
Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

AI Planning
4. Applications

A Few Problems We Can Solve (and Which Some People Care About)

Jörg Hoffmann

Winter Term 2019/2020

Jörg Hoffmann AI Planning Chapter 4: Applications 1/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Agenda

1 Introduction

2 Simulated Penetration Testing

3 Natural Language Generation

4 Modular Printing System Control

5 Conclusion

Jörg Hoffmann AI Planning Chapter 4: Applications 2/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Motivation

. . . well, does anybody need to be motivated?

→ I’m presuming that “Applications” sounds better than “The expressive
power of merge-and-shrink abstractions” . . .

Applications are important:

Validate research ideas and techniques.

Source of new research problems to consider.

Source of useful benchmark examples to evaluate algorithms.

→ FAI BSc/MSc/HiWi Jobs: All three application areas here are
major ongoing/future research efforts in FAI.

Jörg Hoffmann AI Planning Chapter 4: Applications 4/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Our Agenda for This Chapter

2 Simulated Penetration Testing: Simulating hackers (well, simple
versions thereof) for automated network security testing.

3 Natural Language Generation: Turning a language grammar and
an intended meaning into a sentence.

4 Modular Printing System Control: How to control all printers
that could possibly be built.

Jörg Hoffmann AI Planning Chapter 4: Applications 5/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Network Hacking

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker

Jörg Hoffmann AI Planning Chapter 4: Applications 7/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Penetration Testing (Pentesting)

Pentesting

Actively verifying network defenses by conducting an intrusion in the
same way an attacker would.

Well-established industry (roots back to the 60s).

Points out specific dangerous attacks (as opposed to vulnerability
scanners).

Pentesting tools sold by security companies, like Core Security.

→ Core IMPACT (since 2001); Immunity Canvas (since 2002);
Metasploit (since 2003).

Run security checks launching exploits.

Core IMPACT uses FF (cf. Chapter 9) for automation since 2010.

Jörg Hoffmann AI Planning Chapter 4: Applications 8/53

http://www.coresecurity.com/


Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Motivation for Automation

Security teams are typically small:

Jörg Hoffmann AI Planning Chapter 4: Applications 9/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Motivation for Automation

Increase testing coverage:

Jörg Hoffmann AI Planning Chapter 4: Applications 9/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Motivation for Automation

The security officer’s “rat race”:

Jörg Hoffmann AI Planning Chapter 4: Applications 9/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Motivation for Automation

=⇒ Simulated Pentesting:

Make a model of the network and exploits.

Run attack planning on the model to simulate attacks.

Running the rat race ≈ update the model, go drink a coffee.

Jörg Hoffmann AI Planning Chapter 4: Applications 9/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Motivation for Automation: Wrap-Up

Simulated penetration testing serves to:

Reduce human labor.

Increase testing coverage:

Higher testing frequency.
Broader tests trying more possibilities.

Deal with the dynamics of pentesting:

More exploits.
New tools used in attacks (Client-Side, WiFi, WebApps, . . . ).

→ The aim is to automate pentesting, so that the attacks can
continuously be run in the background, thus decreasing human labor
while allowing broad coverage of complex attack possibilities.

Jörg Hoffmann AI Planning Chapter 4: Applications 10/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

The Turing Test, Revisited

Ultimate vision: realistically simulate a human hacker!

Jörg Hoffmann AI Planning Chapter 4: Applications 11/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Simulated Pentesting at Core Security

Core IMPACT system architecture:

PlannerPlan

PDDL Description

Actions

Initial conditions

Pentesting Framework

Exploits & Attack Modules

Attack Workspace

transform

transform

execution

→ In practice, the attack plans are being used to point out to the
security team where to look.

Jörg Hoffmann AI Planning Chapter 4: Applications 12/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Core Security PDDL

Object Types:

Jörg Hoffmann AI Planning Chapter 4: Applications 13/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Core Security PDDL, ctd.

Predicates expressing connectivity:

Jörg Hoffmann AI Planning Chapter 4: Applications 14/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Core Security PDDL, ctd.

Predicates expressing configurations:

Jörg Hoffmann AI Planning Chapter 4: Applications 15/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Core Security PDDL, ctd.

Actions modeling exploits:

Jörg Hoffmann AI Planning Chapter 4: Applications 16/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Core Security PDDL, ctd.

Actions allowing to reap benefits of exploits:

Jörg Hoffmann AI Planning Chapter 4: Applications 17/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Core Security PDDL, ctd.

An attack plan:

Jörg Hoffmann AI Planning Chapter 4: Applications 18/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Simulated Pentesting@Core Security: Remarks

History:

Planning domain “of this kind” (less IT-level, including also physical
actions like talking to somebody) first proposed by [Boddy et al.
(2005)]; used as benchmark in IPC’08 and IPC’11.

Presented encoding proposed by [Lucangeli et al. (2010)].

Used commercially by Core Security in Core INSIGHT since 2010.

Do Core Security’s customers like this?

I am told they do.

In fact, they like it so much already that Core Security is very
reluctant to invest money in making this better . . .

Jörg Hoffmann AI Planning Chapter 4: Applications 19/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Questionnaire

Question!

Is the current realization @Core Security really a simulation of
what human hackers do?
(A): Yes. (B): No.

→ Definitely not. Some examples of what is missing:

The attack planner knows the network structure, the precise software
installation, and where the sensitive data is!

The attack planner does not use commonsense knowledge to guess
passwords (birthdays, kids’ names, . . . ).

The attack planner does not write phishing emails.

Jörg Hoffmann AI Planning Chapter 4: Applications 20/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

FAI Research

Incomplete attacker knowledge: → Jointly with INRIA Nancy

Trade-off between model accuracy vs. feasibility [Hoffmann (2015)]:

(Lucangeli et al. 2010)

CoreSec−Classical
e.g. (Amman et al. 2002)

Attack Graphs
(Boddy et al. 2005)

CyberSecurity

Current POMDP Model
(Sarraute et al. 2012)

CoreSec−MDP (Durkota and Lisy 2014)

CoreSec−POMDP

PO−CHP
Attack−Asset

POMDP

Attack−Asset
MDPProblem (CHP)

Canadian Hacker

Factored POMDP

Factored MDP

Classical Planning
Classical Planning
Delete−Relaxed

Graph Distance

(i) −− (v) (i) −− (iv)

(i) (iii) (vii) (viii)(i) (iii) −− (viii)

(i) (iii) −− (viii)

Explicit
Network Graph

Monotonic Actions General Actions

N
o
n
e

O
u
tc

o
m

es
A

ct
io

n
S

ta
te

s

(A
) 

U
n
ce

rt
ai

n
ty

 M
o
d
el

(B) Action Model

(i) (iii) (iv) (vi) −− (viii)

(i) (iii) (iv) (vi) −− (viii)
(i) (iii) (vii) (viii)

(i) −− (iii)

Modeling the defender: → Jointly with CISPA

Stackelberg Planning [Speicher et al. (2018a)].

Applications on internet-scale models [Speicher et al. (2018b)].

Jörg Hoffmann AI Planning Chapter 4: Applications 21/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Natural Language Generation (NLG)

S:e

VP:e

sleeps

V:e

rabbit

NP:r1

the N:r1

white N:r1

Input: Grammar, intended meaning.

Output: Sentence implementing meaning.

Jörg Hoffmann AI Planning Chapter 4: Applications 23/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

NLG as Planning, Remarks

Historical:

Long-standing historical connection between NLG and Planning (first
mentioned in early 80s).

Resurrected in 2007, after long silence, thanks to efficiency of heuristic
search planners like FF [Hoffmann and Nebel (2001)] → Chapter 9.

Encoding below proposed by [Koller and Stone (2007)].

Main advantages of planning in this application:

Rapid development (try to develop a language generator yourself . . . ).

Flexibility (grammar/knowledge changes handled automatically).

Seamless combination with other tasks (like text planning).

Jörg Hoffmann AI Planning Chapter 4: Applications 24/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

NLG with TAG

(Model-based) NLG in General:

Given semantic representation (formula) and grammar, compute
sentence that expresses this semantics.

Standard problem in natural language processing, many different
approaches exist.

NLG here:

NLG with tree-adjoining grammars (TAG) [Koller and Stone (2007)].

Grammar given in form of finite set of elementary trees.

Problem instance given by grammar, knowledge base, and a set of
ground atoms which the sentence should express.

Jörg Hoffmann AI Planning Chapter 4: Applications 25/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

NLG with TAG: Example

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

sleep(e, r1)

“S:e” stands for sentence referring to event e.

“NP:r1 ↓” stands for a noun phrase referring to r1, which must be
substituted here.

[“VP:e” and “V:e” stand for a verb phrase referring to e, and can
be used to adjoin further trees (not detailed here).]

Jörg Hoffmann AI Planning Chapter 4: Applications 26/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

sleep(e, r1)

Is this a complete sentence derivation? No, there exists an open
node (“NP:r1 ↓”) that must be substituted.

Jörg Hoffmann AI Planning Chapter 4: Applications 27/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

sleep(e, r1)

rabbit(r1)

This is a substitution operation (purple dashed arrow in our
illustration).

“N:r1” stands for a noun-phrase element referring to r1, and can be
used to adjoin further trees.

Jörg Hoffmann AI Planning Chapter 4: Applications 28/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

sleep(e, r1)

rabbit(r1)

Is this a complete sentence derivation? Yes (no open nodes).

Does the sentence express the desired meaning? No. The intended
subject r1 is not uniquely identified, we must get rid of the
ambiguity between r1 and r2.

Jörg Hoffmann AI Planning Chapter 4: Applications 29/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

N:r1
white N:r1 * 

sleep(e, r1)

rabbit(r1) white(r1)

This is an adjunction operation (blue dotted arrow in our
illustration).

“N:r1” stands for a noun-phrase element referring to r1, and can be
used to adjoin further trees.

Jörg Hoffmann AI Planning Chapter 4: Applications 30/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

N:r1
white N:r1 * 

sleep(e, r1)

rabbit(r1) white(r1)

Is this a complete sentence derivation? Yes (no open nodes).

Does the sentence express the desired meaning? Yes: According to
the knowledge base, r2 is not white, so r1 is now uniquely identified.

Jörg Hoffmann AI Planning Chapter 4: Applications 31/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

NLG with TAG: Example, ctd.

Task: Express ground atom {sleep(e, r1)}.
Knowledge Base: {sleep(e, r1), rabbit(r1), white(r1), rabbit(r2)}.

S:e

VP:e

sleeps

V:e

rabbit

NP:r1

the N:r1

white N:r1

The outcome of our substitution and adjunction operations here.

To obtain the desired sentence, read off the leaves from left to right.

Jörg Hoffmann AI Planning Chapter 4: Applications 32/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

. . . and now in PDDL!

From [Koller and Hoffmann (2010)], slightly simplified:

sleeps(u, u′, x, x′):
pre: subst(S , u), ref (u, x), sleep(x, x′)
eff: expressed(sleep, x, x′), ¬subst(S , u),

subst(NP , u′), ref (u′, x′),
∀y.y 6= x′ → distractor(u′, y)

“u, u′”: nodes in grammar trees
“x”: event
“x′”: sentence subject

rabbit(u′, x′):
pre: subst(NP , u′), ref (u′, x′), rabbit(x′)
eff: ¬subst(NP , u′), canadjoin(N , u′),

∀y.¬rabbit(y) → ¬distractor(u′, y)

white(u′, x′):
pre: canadjoin(N , u′), ref (u′, x′), white(x′)

eff: ∀y.¬white(y) → ¬distractor(u′, y)

Initial state: subst(S , u0), ref (u0, e), sleep(e, r1), rabbit(r1), . . .

Goal: expressed(sleep, e, r1)
∀u∀x.¬subst(u, x)
∀u∀x.¬distractor(u, x)

Plan: 〈sleeps(u0, u1, e, r1), rabbit(u1, r1), white(u1, r1)〉.

Jörg Hoffmann AI Planning Chapter 4: Applications 33/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Questionnaire

Question!

In the action “sleeps(u, u′, x, x′)”, what for do we need the effect
literal “¬subst(S , u)”?

(A): So we don’t fall asleep.

(C): To mark the subject of S as
being open.

(B): So the rabbit does not fall
asleep.

(D): To mark S itself as closed.

sleeps(u, u′, x, x′):
pre: subst(S , u), ref (u, x), sleep(x, x′)
eff: expressed(sleep, x, x′), ¬subst(S , u),

subst(NP , u′), ref (u′, x′),
∀y.y 6= x′ → distractor(u′, y)

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

N:r1
white N:r1 * 

sleep(e, r1)

rabbit(r1) white(r1)

→ The parameter u stands for the root of the verb-phrase tree, not for its
subject. Further, ¬subst(S , u) means that u is closed, not that it’s open.
Hence: (C) no, (D) yes.

Jörg Hoffmann AI Planning Chapter 4: Applications 34/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Questionnaire, ctd.

Question!

When we apply the action “sleeps(u0, u1, e, r1)” in our plan, what
does “u1” stand for?

(A): The verb phrase.

(C): The node “NP:r1 ↓” in the
verb-phrase tree.

(B): The noun phrase.

(D): The tree representing the
noun phrase.

sleeps(u, u′, x, x′):
pre: subst(S , u), ref (u, x), sleep(x, x′)
eff: expressed(sleep, x, x′), ¬subst(S , u),

subst(NP , u′), ref (u′, x′),
∀y.y 6= x′ → distractor(u′, y)

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

N:r1
white N:r1 * 

sleep(e, r1)

rabbit(r1) white(r1)

→ (A), (B), (D): No, the action parameters u, u′ stand for grammar tree nodes.
(C): Yes, u1 instantiates u′ which refers to the noun phrase node in the tree
corresponding to this action.

Jörg Hoffmann AI Planning Chapter 4: Applications 35/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

FAI Research

→ Many search problems in Computational Linguistics: text planning,
sentence generation, parsing. Exchange of ideas/techniques.

Instruction generation in Minecraft: → Jointly with Alexander Koller

→ Use AI Planning to structure the instruction text; use NLG to
generate the actual language per-sentence.

Jörg Hoffmann AI Planning Chapter 4: Applications 36/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Large-Scale Printing Systems: Complex stuff already . . .

Process blank sheets of paper into anything (book/bill in folded
envelope, . . . ).

Hundreds of independently controlled processing components.

Dozens of different processes active at any one time.

Online problem, new jobs come in as we go.

Jörg Hoffmann AI Planning Chapter 4: Applications 38/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

. . . and now we’re making it MUCH worse!

MODULAR Large-Scale Printing Systems:

Assemble and configure components as required by customer.

No need to buy stuff you don’t want, easy to adapt as needed.

Control can no longer be pre-programmed/configured for a
particular machine.

Requires flexible software that can control anything we could build!

Jörg Hoffmann AI Planning Chapter 4: Applications 39/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Planning To the Rescue!

T
ra

n
sl

at
o

r

sheet

description

printer

model Planner

STN

Plan Manager

domain 

description

problem

description

goals

plans

constraints

failures

time info

Printer
Controller

itineraries

rejections,

failures,

updates

T
ra

n
sl

at
o

r

“Planner” as opposed to “Plan Manager”: Finding a solution for the task
at any given point in time, vs. managing the updates to the task (new jobs
arriving, job cancelled due to paper jam, . . . ).

“STN”: Simple Temporal Network. A constraint-based representation of
action durations and precedence constraints, identifying unresolvable
conflicts.

The rest should be self-explanatory . . .

Jörg Hoffmann AI Planning Chapter 4: Applications 40/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Planning To the Rescue! Ctd.

n
e
x
t 
a
c
ti
o
n

t1 t2 t3 t4 t5 t6

planning

start time
earliest

start time

end time of

new plan

estimated

remaining makespan 

(PG + Res. Conflict)
predicted

planning

time

length of

plan so far

end time of

prev. plan

STN: sheet ordering constraint

Branching on actions, resource conflicts +

STN: resource contention constraints 

STN: plan starting time constraint

Regression search → Chapter 6 using A∗ → Chapter 7.

Heuristic function: A temporal variant of h2 (“PG” here is for “planning
graph”) → Chapter 8.

“Planning start time”, “predicted planning time”, “plan starting timing
constraint”, “resource conflicts”, “resource contention constraints”, “end
time of prev./new plan”: Relate to online/temporal aspects of domain.

Jörg Hoffmann AI Planning Chapter 4: Applications 41/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Empirical Performance

x-axis: jobs come in during online processing; y-axis: runtime (seconds) for
planning the new job; productivity level: runtime needed for practicability.
“no mutex”: without h2 heuristic function.
→ h2 is the key element making this work!

Jörg Hoffmann AI Planning Chapter 4: Applications 42/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Current/Future FAI Research

Industrie 4.0

http://en.wikipedia.org/wiki/Industry_4.0

From printers to factories:

From inflexible production of “always the same product” . . .

. . . to flexible production of highly customizable products.

Lots of control problems requiring to deal with highly general input.

Cooperative factory robots: → Jointly with ZeMA

Automate robot co-worker in aircraft riveting [Rekik et al. (2019)].

Potentially way more (collab. DFKI/Jana Koehler) . . .

Jörg Hoffmann AI Planning Chapter 4: Applications 43/53

http://en.wikipedia.org/wiki/Industry_4.0


Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Summary

Thanks to the efficiency of heuristic search planning techniques,
planning is being applied in a broad variety of applications today.

Simulated penetration testing is used for regular network security
checks, and is commercially employed with FF as the underlying
planner.

Natural language generation involves constructing sentences, and
can be successfully encoded into PDDL using FF.

Flexible printer system control is required for large-scale configurable
printing systems, and can be successfully tackled using a temporal
variant of the planning heuristic h2.

Jörg Hoffmann AI Planning Chapter 4: Applications 45/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Remarks

There’s quite a range of further application areas:

Greenhouse logistics involves moving a series of conveyor belts to
cater for the needs of all the plants [Helmert and Lasinger (2010)].

Plan recognition involves observing (some of) the actions of an
agent, and inferring what the goal is [Raḿırez and Geffner (2009)].

Business process management involves creating, maintaining, and
executing complex processes across large enterprises; planning can
be used to automatically generate process templates [Hoffmann et
al. (2012)].

Software model checking involves (amongst others) finding bugs;
this can be formulated as finding a plan to an error state
[Kupferschmid et al. (2006)].

Jörg Hoffmann AI Planning Chapter 4: Applications 46/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Reading

Simulated Penetration Testing: From “Dijkstra” to “Turing
Test++” [Hoffmann (2015)].

Available at:

http:

//fai.cs.uni-saarland.de/hoffmann/papers/icaps15inv.pdf

Content: Overview of simulated pentesting models, systematization
of framework with respect to possible models of uncertainty, and
with respect to the complexity of the action models considered.

Jörg Hoffmann AI Planning Chapter 4: Applications 47/53

http://fai.cs.uni-saarland.de/hoffmann/papers/icaps15inv.pdf
http://fai.cs.uni-saarland.de/hoffmann/papers/icaps15inv.pdf


Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Reading

Waking Up a Sleeping Rabbit: On Natural-Language Sentence
Generation with FF [Koller and Hoffmann (2010)].

Available at:

http://fai.cs.uni-saarland.de/hoffmann/papers/icaps10.pdf

Content: Summarizes the NLG problem based on TAG, and its
encoding into PDDL. Gives a compact summary of the problems
initially encountered with off-the-shelf FF, and the minor fixes
required to get rid of those problems; runs experiments showing the
dramatic performance gains obtained this way, making this approach
practical. Discusses open issues for planning technology in this
domain.

Jörg Hoffmann AI Planning Chapter 4: Applications 48/53

http://fai.cs.uni-saarland.de/hoffmann/papers/icaps10.pdf


Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

Reading

On-line Planning and Scheduling: An Application to Controlling
Modular Printers [Ruml et al. (2011)].

Available at:

http://www.jair.org/media/3184/live-3184-5462-jair.pdf

Content: Comprehensive and detailed description of the application
context, the configuration of planning and scheduling techniques
used, and the added value obtained in doing so.

For a shorter introduction of this application, refer to [Ruml et al.
(2005)] available at:

http://www.cs.unh.edu/~ruml/papers/icaps-05-revised-1.pdf

Jörg Hoffmann AI Planning Chapter 4: Applications 49/53

http://www.jair.org/media/3184/live-3184-5462-jair.pdf
http://www.cs.unh.edu/~ruml/papers/icaps-05-revised-1.pdf


Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

References I

Mark Boddy, Jonathan Gohde, Tom Haigh, and Steven Harp. Course of action
generation for cyber security using classical planning. In Susanne Biundo, Karen
Myers, and Kanna Rajan, editors, Proceedings of the 15th International Conference
on Automated Planning and Scheduling (ICAPS-05), pages 12–21, Monterey, CA,
USA, 2005. AAAI Press.

Malte Helmert and Hauke Lasinger. The Scanalyzer domain: Greenhouse logistics as a
planning problem. In Ronen I. Brafman, Hector Geffner, Jörg Hoffmann, and
Henry A. Kautz, editors, Proceedings of the 20th International Conference on
Automated Planning and Scheduling (ICAPS’10), pages 234–237. AAAI Press,
2010.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

Jörg Hoffmann, Ingo Weber, and Frank Michael Kraft. SAP speaks PDDL: Exploiting
a software-engineering model for planning in business process management. Journal
of Artificial Intelligence Research, 44:587–632, 2012.

Jörg Hoffmann AI Planning Chapter 4: Applications 50/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

References II

Jörg Hoffmann. Simulated penetration testing: From “Dijkstra” to “Turing Test++”.
In Ronen Brafman, Carmel Domshlak, Patrik Haslum, and Shlomo Zilberstein,
editors, Proceedings of the 25th International Conference on Automated Planning
and Scheduling (ICAPS’15). AAAI Press, 2015.

Alexander Koller and Jörg Hoffmann. Waking up a sleeping rabbit: On
natural-language sentence generation with ff. In Ronen I. Brafman, Hector Geffner,
Jörg Hoffmann, and Henry A. Kautz, editors, Proceedings of the 20th International
Conference on Automated Planning and Scheduling (ICAPS’10). AAAI Press, 2010.

Alexander Koller and Matthew Stone. Sentence generation as planning. In Proc. of
the 45th Annual Meeting of the Association for Computational Linguistics
(ACL’07), 2007.

Sebastian Kupferschmid, Jörg Hoffmann, Henning Dierks, and Gerd Behrmann.
Adapting an AI planning heuristic for directed model checking. In Antti Valmari,
editor, Proceedings of the 13th International SPIN Workshop (SPIN 2006), volume
3925 of Lecture Notes in Computer Science, pages 35–52. Springer-Verlag, 2006.

Jorge Lucangeli, Carlos Sarraute, and Gerardo Richarte. Attack planning in the real
world. In Proceedings of the 2nd Workshop on Intelligent Security (SecArt’10),
2010.

Jörg Hoffmann AI Planning Chapter 4: Applications 51/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

References III

Miquel Raḿırez and Hector Geffner. Plan recognition as planning. In Craig Boutilier,
editor, Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI’09), pages 1778–1783, Pasadena, California, USA, July 2009.
Morgan Kaufmann.

Khansa Rekik, Jörg Hoffmann, Rainer Müller, Marcel Steinmetz, and Matthias
Vette-Steinkamp. Planning for human-robot collaboration using markov decision
processes. In Proceedings of the Robotix Academy Conference for Industrial
Robotics (RACIR’19). Shaker Verlag GmbH, 2019.

Wheeler Ruml, Minh Do, and Markus Fromherz. On-line planning and scheduling for
high-speed manufacturing. In Susanne Biundo, Karen Myers, and Kanna Rajan,
editors, Proceedings of the 15th International Conference on Automated Planning
and Scheduling (ICAPS-05), pages 30–39, Monterey, CA, USA, 2005. AAAI Press.

Wheeler Ruml, Minh Binh Do, Rong Zhou, and Markus P. J. Fromherz. On-line
planning and scheduling: An application to controlling modular printers. Journal of
Artificial Intelligence Research, 40:415–468, 2011.

Jörg Hoffmann AI Planning Chapter 4: Applications 52/53



Introduction Simulated Pentesting Language Generation Printer Control Conclusion References

References IV

Patrick Speicher, Marcel Steinmetz, Michael Backes, Jörg Hoffmann, and Robert
Künnemann. Stackelberg planning: Towards effective leader-follower state space
search. In Sheila McIlraith and Kilian Weinberger, editors, Proceedings of the 32nd
AAAI Conference on Artificial Intelligence (AAAI’18), pages 6286–6293. AAAI
Press, February 2018.

Patrick Speicher, Marcel Steinmetz, Robert Künnemann, Milivoj Simeonovski,
Giancarlo Pellegrino, Jörg Hoffmann, and Michael Backes. Formally reasoning
about the cost and efficacy of securing the email infrastructure. In Proceedings of
the 2018 IEEE European Symposium on Security and Privacy (EuroS&P’18), pages
77–91, 2018.

Jörg Hoffmann AI Planning Chapter 4: Applications 53/53


	Introduction
	

	Simulated Penetration Testing
	

	Natural Language Generation
	

	Modular Printing System Control
	

	Conclusion
	

	
	References

