
Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

AI Planning
7. Heuristic Search

How to Avoid Having to Look at a Gazillion States

Jörg Hoffmann

Winter Term 2019/2020

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 1/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Agenda

1 Introduction

2 What Are Heuristic Functions?

3 How to Use Heuristic Functions?

4 How to Obtain Heuristic Functions?

5 Conclusion

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 2/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Reminder: Our Long-Term Agenda

Fill in (some) details on these choices:

1. Search space: Progression vs. regression.

→ Previous Chapter

2. Search algorithm: Uninformed vs. heuristic; systematic vs. local.

→ This Chapter

3. Search control: Heuristic functions and pruning methods.

→ Chapters 8–19

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 4/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Looking at a Gazillion States?

→ Use heuristic function to guide the search towards the goal!

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 5/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Heuristic Search

goal
init

cos
t es

tim
ate

h
cost est

imate h

cost estimate h

cost estimate h

→ Heuristic function h estimates the cost of an optimal path from a
state s to the goal; search prefers to expand states s with small h(s).

Live Demo vs. Breadth-First Search:

http://qiao.github.io/PathFinding.js/visual/

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 6/40

http://qiao.github.io/PathFinding.js/visual/

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Our Agenda for This Chapter

2 What Are Heuristic Functions? Gives the basic definition, and
introduces a number of important properties that we will be
considering throughout the course.

3 How to Use Heuristic Functions? Recaps the basic heuristic
search algorithms from the AI Core Course, and adds a few new
ones. Gives a few planning-specific algorithms and explanations.

4 How to Obtain Heuristic Functions? Recaps the concept of
“Relaxation” from the AI Core Course: A basic explanation how
heuristic functions are derived in practice.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 7/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Heuristic Functions

Definition (Heuristic Function). Let Π be a planning task with state
space ΘΠ = (S,L, c, T, I, SG). A heuristic function, short heuristic, for
Π is a function h : S 7→ R+

0 ∪ {∞}. Its value h(s) for a state s is
referred to as the state’s heuristic value, or h value.

Definition (Remaining Cost, h∗). Let Π be a planning task with state
space ΘΠ = (S,L, c, T, I, SG). For a state s ∈ S, the state’s remaining
cost is the cost of an optimal plan for s, or ∞ if there exists no plan for
s. The perfect heuristic for Π, written h∗, assigns every s ∈ S its
remaining cost as the heuristic value.

→ Heuristic functions h estimate remaining cost h∗.

→ These definitions apply to both, STRIPS and FDR.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 9/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Heuristic Functions: The Eternal Trade-Off

What does it mean, “estimate remaining cost”?

In principle, the “estimate” is an arbitrary function. In practice, we
want it to be accurate (aka: informative), i.e., close to the actual
remaining cost.

We also want it to be fast, i.e., a small overhead for computing h.

These two wishes are in contradiction! Extreme cases?

→ h = 0: No overhead at all, completely un-informative. h = h∗:
Perfectly accurate, overhead=solving the problem in the first place.

→ We need to trade off the accuracy of h against the overhead of
computing it. → Chapters 8–13,15–17

→ What exactly is “accuracy”? How does it affect search performance?
Interesting and challenging subject! We’ll consider this in Chapter 18.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 10/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Questionnaire

Question!

For root-finding on a map, the straight-line distance heuristic
certainly has small overhead. But is it accurate?

(A): No

(C): Sometimes

(B): Yes

(D): Maybe

→ Depends on the map, and our initial location A and goal location B:

If there is a direct road from A to B, then straight-line distance is accurate
(exact, in case the road has no curves at all).

If, say, A is central Africa and B is Patagonia, and we don’t have boats
capable of crossing an ocean, then the heuristic suggests to move to the
African south-east coast while the actual solution is via Asia and North
America . . .

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 11/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Properties of Individual Heuristic Functions

Definition (Safe/Goal-Aware/Admissible/Consistent). Let Π be a
planning task with state space ΘΠ = (S,L, c, T, I, SG), and let h be a
heuristic for Π. The heuristic is called:

safe if, for all s ∈ S, h(s) =∞ implies h∗(s) =∞;

goal-aware if h(s) = 0 for all goal states s ∈ SG;

admissible if h(s) ≤ h∗(s) for all s ∈ S;

consistent if h(s) ≤ h(s′) + c(a) for all transitions s
a−→ s′.

→ Relationships:

Proposition. Let Π be a planning task, and let h be a heuristic for Π. If
h is admissible, then h is goal-aware. If h is admissible, then h is safe. If
h is consistent and goal-aware, then h is admissible. No other
implications of this form hold.

Proof. First two claims: Easy. Third claim: Next slide.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 12/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Consistency: Illustration

Consistency = “heuristic value decrases by at most c(a)”:

h(s)

h(s’)

c(a)

Consistent and goal-aware implies admissible: Let s be a state. h∗(s) is

the cost of an optimal solution path for s. Induction over that path, backwards from

the goal: (on an optimal path, h∗ decreases by exactly c(a) in each step)

0

h

h*h

h*

h(s)

h*(s)

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 13/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Properties of Individual Heuristic Functions, ctd.

Examples:

Is h =Manhattan distance in the 15-Puzzle safe/goal-aware/admissible/
consistent? All yes. Easy for goal-aware and safe (h is never ∞).
Consistency: Moving a tile can’t decrease h by more than 1.

Is h =straight line distance safe/goal-aware/admissible/consistent? All yes.
Easy for goal-aware and safe (h is never ∞). Consistency: If you drive
100km, then straight line distance can’t decrease by more than 100km.

An admissible but inconsistent heuristic: To-Moscow with h(SB) = 1000,
h(KL) = 100.

→ In practice, most heuristics are safe and goal-aware, and admissible heuristics
are typically consistent.

What about inadmissible heuristics?

Inadmissible heuristics typically arise as approximations of admissible
heuristics that are too costly to compute. (Examples: Chapter 9)

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 14/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Domination Between Heuristic Functions

Definition (Domination). Let Π be a planning task, and let h and h′

be admissible heuristics for Π. We say that h′ dominates h if h ≤ h′, i.e.,
for all states s in Π we have h(s) ≤ h′(s).

→ h′ dominates h = “h′ provides a lower bound at least as good as h”.

Remarks:

Example: h′ =Manhattan Distance vs. h =Misplaced Tiles in
15-Puzzle: Each misplaced tile accounts for at least 1 (typically,
more) in h′.

h∗ dominates every other admissible heuristic.

Modulo tie-breaking, the search space of A∗ under h′ can only be
smaller than that under h. (See [Holte (2010)] for details)

In Chapter 17, we will consider much more powerful concepts,
comparing entire families of heuristic functions.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 15/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Additivity of Heuristic Functions

Definition (Additivity). Let Π be a planning task, and let h1, . . . , hn be
admissible heuristics for Π. We say that h1, . . . , hn are additive if
h1 + · · ·+ hn is admissible, i.e., for all states s in Π we have
h1(s) + · · ·+ hn(s) ≤ h∗(s).

→ An ensemble of heuristics is additive if its sum is admissible.

Remarks:

Example: h1 considers only tiles 1 . . . 7, and h2 considers only tiles 8
. . . 15, in the 15-Puzzle: The two estimates are then, intuitively,
“independent”.
(h1 and h2 are orthogonal projections → Chapter 12)
We can always combine h1, . . . , hn admissibly by taking the max.
Taking

∑
is much stronger; in particular,

∑
dominates max.

In Chapter 16, we will devise a third, strictly more general,
technique to admissibly combine heuristic functions.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 16/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

What Works Where in Planning?

Blind (no h) vs. heuristic:

For satisficing planning, heuristic search vastly outperforms blind
algorithms pretty much everywhwere.

For optimal planning, heuristic search also is better (but the
difference is not as huge).

Systematic (maintain all options) vs. local (maintain only a few) :

For satisficing planning, there are successful instances of each.

For optimal planning, systematic algorithms are required.

→ Here, we briefly cover the search algorithms most successful in
planning. For more details (in particular, for blind search), refer to the AI
Core Course.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 18/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Reminder: Greedy Best-First Search and A∗

Duplicate elimination omitted, uses AI Core Course notation:

function Greedy Best-First Search [A∗](problem) returns a solution, or failure
node ← a node n with n.state=problem.InitialState
frontier ← a priority queue ordered by ascending h [g + h], only element n
loop do

if Empty?(frontier) then return failure
n ← Pop(frontier)
if problem.GoalTest(n.State) then return Solution(n)
for each action a in problem.Actions(n.State) do

n′ ← ChildNode(problem,n,a)
Insert(n′, h(n′) [g(n′) + h(n′)], frontier)

→ Greedy best-first search explores states by increasing heuristic value h.
A∗ explores states by increasing plan-cost estimate g + h.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 19/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Greedy Best-First Search: Remarks

Properties:

Complete? Yes, with duplicate elimination. (If h(s) =∞ states are
pruned, h needs to be safe.)

Optimal? No. (Even for perfect heuristics! E.g., say the start state has two

transitions to goal states, one of which costs a million bucks while the other one

is for free. Nothing keeps Greedy Best-First Search from choosing the bad one.)

Technicalities:

Duplicate elimination: Insert child node n′ only if n′.State is not
already contained in explored ∪ States(frontier). (Cf. AI Core
Course)

Bottom line: Fast but not optimal =⇒ satisficing planning.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 20/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

A∗: Remarks

Properties:

Complete? Same as greedy best-first search.

Optimal? Yes, for admissible heuristics.

Technicalities:

“Plan-cost estimate” g(s) + h(s) known as f -value f(s) of s.

→ If g(s) is taken from a cheapest path to s, then f(s) is a lower
bound on the cost of a plan through s.

Duplicate elimination: If n′.State6∈explored ∪ States(frontier), then
insert n′; else, insert n′ only if the new path is cheaper than the old
one, and if so remove the old path. (Cf. AI Core Course)

Bottom line: Optimal for admissible h =⇒ optimal planning,
with such h.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 21/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Weighted A∗

Duplicate elimination omitted, uses AI Core Course notation:

function Weighted A∗(problem) returns a solution, or failure
node ← a node n with n.state=problem.InitialState
frontier ← a priority queue ordered by ascending g +W∗h, only element n
loop do

if Empty?(frontier) then return failure
n ← Pop(frontier)
if problem.GoalTest(n.State) then return Solution(n)
for each action a in problem.Actions(n.State) do

n′ ← ChildNode(problem,n,a)
Insert(n′, [g(n′) +W∗h(n′), frontier)

→ Weighted A∗ explores states by increasing weighted-plan-cost
estimate g + W ∗ h.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 22/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Weighted A∗: Remarks

The weight W ∈ R+
0 is an algorithm parameter:

For W = 0, weighted A∗ behaves like? Uniform-cost search, i.e.,
“cheapest-first on path costs g”.

For W = 1, weighted A∗ behaves like? A∗.

For W = 10100, weighted A∗ behaves like? Greedy best-first search
(i.e., if W is large enough, the “g” in “g + W ∗ h” doesn’t matter
anymore.

Properties:

For W > 1, weighted A∗ is bounded suboptimal.

→ If h is admissible, then the solutions returned are at most a
factor W more costly than the optimal ones.

Bottom line: Allows to interpolate between greedy best-first search and
A∗, trading off plan quality against computational effort.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 23/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Hill-Climbing

function Hill-Climbing returns a solution
node ← a node n with n.state=problem.InitialState
loop do

if problem.GoalTest(n.State) then return Solution(n)
N ← the set of all child nodes of n
n ← an element of N minimizing h /* (random tie breaking) */

Remarks:

Is this complete or optimal? No.

Can easily get stuck in local minima where immediate improvements
of h(n) are not possible.

Many variations: tie-breaking strategies, restarts, . . . (cf. AI Core
Course)

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 24/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Enforced Hill-Climbing [Hoffmann and Nebel (2001)]

function Enforced Hill-Climbing returns a solution
node ← a node n with n.state=problem.InitialState
loop do

if problem.GoalTest(n.State) then return Solution(n)
Perform breadth-first search for a node n′ s.t. h(n′) < h(n)
n ← n′

Remarks:

Is this optimal? No.

Is this complete? See next slide.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 25/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Questionnaire

function Enforced Hill-Climbing returns a solution
node ← a node n with n.state=problem.InitialState
loop do

if problem.GoalTest(n.State) then return Solution(n)
Perform breadth-first search for a node n′ s.t. h(n′) < h(n)
n ← n′

Question!

Assume that h(s) = 0 if and only if s is a goal state. Is Enforced
Hill-Climbing complete?

→ Only when restricting the input to planning tasks that do not contain any reachable
dead-end state s where h(s) 6=∞:

If there is such a state s, then the current node n may at some point end up
containing that state, in which case the algorithm will not find a solution.
Say there are no such states. Say the current node n contains the non-goal state
s. Then h(s) > 0, a goal state s′ is reachable from s, and 0 = h(s′) < h(s). So
breadth-first search will terminate with success.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 26/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Heuristic Functions from Relaxed Problems

Problem Π: Find a route from Saarbruecken To Edinburgh.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 28/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Heuristic Functions from Relaxed Problems

Relaxed Problem Π′: Throw away the map.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 28/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Heuristic Functions from Relaxed Problems

Heuristic function h: Straight line distance.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 28/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax

P
h∗P

N+
0 ∪ {∞}

P ′
h∗P ′

R

You have a class P of problems, whose perfect heuristic h∗P you wish
to estimate.

You define a class P ′ of simpler problems, whose perfect heuristic
h∗P ′ can be used to estimate h∗P .

You define a transformation – the relaxation mapping R – that
maps instances Π ∈ P into instances Π′ ∈ P ′.
Given Π ∈ P, you let Π′ := R(Π), and estimate h∗P(Π) by h∗P ′(Π

′).

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 29/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Relaxation in Route-Finding

Problem class P: Route finding.

Perfect heuristic h∗P for P: Length of a shortest route.

Simpler problem class P ′: Route finding on an empty map.

Perfect heuristic h∗P′ for P ′: Straight-line distance.

Transformation R: Throw away the map.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 30/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Overview

Attention! Search uses the real (un-relaxed) Π. The relaxation is applied only
within the call to h(s)!!!

Heuristic Search

R(Πs)
R h∗P ′

h(s) = h∗P ′(R(Πs))state s

Problem Π Solution to Π

Here, Πs is Π with initial state replaced by s, i.e., Π = (P,A, I,G)
changed to (P,A, s,G): The task of finding a plan for search state s.

A common student mistake is to instead apply the relaxation once to the
whole problem, then doing the whole search “within the relaxation”.

Slides 34 and 32 illustrate the correct search process in detail.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 31/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
Initial state I: AC; goal G: AD.
Actions A: pre, add , del .
drXY, loX, ulX.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BCBC

5

drAB

CCCC

5

drBC

ACAC

D

drB
A

DCDC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 32/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Ignoring Deletes

Relaxed problem:
State s: AC; goal G: AD.
Actions A: pre, add .
h+(s) =5: e.g.
〈drAB, drBC, drCD, loC, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BCBC

5

drAB

CCCC

5

drBC

ACAC

D

drB
A

DCDC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 32/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
State s: BC; goal G: AD.
Actions A: pre, add , del .

AC
drAB−−−−→ BC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5

drAB

CCCC

5

drBC

ACAC

D

drB
A

DCDC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D

drA
B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 32/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Ignoring Deletes

Relaxed problem:
State s: BC; goal G: AD.
Actions A: pre, add .
h+(s) =5: e.g.
〈drBA, drBC, drCD, loC, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CCCC

5

drBC

ACAC

D

drB
A

DCDC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 32/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
State s: CC; goal G: AD.
Actions A: pre, add , del .

BC
drBC−−−−→ CC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5

drBC

ACAC

D

drB
A

DCDC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D

drA
B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 32/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Ignoring Deletes

Relaxed problem:
State s: CC; goal G: AD.
Actions A: pre, add .
h+(s) =5: e.g.
〈drCB, drBA, drCD, loC, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

ACAC

D

drB
A

DCDC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 32/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
State s: AC; goal G: AD.
Actions A: pre, add , del .
Duplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

AC

AC

D

drB
A

DCDC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 32/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
State s: DC; goal G: AD.
Actions A: pre, add , del .

CC
drCD−−−−→ DC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

ACAC

D

drB
A

DC

DC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D

drA
B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 32/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Ignoring Deletes

Relaxed problem:
State s: DC; goal G: AD.
Actions A: pre, add .
h+(s) =5: e.g.
〈drDC, drCB, drBA, loC, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

ACAC

D

drB
A

DC

DC

5

dr
C
D

CTCT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 32/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
State s: CT ; goal G: AD.
Actions A: pre, add , del .

CC
loC−−→ CT .

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

ACAC

D

drB
A

DC

DC

5

dr
C
D

CT

CT

4

loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D

drA
B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 32/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Ignoring Deletes

Relaxed problem:
State s: CT ; goal G: AD.
Actions A: pre, add .
h+(s) =4: e.g.
〈drCB, drBA, drCD, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

ACAC

D

drB
A

DC

DC

5

dr
C
D

CT

CT

4loC

BCBC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 32/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
State s: BC; goal G: AD.
Actions A: pre, add , del .
Duplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

ACAC

D

drB
A

DC

DC

5

dr
C
D

CT

CT

4loC

BC

BC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 32/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Ignoring Deletes

Real problem:
Initial state I: AC; goal G: AD.
Actions A: pre, add , del .
drXY, loX, ulX.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

5

BC

BC

5drAB

CC

CC

5drBC

ACAC

D

drB
A

DC

DC

5

dr
C
D

CT

CT

4loC

BC

BC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

u
lC

AT

4

d
r
B
A

BB

5

u
lB

CT

DdrBC

AA

5ulA

BT

D
drA

B

DD

3ulD

CT

D

drD
C

CD

2drDC

DT

D

loD

BD

1drCB

DD

D

drC
D

AD

0drBA

CD

D

drB
C

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 32/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

A Simple Planning Relaxation: Only-Adds

Example: “Logistics”

Facts P : {truck(x) | x ∈ {A,B,C,D}}∪ pack(x) | x ∈ {A,B,C,D, T}}.
Initial state I: {truck(A), pack(C)}.
Goal G: {truck(A), pack(D)}.
Actions A: (Notated as “precondition ⇒ adds, ¬ deletes”)

drive(x, y), where x, y have a road:
“truck(x)⇒ truck(y),¬truck(x)”.
load(x): “truck(x), pack(x)⇒ pack(T),¬pack(x)”.
unload(x): “truck(x), pack(T)⇒ pack(x),¬pack(T)”.

Only-Adds Relaxation: Drop the preconditions and deletes.

“drive(x, y): ⇒ truck(y)”; “load(x): ⇒ pack(T)”; “unload(x): ⇒ pack(x)”.

→ Heuristic value for I is? 1: A plan for the relaxed task is 〈unload(D)〉.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 33/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Only-Adds

Real problem:
Initial state I: AC; goal G: AD.
Actions A: pre, add , del .
drXY, loX, ulX.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BCBC

2

drAB

CCCC

2

drBC

ACAC

D

drB
A

DCDC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 34/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Only-Adds

Relaxed problem:
State s: AC; goal G: AD.
Actions A: add .
hR(s) =1: 〈ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BCBC

2

drAB

CCCC

2

drBC

ACAC

D

drB
A

DCDC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 34/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Only-Adds

Real problem:
State s: BC; goal G: AD.
Actions A: pre, add , del .

AC
drAB−−−−→ BC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2

drAB

CCCC

2

drBC

ACAC

D

drB
A

DCDC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 34/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Only-Adds

Relaxed problem:
State s: BC; goal G: AD.
Actions A: add .
hR(s) =2: 〈drBA, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CCCC

2

drBC

ACAC

D

drB
A

DCDC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 34/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Only-Adds

Real problem:
State s: CC; goal G: AD.
Actions A: pre, add , del .

BC
drBC−−−−→ CC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2

drBC

ACAC

D

drB
A

DCDC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 34/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Only-Adds

Relaxed problem:
State s: CC; goal G: AD.
Actions A: add .
hR(s) =2: 〈drBA, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

ACAC

D

drB
A

DCDC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 34/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Only-Adds

Real problem:
State s: AC; goal G: AD.
Actions A: pre, add , del .
Duplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

AC

AC

D

drB
A

DCDC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 34/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Only-Adds

Real problem:
State s: DC; goal G: AD.
Actions A: pre, add , del .

CC
drCD−−−−→ DC.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

AC

AC

D

drB
A

DC

DC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 34/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Only-Adds

Relaxed problem:
State s: DC; goal G: AD.
Actions A: add .
hR(s) =2: 〈drBA, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

AC

AC

D

drB
A

DC

DC

2

dr
C
D

CTCT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 34/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Only-Adds

Real problem:
State s: CT ; goal G: AD.
Actions A: pre, add , del .

CC
loC−−→ CT .

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

AC

AC

D

drB
A

DC

DC

2

dr
C
D

CT

CT

2

loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 34/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Only-Adds

Relaxed problem:
State s: CT ; goal G: AD.
Actions A: add .
hR(s) =2: 〈drBA, ulD〉.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

AC

AC

D

drB
A

DC

DC

2

dr
C
D

CT

CT

2loC

BCBC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 34/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Only-Adds

Real problem:
State s: BC; goal G: AD.
Actions A: pre, add , del .
Duplicate state, prune.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

AC

AC

D

drB
A

DC

DC

2

dr
C
D

CT

CT

2loC

BC

BC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 34/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

How to Relax During Search: Only-Adds

Real problem:
Initial state I: AC; goal G: AD.
Actions A: pre, add , del .
drXY, loX, ulX.

Greedy best-first search:
(tie-breaking: alphabetic)

We are here

AC

AC

1

BC

BC

2drAB

CC

CC

2drBC

AC

AC

D

drB
A

DC

DC

2

dr
C
D

CT

CT

2loC

BC

BC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

u
lC

AT

1

d
r
B
A

BB

2

u
lB

CT

DdrBC

AA

1ulA

BT

D
drA

B

BA

2drAB

AT

D

loA

CA

2drBC

AA

D

drB
A

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 34/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Only-Adds and Ignoring Deletes are “Native” Relaxations

Native Relaxations: Confusing special case where P ′ ⊆ P.

P

P ′ ⊆ PR

N+
0 ∪ {∞}

h∗P

h∗P

Problem class P: STRIPS planning tasks.

Perfect heuristic h∗P for P: Length h∗ of a shortest plan.

Transformation R: Drop the (preconditions and) delete lists.

Simpler problem class P ′ is a special case of P, P ′ ⊆ P : STRIPS planning
tasks with empty (preconditions and) delete lists.

Perfect heuristic for P ′: Shortest plan for only-adds respectively delete-free
STRIPS task.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 35/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Questionnaire

Question!

Is Only-Adds a “good heuristic” (accurate goal distance
estimates) in . . .

(A): Path Planning?

(C): Freecell?

(B): Blocksworld?

(D): SAT? (#unsatisfied clauses)

→ (A): No! The heuristic remains constantly 1 until we reach the actual goal state.

→ (B): No: If we build a goal-tower of size 100 on top of a single block that still
needs to move elsewhere, then the heuristic value is 1.

→ (C): No: The heuristic value does take into account how many cards are already
“home”, but it is completely independent of the placement of all the other cards. In
particular, dead-ends are essential in Freecell but the heuristic is completely unable to
detect any of them.

→ (D): No: Like in Freecell, the most essential part in SAT solving is knowing whether
or not a given partial assignment is still feasible, i.e., whether or not it is a dead-end.
The heuristic is completely unable to detect any of them.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 36/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Summary

Heuristic functions h map states to estimates of remaining cost. A heuristic
can be safe, goal-aware, admissible, and/or consistent. A heuristic may
dominate another heuristic, and an ensemble of heuristics may be additive.

Greedy best-first search can be used for satisficing planning, A∗ can be
used for optimal planning provided h is admissible. Weighted A∗

interpolates between the two.

Relaxation is a method to compute heuristic functions. Given a problem P
we want to solve, we define a relaxed problem P ′. We derive the heuristic
by mapping into P ′ and taking the solution to this simpler problem as the
heuristic estimate.

During search, the relaxation is used only inside the computation of h(s)
on each state s; the relaxation does not affect anything else.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 38/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

Reading

AI Core Course Chapters 4 and 5.

A word of caution regarding Artificial Intelligence: A Modern
Approach (Third Edition) [Russell and Norvig (2010)], Sections
3.6.2 and 3.6.3.

Content: These little sections are aimed at describing basically what
I call “How to Relax” here. They do serve to get some intuitions.
However, strictly speaking, they’re a bit misleading. Formally, a
pattern database (Section 3.6.3) is what is called a “relaxation” in
Section 3.6.2: as we shall see in → Chapters 11, 12, pattern
databases are abstract transition systems that have more transitions
than the original state space. On the other hand, not every
relaxation can be usefully described this way; e.g., critical-path
heuristics (→ Chapter 8) and ignoring-deletes heuristics
(→ Chapter 9) are associated with very different state spaces.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 39/40

Introduction What’s a Heuristic? How to Use it? How to Obtain it? Conclusion References

References I

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence Research, 14:253–302,
2001.

Robert C. Holte. Common misconceptions concerning heuristic search. In Ariel Felner
and Nathan R. Sturtevant, editors, Proceedings of the 3rd Annual Symposium on
Combinatorial Search (SOCS’10), pages 46–51, Stone Mountain, Atlanta, GA, July
2010. AAAI Press.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (Third
Edition). Prentice-Hall, Englewood Cliffs, NJ, 2010.

Jörg Hoffmann AI Planning Chapter 7: Heuristic Search 40/40

	Introduction
	

	What Are Heuristic Functions?
	

	How to Use Heuristic Functions?
	

	How to Obtain Heuristic Functions?
	

	Conclusion
	

	
	References

