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Example Uses of Causal Graphs

Chapter 10: Identifying a sub-class of planning tasks where red-black
planning (generating a partial delete relexation heuristic) is tractable.

Chapter 12: Avoiding redundant work in the search for a pattern
collection when generating a pattern database heuristic.

Chapter 18: Search space surface analysis. Identifying a sub-class of
planning tasks where h+ provably has no local minima [Hoffmann (2011)].

Complexity analysis: [Domshlak and Dinitz (2001); Brafman and
Domshlak (2003); Katz and Domshlak (2008); Giménez and Jonsson
(2009); Chen and Giménez (2010); Katz and Keyder (2012)].

Designing and generating (yet more) heuristic functions: [Helmert (2004);
Katz and Domshlak (2010); Domshlak et al. (2015)].

System design: Guaranteeing desired behavior [Williams and Nayak
(1997)].

Factorized planning: Problem decomposition [Knoblock (1994); Brafman
and Domshlak (2013); Gnad and Hoffmann (2015)].
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Our Agenda for This Chapter

2 Causal Graphs: For explicitly capturing the “internal structure” of
a planning task, causal graphs are by far the most prominent notion
in the planning literature.

3 Domain Transition Graphs: These are simple graphs describing
the behavior of individual state variables; they are often considered
in connection with causal graphs.

4 Example Results: We show some examples of causal graph based
analyses, which are easy to explain and will be useful later on in
Chapters 10, 11, and 18).
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Causal Graphs

Definition (Causal Graph). Let Π = (V,A, c, I,G) be an FDR planning
task. The causal graph of Π is the directed graph CG(Π) with vertices V
and an arc (u, v) if u 6= v and there exists an action a ∈ A so that either
(i) there exists a ∈ A so that prea(u) and eff a(v) are both defined, or
(ii) there exists a ∈ A so that eff a(u) and eff a(v) are both defined.

Causal graphs capture variable dependencies:

Arc (i) (u, v): we may have to move u in order to be able to move v.

Arc (ii) (u, v): moving u may, as a side effect, move v as well.

→ Note that we always also get the arc (v, u) in this situation,
constituting a cycle between u and v.
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Example: “Logistics”

State variables V : truck : {A,B,C,D}; pack1 , pack2 : {A,B,C,D, T}.
Initial state I: truck = A, pack1 = C, pack2 = D.

Goal G: truck = A, pack1 = D.

Actions A (unit costs): drive(x, y), load(p, x), unload(p, x). E.g.:
load(pack1 , x) precondition truck = x, pack1 = x, effect pack1 = T .

Causal graph? pack1 pack2

truck
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Example: “TSP”

Variables V : at : {Sy,Ad ,Br ,Pe,Da}; v(x) : {T, F} for x ∈ {Sy,Ad ,Br ,Pe,Da}.

Initial state I: at = Sy, v(Sy) = T, v(x) = F for x 6= Sy.

Goal G: at = Sy, v(x) = T for all x.

Actions A: drive(x, y) where x, y have a road; pre at = x, eff at = y, v(y).

Cost function c: Sy ↔ Br : 1, Sy ↔ Ad : 1.5, Ad ↔ Pe : 3.5, Ad ↔ Da : 4.

Causal graph?

at

v(Da)v(Sy) v(Ad) v(Br) v(Pe)
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Causal Graphs Cycles: Class (ii) Effect-Effect

Abstract example: If V = {u, v} and A = {a} with eff a = {u = d,
v = e}, the causal graph has arcs (u, v) and (v, u).

Less abstract example: Blocksworld.

n blocks, 1 hand.

A single action either takes a block with the hand or puts a
block we’re holding onto some other block/the table.

For example, say pickup(x, y) has precondition atx = y,
clearx = true, handEmpty = true; and effect atx = hand ,
cleary = true, handEmpty = false.

→ So there are class (ii) cycles in the Blocksworld, for example between
variables of the form “atx” and “cleary”.

→ Class (ii) (effect-effect) causal graph cycles occur whenever an action
has more than one effect. Their absence is equivalent to “unary” actions,
each affecting only a single variable.
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Causal Graphs Cycles: Class (i) Precondition-Effect

pack1 pack2

truck haveKey

State variables V : truck , pack1 , pack2 as before; atKey : {A,B,C,D, T}.

Initial state I: truck = A, pack1 = C, pack2 = D, atKey = A.

Goal G: truck = A, pack1 = D.

Actions A: As before; and takeKey(x) with pre truck = x, atKey = x, effect
atKey = T ; and drive(A,B) has additional pre atKey = T .

→ Are there class (i) cycles in this example? Yes, between variables
truck and atKey .

→ Class (i) (precondition-effect) causal graph cycles occur when there
are “cyclic support dependencies”, where moving variable x requires a
precondition on y which (transitively) requires a precondition on x.
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Where Causal Graphs Fail

→ Does CG(Π) depend on either of I or G? No, CG(Π) remains the
same whichever I and G we choose.

→ This is a main weakness of causal graphs! They capture only the
structure of the variables and actions, and can by design not account for
the influence of different initial states and goals.

pack1 pack2

truck haveKey

State variables V : truck , pack1 , pack2 as before; atKey : {A,B,C,D, T}.

Initial state I: truck = A, pack1 = C, pack2 = D, atKey = C.

Goal G: truck = A, pack1 = D.

Actions A: As before; and takeKey(x) with pre truck = x, atKey = x, effect
atKey = T ; and drive(A,B) has additional pre atKey = T .
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Why not in STRIPS?

Facts P : truck(x)x ∈ {A,B,C,D}; pack1 (x), pack2 (x)x ∈ {A,B,C,D, T}.
Initial state I: {truck(A), pack1 (C), pack2 (D)}.
goal G: {truck(A), pack1 (D)}.
Actions A (unit costs): drive(x, y), load(p, x), unload(p, x). E.g.:
load(pack1 , x) pre truck(x), pack1 (x), add pack1 (T ), del pack1 (x).

Causal graph? A1 B1 C1 D1

T1

A2 B2 C2 D2

T2

AT DTCTBT

→ Reminder Chapter 2: “Causal graphs have a much clearer structure
for FDR (e.g., acyclic vs. cyclic).”
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Questionnaire

Question!

In which of these domains does the causal graph of an FDR
encoding contain cycles?

(A): Finding a path in a graph

(C): Logistics with fuel
consumption

(B): Sokoban

(D): Logistics with many trucks
and packages

→ (A): No, this has only a single state variable.

→ (B): Yes, there must be variables v with the meaning “is this grid position free? yes
or no”, which the agent position depends on; these v will also depend on the agent
position, because moving a block affects them ⇒ class (i) cycles. (Anyway, moving a
block affects several state variables so we get class (ii) cycles.)

→ (C): Yes: Class (ii) cycles as driving a truck affects both the truck position and the
fuel level; class (i) cycles if there are refuelling actions as, then, the fuel level depends
on the truck position.

→ (D): No, we only have dependencies of the form truck → package.
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Domain Transition Graphs

Definition (Domain Transition Graph). Let Π = (V,A, c, I,G) be an FDR
planning task, and let v ∈ V . The domain transition graph (DTG) of v is the
labeled directed graph DTG(v,Π) with vertices Dv and an arc (d, d′) labeled
with action a ∈ A whenever either (i) prea(v) = d and eff a(v) = d′, or (ii)
prea(v) is not defined and eff a(v) = d′.

We refer to (d, d′) as a value transition of v. We write d
a−→ϕ d′ where

ϕ = prea\ {v = d} is the (outside) condition. Where not relevant, we omit “a”
and/or “ϕ”.

→ Captures “where a variable can go and how”.

→ Attention: “value transition d
a−→ϕ d′” 6= “state transition s→ s′”. (Value

transition focuses on v, state transition encompasses all variables.)

Definition (Invertible Value Transition). Let Π = (V,A, c, I,G) be an FDR
planning task, let v ∈ V , and let d→ϕ d′ be a value transition of v. We say that
d→ϕ d′ is invertible if there exists a value transition d′ →ϕ′ d where ϕ′ ⊆ ϕ.

→ Captures whether “we can go back”.
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Example: “Logistics”

State variables V : truck : {A,B,C,D}; pack1 , pack2 : {A,B,C,D, T}.
Actions A: drive(x, y), load(p, x), unload(p, x). (Unit costs.)

Initial state I: truck = A, pack1 = C, pack2 = D.

goal G: truck = A, pack1 = D.

DTGs?

drive(A,B)

drive(B,A)
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→ Are these value transitions invertible? Yes.
→ Example of non-invertible? One-way street, e.g. no drive(B,A).
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Why not in STRIPS?

Facts P : truck(x)x ∈ {A,B,C,D}; pack1 (x), pack2 (x)x ∈ {A,B,C,D, T}.
Actions A: drive(x, y), load(p, x), unload(p, x). (Unit costs.)
Initial state I: {truck(A), pack1 (C), pack2 (D)}.
goal G: {truck(A), pack1 (D)}.

DTGs? This’ll be “true ↔ false” for each of the 14 variables . . .

→ DTGs capture the “travel routes” of individual variables. For domain
size 2, these routes hardly capture any interesting structure.
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Task Decomposition: Unconnected Sub-Tasks

→ Unconnected parts of the task can be solved separately:

Lemma. Let Π = (V,A, c, I,G) be an FDR planning task, and let V1, V2 be a
partition of V such that CG(Π) contains no arc between the two sets. Let Πi,
for i ∈ {1, 2}, be identical to Π except that we use variables Vi, restrict I and G
to Vi, and remove all actions a where either prea or eff a is defined on a variable
outside Vi. Then, for any pair ~a1 and ~a2 of (optimal) plans for Π1 and Π2,
~a1 ◦ ~a2 is an (optimal) plan for Π.

Proof Intuition: Since CG(Π) contains no arc between V1 and V2, every
action either touches only variables from V1, or touches only variables from V2.

Hence any plan for Π can be separated into independent sub-sequences
touching V1 respectively V2, corresponding to plans for Π1 respectively Π2.
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Task Simplification: Non-Goal Leaf Variables

Question!

How can we simplify Π if there is a leaf vertex v on which G(v) is
undefined?

→ Since v is a leaf in CG(Π), the actions that do affect v affect no other
variables, and the actions that do not affect v do not have preconditions on v.
So v is a “client”: it moves only for its own purpose.

But if v has no own goal, then it has no “purpose”. Thus, denoting by Π′ the
modified task where v has been removed (from V, I,G and removing all actions
affecting v), any (optimal) plan for Π′ is an (optimal) plan for Π.
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Task Simplification: Invertible Root Variables

→ Root variables with invertible & connected DTGs can be handled
separately:

1 Remove v from Π to obtain Π′; find plan ~a for Π′.
2 Extend ~a with move sequence for v that achieves all preconditions

on v as needed, then moves to v′s own goal (if any) at the end.

→ Intuition: v is a “servant”. Thanks to its connected and invertible
DTG, it can always go wherever it is needed.

→ Does this hold for optimal planning? No. The optimal plan for Π′

ignores the cost of moving v so may incur unnecessarily high costs on v.
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Task Simplification: Invertible Root Variables, ctd.

Lemma. Let Π = (V,A, c, I,G) be an FDR planning task, and let v ∈ V be a
root vertex in CG(Π) such that DTG(v,Π) is connected and all value
transitions of v are invertible. Let Π′ be identical to Π except that we remove v,
restrict I and G to V \ {v}, remove any assignment to v from all action
preconditions, and remove all actions a where eff a(v) is defined. Then, from any
plan ~a for Π′, a plan for Π can be obtained in time polynomial in |Π| and |~a|.

Proof Intuition: Since v is a root in CG(Π), the actions that affect v affect no
other variables, and have no preconditions on any variables other than v. In
other words, “moving v has no side effects, and does not need any outside help”.

Since DTG(v,Π) is connected and all value transitions of v are invertible,
DTG(v,Π) is strongly connected i.e. from any value d of v we can reach any
other value d′ of v. Hence “v can always move to any value desired”.

These two things together imply that, given a plan ~a for Π′, we can insert a
suitable move sequence for v into ~a to obtain a plan for Π.

→ Note: It would suffice to demand that DTG(v,Π) is strongly connected. We
use this particular formulation as it has a better link to Chapters 10 and 18.
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Complexity: Acyclic + Invertible

Servants + clients, now in full: Acyclic CG, invertible DTGs!

ClientServant

→ A plan can be constructed in polynomial time:

1 Order the variables topologically v1, . . . , vn from “servants” to “clients”.

2 Iteratively apply step 1 on slide 22 to v1, . . . , vn in this order. Then Π′ is
empty, and the empty plan ~a := 〈〉 solves it.

3 Iteratively apply step 2 on slide 22 to vn, . . . , v1 in this order.

→ Intuition: Iteratively deal with clients, then insert needed moves for servants.
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The Plan Construction in “Logistics”

pack1 pack2

truck

Initial state I: truck = A, pack1 = C, pack2 = D.

goal G: truck = A, pack1 = D, pack2 = A.

→ Topological order: v1 = truck , v2 = pack2 , v3 = pack1 .

→ Targets for pack1 : D [Goal].

→ Path for pack1 : C
load(pack1 ,C)−−−−−−−−−→ T

unload(pack1 ,D)−−−−−−−−−−−→D.

→ Targets for pack2 : A [Goal].

→ Path for pack2 : D
load(pack2 ,D)−−−−−−−−−→ T

unload(pack2 ,A)−−−−−−−−−−−→A.

→ Targets for truck : C [pack1 ], D [pack1 , pack2 ], A [Goal, pack2 ].

→ Path for truck : A→ B →C →D → C → B →A.
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Complexity: Acyclic + Invertible, ctd.

Theorem. Restrict the input to FDR tasks Π = (V,A, c, I,G) such that
CG(Π) is acyclic and, for all v ∈ V , all value transitions of v are invertible.
Then PlanEx can be decided in polynomial time.

→ Note: We do not require the DTGs to be connected here. If they were
connected, Π would be solvable and there would be no PlanEx to decide.

Proof intuition: If every v ∈ V can reach all target values – those requested in
preconditions by its clients – in DTG(v,Π), then, due to invertibility, these
target values can be provided whenever they are requested.

If there exists v ∈ V that can not reach all target values in DTG(v,Π), then
the plan cannot be constructed.

So PlanEx is equivalent to the question whether there exists a combination of
client paths where all target values are reachable in all DTG(v,Π). This is
equivalent to the existence of a delete-relaxed plan (Chapter 9), because we
can read off reachable target values from a delete-relaxed plan, and vice versa.
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Summary

For general problem solving to be effective, it is essential to automatically
detect and exploit problem structure.

Causal graphs are the most prominent means to capture problem structure
in planning; they are typically considered along with domain transition
graphs.

Causal graphs can be used for a variety of purposes, including task
decomposition/simplification and complexity analysis.

Simple decomposition/simplification methods are to split up unconnected
components, remove invertible root variables, remove non-goal leaf
variables.

→ We will rely on some of this in Chapter 12.

One tractable class is the special case where the causal graph is acyclic
and all value transitions are invertible.

→ We will consider that special case again in partial delete relaxation
(Chapter 10) as well as search space surface analysis (Chapter 18).
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Reading

The Fast Downward Planning System [Helmert (2006)].

Available at:

http://www.jair.org/media/1705/live-1705-2731-jair.pdf

Content: This is the initial paper on the Fast Downward planning system,

which in the meantime has grown into the main implementation basis for

heuristic search planning. I suggest it for this chapter because it very

clearly compares causal graphs for STRIPS vs. those for FDR (FDR is

called “SAS+” and “multi-valued planning” in there), and to my

knowledge it’s the first paper introducing DTGs. The part of the paper up

to Section 5.2 (first 25 pages) is directly relevant to the present chapter;

the remainder of the paper is not, but is definitely useful background

knowledge for heuristic search planning, and thus for this course as a whole.
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