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The Pitfalls of Optimal Heuristic Search

Optimal heuristic search: (in particular, optimal planning)

Admissible h avoids the expansion of nodes where g(n) + h(n) > h∗(I).

Can be highly effective in practice.

→ However: Sometimes even “almost perfect” heuristics are not good enough!

Definition (Almost Perfect Heuristic). Let Π be a planning task with states
S, and let h be an admissible heuristic for Π. We say that h is almost perfect if
there exists c ∈ R+

0 such that, for all s ∈ S, h∗(s)− h(s) ≤ c.
→ An almost-perfect h has at most constant error c.

What about the search effort given such h?

Define N c(Π) := number of nodes where g(n) + (h∗(n)− c) ≤ h∗(I).
Then A∗ using almost-perfect h will expand at least N c(Π) nodes.

[Gaschnig (1977)]: If the state space is a tree, and there is only one goal
state, then N c(Π) is linear in the length of the solution.

[Helmert and Röger (2008)]: Even in the simplest standard planning
benchmark domains, N c(Π) grows exponentially even for c = 1!
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The Pitfalls of Optimal Heuristic Search: Example Gripper

The Gripper benchmark:

Carry n balls from L to R

Empirical results:

n h∗(I) N1(Π)
04 11 125
06 17 925
08 23 5885
10 29 34301
12 35 188413
14 41 991229
16 47 5046269

Proposition. Let Πn be the Gripper task with n balls. Then N1(Πn) grows
exponentially in n.

Proof sketch. Consider the nodes n where g(n) + h∗(n) = h∗(I), i.e., the
nodes on an optimal plan. Obviously, every such n satisfies
g(n) + (h∗(n)− 1) ≤ h∗(I), so counts towards N1(Πn). In Gripper, every
state with half of the balls at L and the other half at R lies on an optimal plan.

→ In other words: What’s killing us here are plan permutations.
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Pruning Methods

→ To the rescue: Optimality-preserving pruning methods.

State Pruning: Reduces search effort by cross-state comparisons.
Prunes states whose exploration can be shown to be unnecessary.

Action Pruning: Reduces search effort by analyzing applicable
actions. Prunes actions whose exploration can be shown to be
unnecessary.

We cover one such pruning method: Partial-order reduction via
action pruning.
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The Right Shoe or the Left Shoe?

Example: Say the task is to put on our socks and shoes.

〈sockL, shoeL, sockR, shoeR〉
〈sockL, sockR, shoeL, shoeR〉
〈sockL, sockR, shoeR, shoeL〉
〈sockR, shoeR, sockL, shoeL〉
〈sockR, sockL, shoeL, shoeR〉
〈sockR, sockL, shoeR, shoeL〉

⊥ ⊥

so ⊥

⊥ so

sh ⊥

so so

⊥ sh

sh so

so sh

sh sh

soL

soR

soR

shL

shR

soL

shL

shR

soR

soL

shR

shL

Commutative actions:

Actions that can be applied in any order, leading to the same result.

E.g. here: sockL vs. sockR, shoeL vs. shoeR, . . .

E.g. Gripper: pickup(ball1,L) vs. pickup(ball2,L), . . .

If an optimal plan π contains such actions, then any π′ permuting these
actions also is a plan. → Lots of states on optimal plans (cf. slide 5)!

→ Partial-order reduction (POR) methods identify, and prune, permutable parts
of the search space.
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Partial-Order Reduction (POR) Methods: Overview

→ Partial-order reduction (POR) methods identify, and prune,
permutable parts of the search space.

→ They do so via action pruning (cf. slide 6).

There are different kinds of POR methods:

Transition-reduction methods: Prune applicable actions while
preserving the reachable state space.

→ Sleep Sets, Ample Sets, etc. Not considered here (useful mainly
in depth-first search algorithms).

State-reduction methods: Prune applicable actions while preserving
at least one optimal solution.

→ Strong Stubborn Sets (S3). →This Chapter
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Our Agenda for This Chapter

2 Action-Pruning Functions: We define and briefly analyze what an
action-pruning function is, and when such pruning is safe.

3 Strong Stubborn Sets: Ingredients: The strong stubborn sets
technique (and POR more generally) relies on a number of basic
concepts, that we introduce here.

4 Strong Stubborn Sets: Theory: We define what a strong
stubborn set is, and we prove safety as an action-pruning function.

5 Strong Stubborn Sets: Practice: We consider how to
operationalize the definition.

6 What about STRIPS? In the above, our definitions are agnostic to
STRIPS/FDR where it doesn’t matter; where it does matter, we use
FDR. Here we explain that very little changes for STRIPS.
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Questionnaire

Variables V : H1, H2, H3 : {Fine,Broken};
P1, P2, P3 : {Home,Captured},W : {Hungry,Happy}}.
Initial state I: H1, H2, H3 = Fine, P1, P2, P3 = Home, W = Hungry.
Goal G: W = Happy.
Actions A: Blow(x): pre Hx = Fine, eff Hx = Broken
Capture(x): pre Px = Home, Hx = Broken, eff Px = Captured
Banquet : pre P1 = P2 = P3 = Captured, eff W = Happy

Question!

1 What are optimal plans for this task?

2 What causes the state-space explosion?

3 What should POR do to avoid that explosion?

1 〈Blow1,Capture1,Blow2,Capture2,Blow3,Capture3,Banquet〉,
〈Blow2,Capture2,Blow1,Capture1,Blow3,Capture3,Banquet〉,
〈Blow1,Blow2,Blow3,Capture1,Capture2,Capture3,Banquet〉, . . .

2 The order in which we blow the houses/capture the pigs does not matter.
(aka socks/shoes: Blow=sock, Capture=shoe . . . )

3 Prune all but one arbitrary fixed order for the blowing/capturing.
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Action-Pruning Functions

Reminder: Given a task Π with actions A, and a state s,
A[s] := {a | a ∈ A, prea ⊆ s} denotes the actions applicable in s.

Definition (Action-Pruning Function). Let Π be a planning task with states
S. An action-pruning function for Π is a function ρ : S 7→ 2A such that, for all
s ∈ S, we have ρ(s) ⊆ A[s].

→ An action-pruning function ρ returns, for each state s, a subset ρ(s) of the
applicable actions.

Definition (Pruned State Space). Let Π be a planning task, and let
Θ = (S,L, c, T, I, SG) be the state space of Π. Let ρ be an action-pruning
function for Π. Then the pruned state space, denoted Θρ, is defined like Θ but

reducing T to those s
a−→ s′ where a ∈ ρ(s).

→ The actions outside ρ(s) are pruned.
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Safe Action-Pruning Functions

Definition (Safe ρ). Let Π be a planning task with state space Θ = (S,L, c, T,
I, SG), and let ρ be an action-pruning function for Π. We say that ρ is safe if,
for all s ∈ S, the cost of an optimal solution for s in Θρ equals h∗(s).

→ A safe action-pruning function ρ preserves optimality.

Proposition. Let Π be a planning task with states S, and let ρ be an
action-pruning function for Π. If, for every solvable non-goal s ∈ S, ρ(s)
contains at least one action starting a shortest optimal plan for s, then ρ is safe.

Proof. By induction on the length n of a shortest optimal plan for s. Base case
n = 1: Direct from definition. Inductive case n→ n+ 1: The first action a of a
shortest optimal plan for s is preserved. Say the transition is s

a−→ s′. Then the
shortest optimal plan for s′ is shorter than that for s, so the claim follows by
induction hypothesis.

→ Why “shortest”? 6= optimal. Induction doesn’t work with 0-cost actions.

→ What about unsolvable s? ρ may be arbitrary on such states, e.g. ρ(s) = ∅.
Jörg Hoffmann AI Planning Chapter 14: Partial-Order Reduction 13/40
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Before We Begin . . .

Ingredients? Action dependencies.

How actions affect each other’s applicability and/or outcome state.

We define this semantically here. For practice, we will later define
syntactic characterizations.

Illustrative example: “1/2-Log”

V : truck1, truck2 : {A,B,C,D}; pack1, pack2 : {A,B,C,D, T1, T2}.
I: truck1, truck2, pack1, pack2 = A. G: pack1, pack2 = D.

A: drive(i, x, y) (for x 6= y neighbors): pre truck i = x, effect truck i = y
load(i, x): pre pack i = x, truck i = x, effect pack i = Ti

unload(i, x): pre pack i = Ti, truck i = x, effect pack i = x
→ Note: Package i load/unload only with truck i!

“1/2-Tele-Log”: teleport(i, y): pre empty, effect truck i = y

Jörg Hoffmann AI Planning Chapter 14: Partial-Order Reduction 15/40
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Action Pairs: Enabling, Disabling, Conflict

Definition (Action Pair Dependencies). Let Π be a planning task with
actions A and states S. Let a1 6= a2 ∈ A and s ∈ S. We say that:

(i) a1 enables a2 in s if a1 ∈ A[s] and a2 6∈ A[s]; but a2 ∈ A[sJa1K].
(ii) a1 disables a2 in s if a1 ∈ A[s] and a2 ∈ A[s]; but a2 6∈ A[sJa1K].
(iii) a1 and a2 conflict in s if a1 ∈ A[s], a2 ∈ A[s], a1 ∈ A[sJa2K], and

a2 ∈ A[sJa1K]; but sJ〈a1, a2〉K 6= sJ〈a2, a1〉K.

Example: “1/2-Tele-Log”

(i) Example a1, a2, s? a1 = drive(1, A,B) enables a2 = drive(1, B,C) in
s = I.

(ii) Example a1, a2, s? drive(1, A,B) disables load(1, A) in I.

(iii) Example a1, a2, s? teleport(1, B) and teleport(1, C) conflict in I.

Note: The exact state doesn’t matter in these examples. (i) works for any s
where a1 ∈ A[s]. (ii) and (iii) work for any s where a1 ∈ A[s] and a2 ∈ A[s].
We will get back to this in Section S3 Practice.
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Action Pairs: Interfering, Commutative

Definition (Action Pair Dependencies, ctd.). Let Π be a planning task with
actions A and states S. Let a1 6= a2 ∈ A. We say that:

(iv) a1 and a2 interfere if there exists s ∈ S such that a1 and a2 either conflict
in s, or one disables the other in s.

(v) a1 and a2 are commutative if they do not interfere, and neither enables the
other in any s ∈ S.

Example: “1/2-Tele-Log”

(iv) Example a1, a2: drive(1, A,B) interferes with load(1, A) and
teleport(1, B) interferes with teleport(1, C), see previous slide.

(v) Example a1, a2? load(1, A) and load(2, D) are commutative.

Jörg Hoffmann AI Planning Chapter 14: Partial-Order Reduction 17/40
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Necessary Enabling Sets

Definition (Necessary Enabling Set). Let Π be a planning task with actions
A, goal G, and states S.

Given a ∈ A and s ∈ S where a 6∈ A(s) (i.e., prea 6⊆ s), a necessary enabling
set for a in s is a set As→∗a ⊆ A of actions so that for every action sequence
〈a1, . . . , an〉 applicable in s, if ai = a then {a1, . . . , ai−1} ∩As→∗a 6= ∅.
Given s ∈ S where G 6⊆ s, a necessary enabling set for G in s is a set
As→∗G ⊆ A of actions so that for every action sequence 〈a1, . . . , an〉 applicable
in s that achieves G, {a1, . . . , an} ∩As→∗G 6= ∅.

→ A necessary enabling set is a set of actions at least one of which must be
applied to enable an action a/the goal G.

Example: “1/2-Tele-Log”

Example s, a,As→∗a: I; drive(1, B,C); {drive(1, A,B), teleport(1, B)}.
Example s,As→∗G: I; {unload(1, D)}. I; {load(1, A)}. I;
{drive(1, C,D), teleport(1, D)}.
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Questionnaire

Variables V : H1, H2, H3 : {Fine,Broken};
P1, P2, P3 : {Home,Captured},W : {Hungry,Happy}}.

Initial state I: H1, H2, H3 = Fine, P1, P2, P3 = Home, W = Hungry.

Goal G: W = Happy.

Actions A: Blow(x): pre Hx = Fine, eff Hx = Broken
Capture(x): pre Px = Home, Hx = Broken, eff Px = Captured
Banquet : pre P1 = P2 = P3 = Captured, eff W = Happy

Question!

Which are necessary enabling sets for G in I?

(A): {Blow(1),Blow(2),Blow(3)}
(C): {Blow(1)}

(B): {Blow(1),Blow(2)}
(D): ∅

→ (A): Yes, we need to blow the house of at least one pig.

→ (B) and (C): Also yes. We actually need to do this for every pig, so every such
action is a necessary enabling set on its own.

→ There often are many necessary enabling sets. An important question in practice is
how to choose one. See Section S3 Practice.

→ (D): No. ∅ is a necessary enabling set for G in s iff s is unsolvable.

Jörg Hoffmann AI Planning Chapter 14: Partial-Order Reduction 19/40
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Strong Stubborn Sets: Intuition

Example: “1/2-Log Small”

V : truck1, truck2, pack1, pack2.
I: As shown.
G: pack1 = B, pack2 = B.
A: drive(i, x, y), load(i, x),
unload(i, x).

Observe: The order in which we transport the packages does not matter.

Idea: Focus on one of the two subgoals first! Say, pack1 = B.

(i) Collect actions needed for our subgoal: unload(1, B).

→ Make progress towards the part of G focused on.

(ii) Collect actions needed for already collected actions: load(1, A).

→ Chain backwards to actions applicable in the current state.

(iii) Collect actions that interfere with already collected applicable actions:
drive(1, A,B), unload(1, A). → Include non-permutable alternatives.

→ Other applicable actions (pertaining to truck/package 2) can be safely
ignored: we can do this later, with the same effect on the state.

Jörg Hoffmann AI Planning Chapter 14: Partial-Order Reduction 21/40
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Strong Stubborn Sets (S3)

Definition (Strong Stubborn Sets). Let Π be a planning task with actions A,
goal G, and states S. Let s ∈ S be a non-goal state. A strong stubborn set for
s is a set AS3 ⊆ A of actions such that:

(i) AS3 contains a necessary enabling set for G in s;

(ii) For every a ∈ AS3 \A[s], AS3 contains a necessary enabling set for a in s;
and

(iii) For every a ∈ AS3 ∩A[s], AS3 contains all a′ ∈ A that interfere with a.

Example: “1/2-Log Small” (cf. previous slide)
(i) unload(1, B).
(ii) load(1, A).
(iii) drive(1, A,B), unload(1, A).

Definition (S3 Pruning). Let Π be a planning task with states S. An
action-pruning function ρS3 for Π is called an S3 pruning function if, for every
non-goal state s ∈ S, there exists a strong stubborn set AS3 for s so that
ρS3(s) = A(s) ∩AS3.
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Strong Stubborn Sets are Safe

Reminder: ρ is safe if, for all states s, pruning using ρ preserves h∗(s).

Theorem (S3 Pruning Safety). Let Π be a planning task, and let ρS3 be an
S3 pruning function. Then ρS3 is safe.

Proof. It suffices to show (cf. slide 13) that, for every solvable non-goal state s,
ρS3(s) contains at least one action starting a shortest optimal plan for s.

Let s be such a state, and let AS3 be the strong stubborn set for s so that
ρS3(s) = A(s) ∩AS3. Let π = 〈a1, . . . , an〉 be any plan for s. Then

(a) π shares an action with AS3, i.e., {a1, . . . , an} ∩AS3 6= ∅.
This is because, by (i), AS3 contains a necessary enabling set for G in s.

Example: “1/2-Log Small” on s := initial state

AS3: {unload(1, B), load(1, A), drive(1, A,B), unload(1, A)}.
π: 〈load(2, A), drive(2, A,B), unload(2, B), load(1, A), drive(1, A,B),
unload(1, B)〉.
(a) Shared due to (i): unload(1, B).
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Strong Stubborn Sets are Safe, ctd.

Reminder: (a) π shares an action with AS3, i.e., {a1, . . . , an} ∩AS3 6= ∅.
Proof, ctd. Let now ak be the first shared action, i.e., the one with smallest
index in {a1, . . . , an} ∩AS3. Then

(b) ak is applicable in s, i.e., ak ∈ A[s].

This is because, if ak 6∈ A[s], then by (ii) AS3 would contain a necessary
enabling set As→∗a for a in s, and we would have {a1, . . . , ak−1} ∩As→∗a 6= ∅
in contradiction to ak being the first shared action.

Example: “1/2-Log Small” on s := initial state

(b) First shared action ak: load(1, A).

Finally, given this we know that

(c) ak does not interfere with any of a1, . . . , ak−1.

This is because, if ak did interfere with ai for i < k, then by (b) and (iii) we
would have ai ∈ AS3, again in contradiction to ak being the first shared action.

Example: “1/2-Log Small” on s := initial state

(c) load(1, A) does not interfere with load(2, A), drive(2, A,B), unload(2, B).
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Strong Stubborn Sets are Safe, ctd.

Reminder: (b) The first shared action ak is applicable in s, i.e., ak ∈ A[s].
(c) ak does not interfere with any of a1, . . . , ak−1.

What remains to be proven? That we can move ak up front:

Lemma. Let s be a state, and πk = 〈a1, . . . , ak〉 an action sequence applicable
in s where ak ∈ A[s]. If ak does not interfere with any of a1, . . . , ak−1, then
π′k := 〈ak, a1, . . . , ak−1〉 is applicable in s and sJπkK = sJπ′kK.

Proof. Denote the states traversed by 〈a1, . . . , ak〉 with s = s1, s2, . . . , sk, sk+1.

Then ak ∈ A[si] for 1 ≤ i ≤ k − 1: ak ∈ A[s1]; so ak ∈ A[s2] as a1 does not
disable ak in s1; iterate the argument.

Hence, for 1 ≤ i ≤ k − 1 we have ai ∈ A[si] and ak ∈ A[si]. As ak does not
disable ai in si, we also have ai ∈ A[siJakK]. As ai and ak do not conflict in si,
we furthermore have siJ〈ai, ak〉K = siJ〈ak, ai〉K.

Hence we can move ak to the front iteratively while preserving both the
applicability and the outcome state of the action sequence, proving the lemma.

⇒ There exists a permutation of π that starts with ak, an action contained in
AS3 ∩A[s] and thus in ρS3(s). This proves the theorem.
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Questionnaire

Reminder: An S3 for s is a set AS3 ⊆ A of actions such that:

(i) AS3 contains a necessary enabling set for G in s;

(ii) For every a ∈ AS3 \A[s], AS3 contains a necessary enabling set for a in s;
and

(iii) For every a ∈ AS3 ∩A[s], AS3 contains all a′ ∈ A that interfere with a.

Question!

Do strong stubborn sets have anything to do with commutative actions?

(A): Yes (B): No

→ Directly, no: The notion of commutative actions is not needed for the
definition of S3.

→ Indirectly, yes: Commutative actions are ones that neither interfere with, nor
enable, some action a. If a pertains to the subgoal the S3 focuses on (e.g. a is
selected in (i)), then these actions (more generally: non-interfering actions not
part of the necessary enabling set for a) are not included into AS3.
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The S3 Definition as an Algorithm (compare slide 22)

input: Planning task Π, state s.
output: Strong stubborn set S3 for s.

(i) S3 := As→∗G /* a necessary enabling set for G in s */
Done := ∅ /* actions already processed */
while S3 6⊆ Done do

select a ∈ S3 \Done
if a 6∈ A[s] then

(ii) S3 := S3 ∪As→∗a /* a necessary enabling set for a in s */
else

(iii) S3 := S3 ∪ {a′ | a and a′ interfere}
Done := Done ∪ {a}

return S3

Example: “1/2-Log Small”

(i) As→∗{pack1=B,pack2=B} = {unload(1, B)}.
(ii) As→∗unload(1,B) = {load(1, A)}.
(iii) Interfering a′ for load(1, A): drive(1, A,B); interfering a′ for

drive(1, A,B): unload(1, A).

Jörg Hoffmann AI Planning Chapter 14: Partial-Order Reduction 28/40
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The S3 Definition as an Algorithm (compare slide 22)

input: Planning task Π, state s.
output: Strong stubborn set S3 for s.

(i) S3 := As→∗G /* a necessary enabling set for G in s */
Done := ∅ /* actions already processed */
while S3 6⊆ Done do

select a ∈ S3 \Done
if a 6∈ A[s] then

(ii) S3 := S3 ∪As→∗a /* a necessary enabling set for a in s */
else

(iii) S3 := S3 ∪ {a′ | a and a′ interfere}
Done := Done ∪ {a}

return S3

How to operationalize this?

1 How to find the interfering actions?

2 How to find the necessary enabling sets?

→ Syntactic approximation/characterization of these semantic definitions.
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Interference: Syntactic Characterization, Part 1

Terminology: In an FDR task, say that partial assignments p and q agree if
p(v) = q(v) for all v ∈ V [p] ∩ V [q], and say that p and q disagree otherwise.

Reminder: a1 disables a2 in s if both are applicable in s but a2 is no longer
applicable after applying a1.

Proposition. Let Π = (V,A, c, I,G) be an FDR planning task with states S.
Let a1, a2 ∈ A. Then there exists s ∈ S s.t. a1 disables a2 in s if and only if (i)
prea1 and prea2 agree, and (ii) eff a1 and prea2 disagree.

Proof. From left to right: Given s as in reminder, clearly (i) and (ii) must hold:
(i) as both actions are applicable, (ii) as a2 is no longer applicable after applying
a1.

From right to left: Due to (i) and the definition of FDR, there exists a state
where both actions are applicable. Let s be any such state. Due to (ii), after
applying a1, a2 is no longer applicable, as we needed to show.
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Interference: Syntactic Characterization, Part 2

Reminder: a1 and a2 conflict in s iff they can be applied in both possible
orders, but the outcome state differs depending on the order.

Proposition. Let Π = (V,A, c, I,G) be an FDR planning task with states S.
Let a1, a2 ∈ A. Then there exists s ∈ S s.t. a1 and a2 conflict in s if and only if
(i) prea1 and prea2 agree, (ii) eff a1 and prea2 agree, (iii) eff a2 and prea1
agree, and (iv) eff a1 and eff a2 disagree.

Proof. From left to right: Say we have s as in the reminder. As both actions
are applicable in s, we have (i). As both orders are possible, there cannot be
effects disvalidating preconditions so we have (ii) and (iii). As the outcome
state differs, we have (iv).

From right to left: Due to (i) and the definition of FDR, there exists a state
where both actions are applicable. Let s be any such state. Due to (ii) and (iii),
both action orders are possible. Due to (iv), their outcome state differs as we
needed to show.

Done, because (reminder): a1 and a2 interfere if there exists s ∈ S such that
a1 and a2 either conflict in s, or one disables the other in s.
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Necessary Enabling Sets: Syntactic Characterization?

There exists no efficient syntactic characterization:

Theorem. Let Π be a planning task with actions A, goal G, and states S.
Given a ∈ A, s ∈ S where a 6∈ A(s), and A′ ⊆ A, it is PSPACE-complete to
decide whether A′ is a necessary enabling set for a in s.

Given s ∈ S where G 6⊆ s and A′ ⊆ A, it is PSPACE-complete to decide
whether A′ is a necessary enabling set for G in s.

Proof. Second part of claim: A′ := ∅ is a necessary enabling set for G in the
initial state iff Π is unsolvable (cf. slide 19). First part of claim: same when
adding a new action a whose precondition is G.

So we approximate . . . (simple sufficient criterion)

Proposition. Let Π be an FDR planning task with actions A, goal G, and
states S. Given a ∈ A, s ∈ S where a 6∈ A(s), and p ∈ prea \ s. Then
A′ := {a′ | p ∈ eff a′} is a necessary enabling set for a in s.

Given s ∈ S where G 6⊆ s and p ∈ G \ s. Then A′ := {a′ | p ∈ eff a′} is a
necessary enabling set for G in s.
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Necessary Enabling Sets: Choosing an Open Subgoal

Reminder: p ∈ prea \ s or p ∈ G \ s; A′ := {a′ | p ∈ eff a′}

→ But which p should we select?

Answer given by [Wehrle and Helmert (2014)]:

Across the computation of S3 for different states, it is preferrable to select
the same facts p as much as possible.

Static strategy: Fix an ordering over the FDR state variables (or, in
STRIPS, over the facts), and always select the first p in this order.

Dynamic strategy: Where the choice depends on s and the actions that
have already been included into S3. For example, select p minimizing the
number of new actions added to S3.

BTW: Necessary enabling set = “disjunctive action landmark”

A key concept we will introduce for landmark heuristics in Chapter 15.

There, we will also see more advanced methods for finding such landmarks.
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Necessary Enabling Sets: The Choice Makes a Difference!

Goal G: W = Happy.

Actions A: Blow(x): pre Hx = Fine, eff Hx = Broken
Capture(x): pre Px = Home, Hx = Broken, eff Px = Captured
Banquet : pre P1 = P2 = P3 = Captured, eff W = Happy

Question!

How many applicable actions are contained in an S3 for I?

(A): 3

(C): 1

(B): 2

(D): 0

→ (A) – (C): Yes, depends on your choice of necessary enabling sets. For example:

(C) AI→∗{W=Happy} = {Banquet}, AI→∗banquet = {Capture(1)},
AI→∗Capture(1) = {Blow(1)}.

(B) AI→∗{W=Happy} = {Banquet}, AI→∗banquet = {Capture(1),Capture(2)},
AI→∗Capture(1) = {Blow(1)}, AI→∗Capture(2) = {Blow(2)}.

(A) AI→∗{W=Happy} = {Banquet}, AI→∗banquet = {Capture(1),Capture(2),
Capture(3)}, AI→∗Capture(1) = {Blow(1)}, AI→∗Capture(2) = {Blow(2)},
AI→∗Capture(3) = {Blow(3)}.

→ (D): No. ∅ is an S3 for s iff s is unsolvable (cf. slide 19).
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Strong Stubborn Sets in STRIPS

Reminder: (slide 9)

What about STRIPS? In the above, our definitions are agnostic to
STRIPS/FDR where it doesn’t matter; where it does matter, we use FDR.

→ So, where does it matter? Only in the syntactic characterization of
interference, and in the approximation of necessary enabling sets. Everything
else applies, exactly as stated, to STRIPS as well.

Interference: (compare slides 29 and 30)

There exists s ∈ S s.t. a1 disables a2 in s if and only if dela1 ∩ prea2 6= ∅.
There exists s ∈ S s.t. a1 and a2 conflict in s if and only if
dela1 ∩ prea2 = ∅, dela2 ∩ prea1 = ∅, and either dela1 ∩ adda2 6= ∅ or
dela2 ∩ adda1 6= ∅.

Necessary enabling sets: (compare slide 31)

p ∈ prea \ s or p ∈ G \ s; A′ := {a′ | p ∈ adda′}.
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Summary

Exponential blow-ups may occur in optimal search even with almost
perfect heuristic functions h.

Optimality-preserving pruning methods reduce search by means orthogonal
to h, through state pruning or action pruning.

Partial-order reduction (POR) is a family of action pruning methods
targeting permutable parts of the search space, arising from commutative
actions.

Commutative actions occur frequently in planning: actions which neither
interfere nor enable each other, and that can hence be applied in any order
giving the same result.

Strong stubborn sets (S3) is a POR technique that can reduce the
reachable state space, avoiding the generation of states that would
otherwise be reachable.

A strong stubborn set S3 for a state s contains a necessary enabling set for
G, necessary enabling sets for prea where a ∈ S3 \A[s], and interfering
actions for a ∈ S3 ∩A[s].
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Reading

About Partial Order Reduction in Planning and Computer Aided
Verification [Wehrle and Helmert (2012)].

Available at:

http://ai.cs.unibas.ch/papers/wehrle-helmert-icaps2012.pdf

Content: Introduces, to planning, two partial-order reduction
methods originally defined for model-checking: stubborn sets and
sleep sets. Discusses their relation with other pruning methods
previously proposed in planning.
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Reading, ctd.

Efficient Stubborn Sets: Generalized Algorithms and Selection
Strategies [Wehrle and Helmert (2014)].

Available at:

http://ai.cs.unibas.ch/papers/wehrle-helmert-icaps2014.pdf

Content: More general definition of the strong stubborn sets
technique, and empirical comparison of different strategies to find
strong stubborn sets.

Jörg Hoffmann AI Planning Chapter 14: Partial-Order Reduction 39/40

http://ai.cs.unibas.ch/papers/wehrle-helmert-icaps2014.pdf


Introduction Act Prune S3 Ingredients S3 Theory S3 Practice STRIPS Conclusion References

References I

John Gaschnig. Exactly how good are heuristics?: Toward a realistic predictive theory
of best-first search. In Proceedings of the 5th International Joint Conference on
Artificial Intelligence (IJCAI’77), pages 434–441, Cambridge, MA, August 1977.
William Kaufmann.
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