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Motivation

→ Abstractions are a method to relax planning tasks, and thus
automatically compute heuristic functions h.

→ Every h yields good performance only in some domains!

We cover 4 of the 5 different methods currently known:

Critical path heuristics: Done. → Chapter 8

Delete relaxation: Basically done. → Chapters 9, 10, and 18

Abstractions: → This Chapter, and Chapters 12 & 13

Landmarks: → Chapter 15

→ Abstractions are among the most successful methods for computing
lower-bound estimators! See Conclusion sections of Chapters 12 and
13, as well as Chapter 19.
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Abstractions in a Nutshell: Example

Concrete transition system: (of “Logistics mal anders”, see later)
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Abstractions in a Nutshell: Example

Abstract transition system: (of “Logistics mal anders”, see later)
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Abstractions in a Nutshell

→ Abstracting a transition system means dropping some distinctions
between states, while preserving all transitions and goal states.

An abstraction of a transition system Θ is defined by a function α
(the abstraction mapping), mapping states to abstract states (also
block states).

If α maps states s and t to the same abstract state, then s and t are
not distinguished anymore (they are equivalent under α).

The abstract transition system Θα on the image of α is defined by
homomorphically mapping over all goal states and transitions from
Θ, and thus preserving all solutions.

The abstract remaining cost, i.e., remaining cost in Θα, is an
estimate hα for remaining cost in Θ. As we preserve all solutions,
hα is admissible.
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Our Program for Abstraction Heuristics

We take a look at abstractions and their use for generating
admissible heuristic functions:

In This Chapter, we introduce abstractions and abstraction
heuristics and study some of their most important properties. We
disregard how to actually construct abstractions in practice.

In Chapter 12, we will discuss a particular class of abstraction
heuristics and its practical handling in detail, namely pattern
database heuristics.

In Chapter 13, we will discuss another particular class of
abstraction heuristics and its practical handling in detail, namely
merge-and-shrink abstractions.

→ We handle all these methods in FDR, where they are most natural.
We do not mention STRIPS at all (which is a special case anyway).
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Our Agenda for This Chapter

2 Abstraction Basics: Formal definition of abstractions and their
associated structures; proving their basic properties.

3 Practical vs. Pathological Abstractions: We briefly illuminate
basic practical issues, through a number of examples illustrating
“how not to do it”.

4 A Prominent Example: The 15-Puzzle: Abstractions in AI were
invented in the context of the 15-Puzzle, so we include this here as
a more interesting illustration than the usual “trucks & packages”.

5 Additive Abstractions: We introduce a simple criterion allowing to
admissibly sum up several abstraction heuristics.

6 Abstraction Refinements: Abstractions are often constructed by
modifying other abstractions, and we briefly introduce the basic
concepts here.
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Questionnaire

V : M : {MajHome,Bar ,Pool ,Shield}; S1, S2 : {MajHome,Bar ,Pool}.
Initial state I: M = Bar , S1 = MajHome, S2 = MajHome.
Goal G: M = MajHome, S1 = MajHome, S2 = MajHome.
Actions A:
lift(x): pre S1 = x, S2 = x, M = x; eff M = Shield
drop(x): pre S1 = x, S2 = x, M = Shield ; eff M = x
go(i, x, y): pre Si = x; eff Si = y

Question!

Say α projects onto {M}, i.e., α(s) = α(t) iff s and t agree on M .
What is hα(I)? And what if α projects onto {S1, S2}?

→ α projects onto {S1, S2}: α(I) = α(M = Bar , S1 = MajHome, S2 =
MajHome) = α(M = MajHome, S1 = MajHome, S2 = MajHome), so hα(I) = 0.

→ α projects onto {M}: Θα has “block states” for M values MajHome, Bar , Pool ,
Shield . We can use lift(Bar) to get from Bar to Shield , and then directly
drop(MajHome) to get from Shield to MajHome. So hα(I) = 2.

→ Note: This is a pattern database abstraction (→ Chapter 12).
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What Do We Abstract?

Here, i.e., this Chapter: Arbitrary transition systems.

Reminder: → Chapter 2

A transition system is a 6-tuple Θ = (S,L, c, T, I, SG) where S is the set
of states, L are the transition labels, c maps each label to its cost,
T ⊆ S × L× S are the transitions, I is the initial state, and SG is the
set of goal states.

Later, i.e., Chapters 12 and 13: FDR state spaces.

Abstraction of an FDR task Π = abstraction of its state space ΘΠ.

The results in this Chapter apply to arbitrary Θ.

The results of Chapters 12 and 13 are specific to FDR. They
exploit the compact representation of Θ = ΘΠ via Π in order to
build the abstract state space effectively.
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This is How We’ll Depict Transition Systems

→ To reduce clutter, the figures usually omit arc labels, and collapse
transitions between identical states.
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“Logistics mal anders”: One Package, Two Trucks

V = {p, tA, tB} with Dp = {L,R,A,B} and DtA = DtB = {L,R}.

A = {pickup(x, y) | x ∈ {A,B}, y ∈ {L,R}}
∪ {drop(x, y) | x ∈ {A,B}, y ∈ {L,R}}
∪ {move(x, y, y′) | x ∈ {A,B}, y, y′ ∈ {L,R}, y 6= y′},with

prepickup(x,y): tx = y, p = y; eff pickup(x,y): p = x;
predrop(x,y): tx = y, p = x; eff drop(x,y): p = y;
premove(x,y,y′): tx = y; eff move(x,y,y′): tx = y′.

I: p = L, tA = R, tB = R. G: p = R.
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The State Space of “Logistics mal anders”

LRR LLL

LLR

LRL

ALR

ALL

BLL

BRL

ARL

ARR

BRR

BLR

RRR

RRL

RLR

RLL

State p = x, tA = y, tB = z is depicted as xyz.

Transition labels not shown. For example, the transition from LLL
to ALL has the label pickup(A,L).
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Abstractions

Definition (Abstraction). Let Θ = (S,L, c, T, I, SG) be a transition
system. An abstraction of Θ is a surjective function α : S 7→ Sα, also
referred to as the abstraction mapping. The abstract state space induced
by α, written Θα, is the transition system Θα = (Sα, L, c, Tα, Iα, SαG)
defined by:

(i) Iα = α(I).

(ii) SαG = {α(s) | s ∈ SG}. /* preserve goal states */

(iii) Tα = {(α(s), l, α(t)) | (s, l, t) ∈ T}./* preserve transitions */

The size of the abstraction is the number |Sα| of abstract states.

→ Θ is called the concrete state space. Similarly: concrete/abstract
transition system, concrete/abstract transition, etc.

→ Why do we require α to be surjective? So that Θα does not contain
superfluous states.
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Abstractions: “Logistics mal anders”

Concrete transition system:
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Abstractions: “Logistics mal anders”

Abstract transition system:
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→ A transition between concrete states is “spurious” if it exists in the abstract
but not in the concrete state space. Example here? We can go in a single step
from LRR to LLL.
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Abstraction Heuristics

Definition (Abstraction Heuristic). Let Θ = (S,L, c, T, I, SG) be a
transition system, and let α be an abstraction of Θ. The abstraction
heuristic induced by α, written hα, is the heuristic function
hα : S 7→ R+

0 ∪ {∞} which maps each state s ∈ S to h∗Θα(α(s)), i.e., to
the remaining cost of α(s) in Θα.

→ The abstract remaining cost (remaining cost in Θα) is used as the
heuristic estimate for remaining cost in Θ.

→ hα(s) =∞ if no goal state of Θα is reachable from α(s).
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Abstraction Heuristics: “Logistics mal anders”
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hα({p = L, tA = R, tB = R}) = 3 6= h∗({p = L, tA = R, tB = R}) = 4
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Abstraction Heuristics: Properties

Proposition (hα is Admissible). Let Θ be a transition system, and let
α be an abstraction of Θ. Then hα is consistent and goal-aware, and
thus also admissible and safe.

Proof. Let Θ = (S,L, c, T, I, SG) and Θα = (Sα, L, c, Tα, Iα, SαG).

For goal-awareness, we need to show that hα(s) = 0 for all s ∈ SG. So
let s ∈ SG. Then α(s) ∈ SαG by definition of abstractions, and hence
hα(s) = h∗Θα(α(s)) = 0.

For consistency, we need to show that whenever (s, a, t) ∈ T ,
hα(s) ≤ hα(t) + c(a). By definition, hα(s) = h∗Θα(α(s)) and
hα(t) = h∗Θα(α(t)), so we need to show that
h∗Θα(α(s)) ≤ h∗Θα(α(t)) + c(a). Since (s, a, t) is a concrete transition, by
definition of abstractions we have an abstract transition (α(s), a, α(t)) in
Θα. But then, h∗Θα(α(s)) ≤ h∗Θα(α(t)) + c(a) holds simply because h∗ is
consistent. (In our notation here: h∗Θα is consistent in Θα).
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Abstractions as Quotient Systems

Alternate views: (a) transition systems Θα vs. (b) quotient system Θ/∼α

(b) is intuitive, and useful to characterize certain classes of abstractions
(see Chapter 13).

(a) is used in implementation (abstract states may be large).

Definition (Induced Equivalence Relation). Let Θ = (S,L, c, T, I, SG) be a
transition system, and let α : S 7→ S′ be a surjective function. Then by ∼α we
denote the induced equivalence relation on Θ, defined by s ∼α t iff α(s) = α(t).

The quotient system Θ/∼α is the transition system (S/∼α, L, c, T/∼α, I/∼α,
SG/∼α) where: the states [s] ∈ S/∼α are the equivalence classes under ∼α;
([s], l, [t]) is a transition in T/∼α iff (s, l, t) is a transition in T ; the initial state
is I/∼α= [I]; the goal states are SG/∼α= {[s] | s ∈ SG}.

Proposition. Let Θ = (S,L, c, T, I, SG) be a transition system, and let
α : S 7→ S′ be an abstraction of Θ. Then Θ/∼α is isomorphic to Θα.
(Direct from definition.)
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Questionnaire

Variables: at : {Sy,Ad ,Br ,Pe,Ad};
v(x) : {T, F} for x ∈ {Sy,Ad ,Br ,Pe,Ad}.
Actions: drive(x, y) where x, y have a road.
Costs: Sy ↔ Br : 1, Sy ↔ Ad : 1.5, Ad ↔ Pe : 3.5,
Ad ↔ Da : 4.
Initial state: at = Sy, v(Sy) = T, v(x) = F for x 6= Sy.
Goal: at = Sy, v(x) = T for all x.

Question!

Say α projects this planning task onto {at , v(Pe), v(Da)}, i.e.,
α(s) = α(t) iff they agree on these variables. What is hα(I)?

(A): 10

(C): 18

(B): 12.5

(D): 20

→ In the abstract state space induced by α, any solution must visit Perth and
Darwin, then return to Sydney. The optimal sequence doing so has cost 18, so
(C) is correct.
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Questionnaire, ctd.

Variables: at : {Sy,Ad ,Br ,Pe,Ad};
v(x) : {T, F} for x ∈ {Sy,Ad ,Br ,Pe,Ad}.
Actions: drive(x, y) where x, y have a road.
Costs: Sy ↔ Br : 1, Sy ↔ Ad : 1.5, Ad ↔ Pe : 3.5,
Ad ↔ Da : 4.
Initial state: at = Sy, v(Sy) = T, v(x) = F for x 6= Sy.
Goal: at = Sy, v(x) = T for all x.

Question!

Say α projects this task onto {v(Pe), v(Da)}. What is hα(I)?

(A): 2

(C): 12.5

(B): 7.5

(D): 14

→ We can drive to Perth and Darwin without achieving the truck precondition.
The only actions driving to these cities cost 3.5 respectively 4, so (B) is correct.
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Which Abstractions Should We Use in Practice?

Conflicting Objectives

The eternal trade-off between accuracy and efficiency:

We want to obtain an informative heuristic.

We want to obtain a small computational overhead.

→ The abstraction function α is a very powerful parameter, allowing to
travel the whole way between both extremes (see next slides).

→ What do we mean by “small computational overhead”?

Fast computation of α: For a given state s, the abstract state
α(s) must be efficiently obtainable.

Few abstract states: For a given abstract state α(s), the abstract
remaining cost hα(s) = h∗Θα(α(s)) must be efficiently computable.
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Pathological Case 1: One-State Abstraction
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One-state abstraction: α(s) := const.

+ Trivial to compute α, just one abstract state.

− Completely uninformative hα.
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Pathological Case 2: Identity Abstraction
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Identity abstraction: α(s) := s.

+ hα = h∗, trivial to compute α.

− Computing hα = solving the optimal planning problem.
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Pathological Case 3: Perfect Abstraction
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Perfect abstraction: α(s) := h∗(s).

+ hα = h∗, usually very few abstract states.

− Computing α = solving the optimal planning problem.
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So, How to Obtain Non-Pathological Abstractions?

Covered in this course:

Pattern database heuristics [Culberson and Schaeffer (1998);
Edelkamp (2001); Haslum et al. (2007)]. → Chapter 12

Merge-and-shrink abstractions [Dräger et al. (2006); Helmert et al.
(2007); Katz et al. (2012); Helmert et al. (2014)]. → Chapter 13

Not covered in this course:

Domain Abstractions, obtained by aggregating values within state
variable domains [Hernádvölgyi and Holte (2000)]. Generalizes
pattern database heuristics.

Cartesian Abstractions, where abstract states are characterized by
cross-products of state-variable-domain-subsets [Seipp and Helmert
(2013)]. Generalizes domain abstractions.

Structural patterns, where abstractions are implicitly represented
[Katz and Domshlak (2008)].
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The 15-Puzzle

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

→ Abstractions, in the context of AI, were first introduced in the form of
pattern database heuristics for the 15-Puzzle. We now briefly review this
from an FDR-planning perspective.
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FDR-Style Encoding and Abstraction

The 15-Puzzle

A 15-puzzle state is given by a tuple 〈b, t1, . . . , t15〉 of values
∈ {1, . . . , 16}, where b denotes the blank position and the other
components denote the positions of the 15 tiles.

→ In other words, FDR state variables = {b, t1, . . . , t15}.

A 15-Puzzle Abstraction

One possible abstraction mapping α ignores the location of tiles
8, . . . , 15. Two states are distinguished iff they differ in the position of
the blank or one of the tiles 1, . . . , 7:

α(〈b, t1, . . . , t15〉) :=〈b, t1, . . . , t7〉
→ Heuristic values: move tiles 1, . . . , 7 and blank to their goal positions
(see slide 33).
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Concrete vs. Abstract State Space

9 2 12 6

5 7 14 13

3 4 1 11

15 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

Concrete State Space: 1616 ≈ 1.8 ∗ 1019 states.
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Concrete vs. Abstract State Space

2 6

5 7

3 4 1

1 2 3 4

5 6 7

Abstract State Space: 168 ≈ 4.2 ∗ 109 states.
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The Abstract State Space in Detail

1 2 3 4

5 6 7

Goal States

Θ has the unique goal state 〈16, 1, 2, . . . , 15〉.
Θα has the unique goal state 〈16, 1, 2, . . . , 7〉.

Transitions: Let x and y be neighboring positions in the 4× 4 grid

Θ has a transition from 〈x, t1, . . . , ti−1, y, ti+1, . . . , t15〉 to
〈y, t1, . . . , ti−1, x, ti+1, . . . , t15〉 for all i ∈ {1, . . . , 15}.
→ In other words, FDR actions: pre b = x, ti = y eff b = y, ti = x.

Θα has a transition from 〈x, t1, . . . , ti−1, y, ti+1, . . . , t7〉 to
〈y, t1, . . . , ti−1, x, ti+1, . . . , t7〉 for all i ∈ {1, . . . , 7}.
→ FDR: For i ∈ {1, . . . , 7}: pre b = x, ti = y eff b = y, ti = x.

Moreover, Θα has a transition from 〈x, t1, . . . , t7〉 to 〈y, t1, . . . , t7〉: These
come from moves of a tile j ∈ {8, . . . , 15}.
→ FDR: pre b = x eff b = y.
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And How to Compute the Heuristic?

Computation of α

In this example, can α can be efficiently computed?

→ Sure, just project the given 16-tuple onto its first 8 components.

→ This heuristic is an example of a pattern database heuristic (where α
is a projection).

Computation of Abstract Remaining Costs

To compute abstract remaining costs efficiently during search, most
common algorithms precompute all abstract remaining costs prior to
search, by a regression search on Θα. The distances are then stored in a
lookup table.

→ During search, computing h∗Θα(α(s)) is just a table lookup.
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Multiple Abstractions

→ There is a huge number of possible choices for α. This choice governs
the informedness of the resulting heuristic function.

Example 15-Puzzle

The mapping to tiles 1, . . . , 7 was arbitrary. We can use any subset of
the tiles.

→ There is no need to commit to a single α. We can combine several α.

Example 15-Puzzle

With the same amount of memory required for the lookup table for tiles
1, . . . , 7 (168 states), we could store the lookup tables for 16 different
abstractions to six tiles (167 states).
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How to Admissibly Combine Multiple Abstractions?

Maximizing over several abstractions:

Each abstraction mapping gives rise to an admissible heuristic.

By computing the maximum of several admissible heuristics, we
obtain another admissible heuristic which dominates these.

Thus, we can always compute several abstractions and maximize
over the individual abstract goal distances.

Better idea: Summing over several abstractions!

In some cases, the abstraction heuristics are additive (cf. Chapter
7): We can take their sum and still remain admissible.

Summation often leads to much higher estimates than maximization,
so it is important to understand when abstractions are additive.
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Additive Abstractions: Example 15-Puzze

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1st abstraction: Ignore location of 8, . . . , 15.

2nd abstraction: Ignore location of 1, . . . , 7.

→ The sum of the abstraction heuristics is not admissible.
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Additive Abstractions: Example 15-Puzze

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

1st abstraction: Ignore location of 8, . . . , 15 and blank.

2nd abstraction: Ignore location of 1, . . . , 7 and blank.

→ The sum of the abstraction heuristics is admissible.
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Orthogonal Abstractions

Terminology: If s = t in (s, l, t), then the transition is called a self-loop.

Definition (Affecting Transition Labels). Let α be an abstraction of
Θ, and let l be one of the labels in Θ. We say that l affects α if Θα has
at least one non-self-loop transition labeled by l, i.e., if there exists a
transition (α(s), l, α(t)) with α(s) 6= α(t).

→ Here is a simple sufficient criterion for additivity:

Definition (Orthogonal Abstractions). Let α1 and α2 be abstractions
of Θ. We say that α1 and α2 are orthogonal if no label of Θ affects both
α1 and α2.
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Orthogonal Abstractions: Example 15-Puzze

Reminder: A label affects α if it labels a non-self loop transition in Θα. We say
that α1 and α2 are orthogonal if no label of Θ affects both α1 and α2.

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

2 6

5 7

3 4 1

9 12

14 13

11

15 10 8

→ Are the left-hand side abstraction mappings αleft and αright orthogonal? No.
E.g., consider the action that moves the blank upwards here, mapping the
current state s to state t. This transition is not a self-loop in either of the two
abstractions: αleft(s) 6= αleft(t) and αright(s) 6= αright(t).

→ Are the right-hand side abstraction mappings αleft and αright orthogonal?
Yes. Say a is any action that affects αleft. Then a moves a tile ti for
i ∈ {1, . . . , 7}. Neither that ti nor the blank are accounted for in αright so a
labels only self-loops there. Same vice versa.
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Orthogonality and Additivity

Theorem (Orthogonal Abstractions are Additive). Let α1, . . . , αn be
pairwise orthogonal abstractions for the same transition system Θ. Then∑n

i=1 h
αi is consistent and goal-aware, and thus also admissible and safe.

→ Intuition for admissibility: “Self-loops don’t count.” Every transition
in an optimal solution path affects at most one of the abstractions, and
thus is counted in at most one of the abstraction heuristics.

To illustrate the proof idea, we use yet another variant of “Logistics”:
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Orthogonality and Additivity: Illustration

LLR LLL

TLL

LTL

TTL TTR

RTR

TRR

RRR RRL

TLR
RLR RLL

RTL

LTR
LRR LRL

TRL

State space Θ. State variables: package 1, package 2, truck.
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Orthogonality and Additivity: Illustration

LLR LLL

TLL

LTL

TTL TTR

RTR

TRR

RRR RRL

TLR
RLR RLL

RTL

LTR
LRR LRL

TRL

LLR LLL

LTL

LTR
LRR LRL

TLR

TLL

TTL TTR

TRR

TRL

RLR RLL
RTL

RTR

RRR RRL

Abstraction α1.
Mapping: Only consider position of package 1.
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Orthogonality and Additivity: Illustration

LLR LLL

TLL

LTL

TTL TTR

RTR

TRR

RRR RRL

TLR
RLR RLL

RTL

LTR
LRR LRL

TRL

LLR LLL

TLL

TLR
RLR RLL

LTR

LTL

TTL TTR

RTR

RTL

LRR LRL
TRL

TRR

RRR RRL

Abstraction α2. (orthogonal to α1)
Mapping: Only consider position of package 2.
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Orthogonality and Additivity: Proof

Proof. Let Θ = (S,L, c, T, I, SG).

For goal-awareness, we need to show that
∑n

i=1 h
αi(s) = 0 for all

s ∈ SG. So let s ∈ SG. Then, for all i, hαi(s) = 0 because hαi is goal
aware.

For consistency, consider any state transition (s, a, t) ∈ T in the concrete
state space. We need to show that

∑n
i=1 h

αi(s) ≤
∑n

i=1 h
αi(t) + c(a).

Because the abstraction mappings are orthogonal, αi(s) 6= αi(t) for at
most one i ∈ {1, . . . , n}. (Assume the opposite were true, and there
were i 6= j ∈ {1, . . . , n} s.t. αi(s) 6= αi(t) and αj(s) 6= αj(t). Then a
labels a non-self-loop transition in both Θαi and Θαj , and thus αi and
αj are not orthogonal, in contradiction.)
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Orthogonality and Additivity: Proof, ctd.

Situation: Consider a concrete state transition (s, a, t) ∈ T . We need to
show that

∑n
i=1 h

αi(s) ≤
∑n

i=1 h
αi(t) + c(a).

We know that αi(s) 6= αi(t) for at most one i ∈ {1, . . . , n}.

Case 1: αi(s) = αi(t) for all i. Then:∑n
i=1 h

αi(s) =
∑n

i=1 h
∗
Θαi (αi(s))

=
∑n

i=1 h
∗
Θαi (αi(t)) [because αi(s) = αi(t)]

=
∑n

i=1 h
αi(t)

≤
∑n

i=1 h
αi(t) + c(a).

Case 2: αk(s) 6= αk(t), and αi(s) = αi(t) for i 6= k. Then:∑n
i=1 h

αi(s) =
∑

i 6=k h
∗
Θαi (αi(s)) + hαk(s)

=
∑

i 6=k h
∗
Θαi (αi(t)) + hαk(s) [αi(s) = αi(t) for i 6= k]

≤
∑

i 6=k h
∗
Θαi (αi(t)) + hαk(t) + c(a) [hαk is consistent]

=
∑n

i=1 h
αi(t) + c(a).
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Questionnaire

→ Are optimal abstract plans just abstractions of optimal real plans?

The situation: Assume an FDR planning task Π, a state s, and an
optimal plan ~a for s in Π. Say α is an abstraction, and say we obtain ~aα

from ~a by removing all actions that do not affect α.

Question!

Is ~aα necessarily an optimal abstract plan, i.e.,
∑

a∈~aα c(a) = hα(s)?

→ No! Spurious transitions may lead to “shortcuts” that do not
correspond to an optimal real plan, or to any plan at all. Example:

Car: cost 10000 (buy) + 1000 (go); teleport:

cost 1 billion (buy) + 1 (go). If α does not

distinguish between I and the state where we

have the teleport, then I has a spurious cost-

1 transition to Moscow, and the only optimal

abstract plan uses that transition.
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Abstractions of Abstractions

Proposition (Transitivity of Abstractions). Let Θ be a transition
system. If α is an abstraction of Θ and α′ is an abstraction of Θα, then
α′ ◦ α is an abstraction of Θ.

Proof. All we need to prove is that α′ ◦ α is surjective. This follows
directly from surjectivity of α and α′.

Terminology: Let Θ be a transition system, α an abstraction of Θ, and
α′ an abstraction of Θα. Then:

α′ ◦ α is called a coarsening of α.

α is called a refinement of α′ ◦ α.

→ Abstractions are often obtained by incrementally refining or
coarsening some initial abstraction until a termination criterion applies.

→ E.g., merge-and-shrink (Chapter 13), and abstraction refinement in
Verification.
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Abstractions of Abstractions: Illustration

LRR LLL

LLR

LRL

ALR
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BLL

BRL

ARL

ARR

BRR
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RRR

RRL

RLR

RLL

Transition system Θ.
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Abstractions of Abstractions: Illustration
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Transition system Θα as an abstraction of Θ.
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Abstractions of Abstractions: Illustration
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Transition system Θα′◦α as an abstraction of Θα.
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Abstractions of Abstractions: Illustration
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Transition system Θα′◦α as an abstraction of Θ.
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Refinements Improve the Heuristic

Theorem (Refinements Improve the Heuristic). Let hα and hα
′′

be
abstraction heuristics of Θ, such that α is a refinement of α′′. Then hα

dominates hα
′′

, i.e., hα
′′ ≤ hα.

Proof. Since α is a refinement of α′′, there exists a mapping α′ such
that α′′ = α′ ◦ α. For any state s, we get
hα

′′
(s) = h∗

Θα′′
(α′′(s))

= h∗
Θα′′

(α′(α(s)))

= hα
′
(α(s))

≤ h∗Θα(α(s))
= hα(s),

where the inequality holds because hα
′

is an admissible heuristic in the
transition system Θα.

→ If we start from abstraction α and then abstract less, we can only
improve the lower bound (h values), relative to hα.
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Summary

An abstraction α is a surjective function on a transition system Θ (e.g., of
a planning task).

The abstract state space Θα inherits the initial state, goal states, and
transitions from Θ; it is isomorphic to the quotient system Θ/∼α of Θ
under the equivalence relation ∼α induced by α.

Remaining cost in Θα is the abstraction heuristic hα, which is safe,
goal-aware, admissible, and consistent.

The heuristics of orthogonal abstractions are additive, i.e., their sum is
admissible (cf. Chapter 7).

A coarsening of an abstraction α is an abstraction α′′ of α, i.e.,
α′′ = α′ ◦ α; in this situation, α is a refinement of α′′, and hα ≥ hα′′

.

Practically useful abstractions yield informative heuristics at a small
computational overhead.

The state of the art to accomplish this are pattern databases → Chapter
12, and merge-and-shrink abstractions → Chapter 13.
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Klaus Dräger, Bernd Finkbeiner, and Andreas Podelski. Directed model checking with
distance-preserving abstractions. In Antti Valmari, editor, Proceedings of the 13th
International SPIN Workshop (SPIN 2006), volume 3925 of Lecture Notes in
Computer Science, pages 19–34. Springer-Verlag, 2006.

Stefan Edelkamp. Planning with pattern databases. In A. Cesta and D. Borrajo,
editors, Proceedings of the 6th European Conference on Planning (ECP’01), pages
13–24. Springer-Verlag, 2001.

Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig.
Domain-independent construction of pattern database heuristics for cost-optimal
planning. In Adele Howe and Robert C. Holte, editors, Proceedings of the 22nd
National Conference of the American Association for Artificial Intelligence
(AAAI’07), pages 1007–1012, Vancouver, BC, Canada, July 2007. AAAI Press.

Jörg Hoffmann AI Planning Chapter 11: Abstractions 52/54



Introduction Abstraction Basics Pathologies 15-Puzzle Additive Abstractions Refinements Conclusion References

References II

Malte Helmert, Patrik Haslum, and Jörg Hoffmann. Flexible abstraction heuristics for
optimal sequential planning. In Mark Boddy, Maria Fox, and Sylvie Thiebaux,
editors, Proceedings of the 17th International Conference on Automated Planning
and Scheduling (ICAPS’07), pages 176–183, Providence, Rhode Island, USA, 2007.
Morgan Kaufmann.

Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nissim. Merge & shrink
abstraction: A method for generating lower bounds in factored state spaces.
Journal of the Association for Computing Machinery, 61(3):16:1–16:63, 2014.
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