planning Graph for “Logistics”

Initial state I: t(A), p(C).

Goal G: t(A), p(D).

Actions A: dr(X,Y ), lo(X), ul(X).

Content of Fact Sets Fi:

i t(A) t(B) t(C) t(D) p(T ) p(A) p(B) p(C) p(D)

0 yes no no no no no no yes no
1 yes yes no no no no no yes no
2 yes yes yes no no no no yes no
3 yes yes yes yes yes no no yes no
4 yes yes yes yes yes yes yes yes yes
5 yes yes yes yes yes yes yes yes yes

→ Rings a bell? We got a “yes” for i, g if and only if T 1
i (g) 6=∞, cf. slide 19.
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1-Planning Graphs vs. h1

Definition. Let Π = (P,A, c, I,G) be a STRIPS planning task. The 1-planning
graph heuristic h1

PG for Π is the function h1
PG(s) := min{i | s ⊆ Fi}, where Fi

are the fact sets computed by a 1-planning graph, and the minimum over an
empty set is ∞.

Proposition. Let Π = (P,A, c, I,G) be a STRIPS planning task with unit
costs. Then h1

PG = h1.

Proof Sketch: Induction over the value i of h1(s). Trivial for base case i = 0.
For the step case, assume that h1

PG(s) = h1(s) for all s where h1(s) ≤ i, and
show the same property for all s with h1(s) ≤ i + 1. h1

PG(s) < i + 1 directly
contradicts the assumption. To show h1

PG(s) ≤ i + 1, it suffices to observe that
h1(prea) ≤ i implies h1

PG(prea) ≤ i by assumption.

→ A 1-planning graph is like our dynamic programming algorithm for m = 1,
except that it represents not all facts but only those that have been reached
(value 6=∞), and instead of a fact-value table it only remembers that set.
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Graphplan Representation: The General Case

m-Planning Graphs

F0 := s; M0 := ∅; i := 0

fn Reached i(g) :=

{
True g ⊆ Fi, 6 ∃g′ ∈Mi : g′ ⊆ g
False otherwise

while not Reached i(G) do
Ai := {a ∈ A | Reached i(prea)}
Fi+1 := Fi ∪

⋃
a∈Ai

adda

Mi+1 := {g ⊆ P | |g| ≤ m,∀a ∈ Ai : not Reached i(regr(g, a))}
if Fi+1 = Fi and Mi+1 = Mi then stop endif
i := i + 1

endwhile

→ Intuition: All m-subsets g of Fi are reachable within i steps, except for those
g listed in Mi (the “mutexes”).

→ Instead of listing the reached m-subsets, represent those that are not reached
(and hope that there are fewer of those).

Jörg Hoffmann AI Planning Chapter 8: Critical Path Heuristics 28/40
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Critical Path Heuristics in FDR

→ All definitions, results, and proofs apply, exactly as stated, also to
FDR planning tasks. (See the single exception below.)

→ Remember (cf. → Chapter 2): We refer to pairs (v, d) of variable and
value as facts. We identify partial variable assignments with sets of facts.

The single non-verbatim-applicable statement, adapted to FDR:

Proposition (hm is Perfect in the Limit). There exists m s.t.
hm = h∗.

Proof. Given the definition of regr(g, a) for FDR (→ Chapter 6), it is
easy to see by induction that every subgoal g contains at most one fact
for each variable v ∈ V . Thus, if we set m := |V |, then the case |g| > m
will never be used, so hm = r∗.

→ In FDR, it suffices to set m to the number of variables, as opposed to
the number of variable values i.e. STRIPS facts, compare slide 12!
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Summary

The critical path heuristics hm estimate the cost of reaching a
subgoal g by the most costly m-subset of g.

This is admissible because it is always more difficult to achieve
larger subgoals.

hm can be computed using dynamic programming, i.e., initializing
true m-subsets g to 0 and false ones to ∞, then applying value
updates until convergence.

This computation is polynomial in the size of the planning task,
given fixed m. In practice, m = 1, 2 are used; m > 2 is typically
infeasible.

Planning graphs correspond to dynamic programming with unit
costs, using a particular representation of reached/unreached
m-subsets g.
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Historical Remarks

The first critical path heuristic was introduced in the Graphplan system
[Blum and Furst (1997)], which uses h2 computed by a 2-planning graph.2

1-planning graphs are commonly referred to as relaxed planning graphs.
This is because they’re identical to Graphplan’s 2-planning graphs when
ignoring the delete lists [Hoffmann and Nebel (2001)].

Graphplan spawned a huge amount of follow-up work [e.g., Kambhampati
et al. (1997); Koehler et al. (1997); Koehler (1998); Kambhampati
(2000)]; in particular, it was my personal “kindergarden planner”.

Nowadays, hm is not in wide use anymore; its most prominent application
right now is in modified forms that allow to use arbitrary sets of atomic
subgoals (see slide 36), or to compute improved delete-relaxation heuristics
(→ Chapter 10).

2Actually, Graphplan does parallel planning (a simplistic form of temporal
planning), and uses a version of 2-planning graphs reflecting this. I omit the details
since parallel planning is not relevant in practice.
Jörg Hoffmann AI Planning Chapter 8: Critical Path Heuristics 33/40
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A Technical Remark

Reminder: Search Space for Progression

start() = I

succ(s) = {(a, s′) | ΘΠ has the transition s
a−→ s′}

→ Need to compute hm(s) = hm(s,G)⇒ one call of dynamic programming for
every different search state s!

Reminder: Search Space for Regression

start() = G

succ(g) = {(a, g′) | g′ = regr(g, a)}

→ Need to compute hm(I, g) = maxg′⊆g,|g′|=m hm(I, g′)⇒ a single call of
dynamic programming, for s = I before search begins!

→ For m = 1, it is feasible to use progression and recompute the cost of the
(singleton) subgoals in every search state s. For m = 2 already, this is
completely infeasible; all systems using h2 do regression search, where all
subgoals can be evaluated relative to the dynamic programming outcome for I.
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Reading

Admissible Heuristics for Optimal Planning [Haslum and Geffner (2000)].

Available at:
http://www.dtic.upf.edu/~hgeffner/html/reports/admissible.ps

Content: The original paper defining the hm heuristic function, and
comparing it to the techniques previously used in Graphplan.

hm(P ) = h1(Pm): Alternative Characterisations of the Generalisation
from hmax to hm [Haslum (2009)].

Available at: http://users.cecs.anu.edu.au/~patrik/publik/pm4p2.pdf

Content: Shows how to characterize hm in terms of h1 in a compiled
planning task that explicitly represents size-m conjunctions.

Relevance here: this contains the only published account of the iterative
hm
i characterization of hm. Relevance more generally: yields an alternative

computation of hm. This is not per se useful, but variants thereof have
been shown to allow the computation of powerful partial-delete-relaxation
heuristics (→ Chapter 10).
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Reading, ctd.

Explicit Conjunctions w/o Compilation: Computing hFF (ΠC) in
Polynomial Time [Hoffmann and Fickert (2015)].

Available at:
http://fai.cs.uni-saarland.de/hoffmann/papers/icaps15b.pdf

Content: Introduces the hC heuristic (cf. slide 23), which allows to
select an arbitrary set C of atomic subgoals, and thus strictly
generalizes hm.

This is only a side note in the paper though, the actual concern is
with defining and computing partial-delete-relaxation heuristics on
top of hC .
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Reading, ctd.

Towards Clause-Learning State Space Search: Learning to Recognize
Dead-Ends [Steinmetz and Hoffmann (2016)].

Available at:
http://fai.cs.uni-saarland.de/hoffmann/papers/aaai16.pdf

Content: Specifies how to “learn” the atomic subgoals C based on
states s where the search already knows that h∗(s) =∞, yet where
hC(s) 6=∞. The learning process adds new conjunctions into C, in
a manner guaranteeing that hC(s) =∞ afterwards.

Doing this systematically in a depth-first search, we obtain a
framework that approaches the elegance of clause learning in SAT,
finding and analyzing conflicts to learn knowledge that generalizes
to other search branches.
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