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Today’s topics

◮ Inference
◮ Sum-Product (brief recap)
◮ Max-Product

◮ Application
◮ Human Pose Estimation
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Relationship Potentials to Graphs

◮ Factor Graphs:

a

c b

a

c b

a

c b

(a) (b) (c)

◮ Left: Markov Network

◮ Middle: Factor graph representation of φ(a, b, c)

◮ Right: Factor graph representation of φ(a, b)φ(b, c)φ(c, a)

◮ Different factor graphs can have the same Markov network (b,c)⇒(a)
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Inference in Trees

Inference in Trees
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Inference in Trees

Inference - what to infer?

◮ Given distribution
p(x) = p(x1, . . . , xn) (1)

◮ Inference: computing functions of the distribution, e.g.
◮ mean
◮ mode
◮ marginal
◮ conditionals

Schiele (MPII) Probabilistic Graphical Models December 2, 2o2o 5 / 31



Inference in Trees

What to infer?

◮ Mean
Ep(x)[x] =

!

x∈X
xp(x)

◮ Mode (most likely state)

x∗ = argmax
x∈X

p(x)

◮ Conditional Distributions

p(xi, xj | xk, xl) or p(xi | x1, . . . , xi−1, xi+1, . . . , xn)

◮ Max-Marginals

x∗i = argmax
xi∈Xi

p(xi) = argmax
xi∈Xi

!

(x1,...,xi−1,xi+1,...,xn)

p(x)

Schiele (MPII) Probabilistic Graphical Models December 2, 2o2o 6 / 31



Inference in Trees

Example: Pictorial Structures for Human Pose Estimation

◮ Find body parts (i.e. find 2D locations and orientations of head,
torso, lower/upper left/right arms/legs)

◮ inference for human body pose estimation:
◮ calculating marginals (sum-product algorithm):

argmax
xi∈Xi

p(xi) = argmax
xi∈Xi

!

(x1,...,xi−1,xi+1,...,xn)

p(x)

◮ calculating mode (max-product algorithm):

x∗ = argmax
x∈X

p(x)
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Inference in Trees

Be careful: max marginals not the same as max mode

◮ The most likely state (max mode)

x∗ = argmax
x1,...,xn

p(x1, . . . , xn) (2)

does not need to be the one for which the marginals are maximized:

◮ For all i = 1, . . . , n
x∗i = argmax

xi

p(xi) (3)

◮ Example:

x1 = 0 x1 = 1

x2 = 0 0.3 0.4
x2 = 1 0.3 0.0

marginal p(x1) 0.6 0.4
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Inference in Trees

General singly-connected factor graphs – 1

◮ Consider a branching graph:

a

c

b

d

f1 f2

f3

f4

f5

e

with factors
f1(a, b)f2(b, c, d)f3(c)f4(d, e)f5(d) (4)

◮ For example: find marginal p(a)
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Inference in Trees

General singly-connected factor graphs – 2

◮ Idea: compute messages

a

c

b

d

f1 f2

f3

f4

f5

e

µf2!b(b)

µc!f2(c)

µd!f2(d)

µf3!c(c)

µb!f1(b)

µf1!a(a)
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Inference in Trees

Sum-Product Algorithm – Overview

◮ Algorithm to compute all messages efficiently

◮ Assuming the graph is singly-connected

1. Initialization

2. Variable to Factor message

3. Factor to Variable message

◮ Then compute any desired marginals

◮ Also known as belief propagation
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Inference in Trees

1. Initialization

◮ Messages from extremal (simplical) node factors are initialized to the
factor (left)

◮ Messages from extremal (simplical) variable nodes are set to unity
(right)
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Inference in Trees

2. Variable to Factor message

µx→f (x) =
"

g∈{ne(x)\f}
µg→x(x) (5)

x

f1

f2

f3

f

µf1!x(x)

µf2!x(x)

µf3!x(x)

µx!f(x)
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Inference in Trees

3. Factor to Variable message

µf→x(x) =
!

y∈Xf\x
φf (Xf )

"

y∈{ne(f)\x}
µy→f (y) (6)

y2

y3

y1

x
µf!x(x)

µy1!f(y1)

µy3!f(y3)

µy2!f(y2)

◮ We sum over all states in the set of variables

◮ This explains the name for the algorithm (sum-product)
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Inference in Trees

Marginal

p(x) ∝
"

f∈ne(x)
µf→x(x) (7)

x

f1

f2

f3

µf1!x(x)

µf2!x(x)

µf3!x(x)
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Inference in Trees

So far..

◮ So far marginals

◮ Now: finding the maximal state (mode)
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Inference in Trees

Finding the maximal state: Max-Product

◮ For a given distribution p(x) find the most likely state:

x∗ = argmax
x1,...,xn

p(x1, . . . , xn) (8)

◮ Again use factorization structure to distribute the maximisation to
local computations

◮ Example: chain

a cb d

f(a, b, c, d) = φ(a, b)φ(b, c)φ(c, d) (9)
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Inference in Trees

Example: Chain

a cb d

max
x

f(x) = max
x1,x2,x3,x4

φ(x1, x2)φ(x2, x3)φ(x3, x4)

= max
x1,x2,x3

φ(x1, x2)φ(x2, x3)max
x4

φ(x3, x4)
# $% &

γ(x3)

= max
x1,x2

φ(x1, x2)max
x3

φ(x2, x3)γ(x3)
# $% &

γ(x2)

= max
x1

max
x2

φ(x1, x2)γ(x2)
# $% &

γ(x1)

= max
x1

γ(x1)
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Inference in Trees

Example: Chain

◮ Once computed the messages (γ(·)) find the optimal values

x∗1 = argmax
x1

γ(x1)

x∗2 = argmax
x2

φ(x∗1, x2)γ(x2)

x∗3 = argmax
x3

φ(x∗2, x3)γ(x3)

x∗4 = argmax
x4

φ(x∗3, x4)γ(x4)

◮ this is called backtracking (an application of dynamic programming)
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Inference in Trees

Trees

◮ Spot the messages:

a

c

b

d

f1 f2

f3

f4

f5

e

µf2!b(b)

µc!f2(c)

µd!f2(d)

µf3!c(c)

µb!f1(b)

µf1!a(a)

max
x

f(x) = max
a,b,c,d,e

f1(a, b)f2(b, c, d)f3(c)f4(d, e)f5(d)

= ?
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Inference in Trees

Trees

a

c

b

d

f1 f2

f3

f4

f5

e

µf2!b(b)

µc!f2(c)

µd!f2(d)

µf3!c(c)

µb!f1(b)

µf1!a(a)

max
x

f(x) = max
a,b,c,d,e

f1(a, b)f2(b, c, d)f3(c)f4(d, e)f5(d)

= max
a

max
b

f1(a, b)max
c,d

f2(b, c, d)f3(c) f5(d)! "# $
µf5→d(d)

max
e

f4(d, e)
! "# $

µf4→d(d)

= max
a

max
b

f1(a, b)max
c,d

f2(b, c, d) f3(c)! "# $
µc→f2

(c)

µf5→d(d)µf4→d(d)! "# $
µd→f2

(d)

= max
a

max
b

f1(a, b)max
c,d

f2(b, c, d)µc→f2(c)µd→f2(d)

! "# $
µf2→b(b)
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Inference in Trees

Trees

a

c

b

d

f1 f2

f3

f4

f5

e

µf2!b(b)

µc!f2(c)

µd!f2(d)

µf3!c(c)

µb!f1(b)

µf1!a(a)

max
x

f(x) = max
a,b,c,d,e

f1(a, b)f2(b, c, d)f3(c)f4(d, e)f5(d)

= max
a

max
b

f1(a, b)µf2→b(b)! "# $
µb→f1

(b)

= max
a

max
b

f1(a, b)µb→f1(b)
! "# $

µf1→a(a)

= max
a

µf1→a(a)
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Inference in Trees

Max-Product Algorithm

◮ So we need an algorithm to compute the messages

◮ Pick any variable as root

1. Initialisation (same as sum-product)

2. Variable to Factor message (same as sum-product)

3. Factor to Variable message

◮ Then compute the maximal state
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Inference in Trees

1. Initialisation

◮ Messages from extremal node factors are initialized to the factor

◮ Messages from extremal variable nodes are set to unity

◮ Same as for sum-product
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Inference in Trees

2. Variable to Factor message

µx→f (x) =
"

g∈{ne(x)\f}
µg→x(x) (10)

x

f1

f2

f3

f

µf1!x(x)

µf2!x(x)

µf3!x(x)

µx!f(x)

◮ Same as for sum-product
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Inference in Trees

3. Factor to Variable message

µf→x(x) = max
y∈Xf\x

φf (Xf )
"

y∈{ne(f)\x}
µy→f (y) (11)

y2

y3

y1

x
µf!x(x)

µy1!f(y1)

µy3!f(y3)

µy2!f(y2)

◮ Different message than in sum-product

◮ This is now a max-product
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Inference in Trees

Maximal state of Variable

x∗ = argmax
x

"

f∈ne(x)
µf→x(x) (12)

x

f1

f2

f3

µf1!x(x)

µf2!x(x)

µf3!x(x)
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Inference in Trees

Comments

◮ Products of small probabilities may lead to numerical instabilities

◮ Take the logarithm

ln
'
max
x

p(x)
(
= max

x
ln p(x) (13)

◮ Taking the logarithm replaces the products with sums (yields the
max-sum algorithm)
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Inference in Trees

Example: Pictorial Structures

◮ An Application: Human Body Pose Estimation
◮ Find Locations of Body Parts

[Fischler& Elschlager, 1973],[Felsenzwalb& Huttenlocher, 2000]
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Inference in Trees

Pictorial Structures

◮ Each body part one variable (torso,head,etc)
(11 total)

◮ Each variable represented as tupel e.g.
ytorso = (x, y, s, θ)

◮ (x, y) image coordinates
◮ s scale
◮ θ rotation of the part

◮ Discretize label space y (that is x, y, s, θ) in
L states

◮ size of L e.g.
L ≈ 500, 000 = 125× 125× 4× 8 =
xpos.× ypos.× scales× orientations

[Felsenzwalb& Huttenlocher, 2000]
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Inference in Trees

Pictorial Structures

◮ Potentials:
Etorso(ytorso, X), Erarm(yrarm, X), . . . ,

◮ Pairwise potentials:
Etorso,rarm(ytorso, yrarm), . . . ,

◮ k be the number of parts (11), L the size of
the label space (≈ 500, 000)

◮ Given new test image, max-product
algorithm complexity is O(kL2)

◮ For specific potentials reduction to O(kL)

[Felsenzwalb& Huttenlocher, 2000]
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Graphical Models and Their Applications 

Human Body Pose Estimation v1.0

Bernt Schiele 

http://www.mpi-inf.mpg.de/gm 
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Motivation for Part-Based Models
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Motivation for Part-Based Models
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Motivation for Part-Based Models  
(also applicable to humans)
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One or Two Faces ?

5
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• Pictorial Structures [Fischler & Elschlager 1973] 
‣ Model has two components 

- parts (2D image fragments) 

- structure (configuration of parts)

Part-Based Models

6
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The Role of Parts & Structure 
Deformations [Perona, Caltech]
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Clutter [Perona, Caltech]
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Example
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• Pictorial Structures [Fischler & Elschlager 1973] 
‣ Model has two components 

- parts (2D image fragments) 

- structure (configuration of parts)

10

Class of Object Models:  
Part-Based Models / Pictorial Structures
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People Detection: partISM

• Appearance of parts:  
Implicit Shape Model (ISM)  
[Leibe, Seemann & Schiele, CVPR 2005]

11

xo



Graphical Models and Their Applications - December 2, 2o2o

People Detection: partISM

• Appearance of parts:  
Implicit Shape Model (ISM)  
[Leibe, Seemann & Schiele, CVPR 2005] 

• Part decomposition and inference:  
Pictorial structures model  
[Felzenszwalb & Huttenlocher, IJCV 2005]

12

Body-part positions Image evidence

x1

x2

x3

x4

x5

x6

x8

x7

xo

p(L|E) � p(E|L)p(L)
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Pictorial Structures Model

• Two Components 

‣ Prior (capturing possible part configurations): 

‣ Likelihood of Parts (capturing part appearance): 

13

Body-part positions Image evidence

p(L|E) =
p(E|L)p(L)

p(E)
� p(E|L)p(L)

p(L)

p(E|L)
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Human Body Pose Estimation

• well suited for graphical models: 
‣ prior p(L)  

- models kinematic dependencies  
between body parts 

- tree-structured prior (constraints between  
body parts) lead to efficient inference 

- generalized distance transform  
provide additional efficiency 

‣ likelihood of body parts p(E|L) 
- models possible appearances of body parts 

- substantial improvements in recent years in  
appearance modeling  
and detection 

14

find body parts =  
body pose estimation 
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• Body is represented as flexible configuration of body parts

Pictorial Structures: 
Model Components

15
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Figure 2. (left) Kinematic prior learned on the multi-view and
multi-articulation dataset from [15]. The mean part position is
shown using blue dots; the covariance of the part relations in the
transformed space is shown using red ellipses. (right) Several in-
dependent samples from the learned prior (for ease of visualiza-
tion given fixed torso position and orientation).

[14], and use AdaBoost [7] to train discriminative part clas-
sifiers. Our detectors are evaluated densely and are boot-
strapped to improve performance. Strong detectors of that
type have been commonplace in the pedestrian detection lit-
erature [1, 12, 13, 24]. In these cases, however, the em-
ployed body models are often simplistic. A simple star
model for representing part articulations is, for example,
used in [1], whereas [12] does not use an explicit part repre-
sentation at all. This precludes the applicability to strongly
articulated people and consequently these approaches have
been applied to upright people detection only.

We combine this discriminative appearance model with a
generative pictorial structures approach by interpreting the
normalized classifier margin as the image evidence that is
being generated. As a result, we obtain a generic model
for people detection and pose estimation, which not only
outperforms recent work in both areas by a large margin, but
is also surprisingly simple and allows for exact and efficient
inference.
More related work: Besides the already mentioned related
work there is an extensive literature on both people (and
pedestrian) detection, as well as on articulated pose estima-
tion. A large amount of work has been advocating strong
body models, and another substantial set of related work
relies on powerful appearance models.

Strong body models have appeared in various forms. A
certain focus has been the development of non-tree mod-
els. [17] imposes constraints not only between limbs on
the same extremity, but also between extremities, and relies
on integer programming for inference. Another approach
incorporate self-occlusion in a non-tree model [8]. Either
approach relies on matching simple line features, and only
appears to work on relatively clean backgrounds. In con-
trast, our method also works well on complex, cluttered
backgrounds. [20] also uses non-tree models to improve
occlusion handling, but still relies on simple features, such
as color. A fully connected graphical model for represent-
ing articulations is proposed in [2], which also uses dis-
criminative part detectors. However, the method has sev-

eral restrictions, such as relying on absolute part orienta-
tions, which makes it applicable to people in upright poses
only. Moreover, the fully connected graph complicates in-
ference. Other work has focused on discriminative tree
models [16, 18], but due to the use of simple features, these
methods fall short in terms of performance. [25] proposes
a complex hierarchical model for pruning the space of valid
articulations, but also relies on relatively simple features. In
[5] discriminative training is combined with strong appear-
ance representation based on HOG features, however the
model is applied to detection only.

Discriminative part models have also been used in con-
junction with generative body models, as we do here.
[11, 21], for example, use them as proposal distributions
(“shouters”) for MCMC or nonparametric belief propaga-
tion. Our paper, however, directly integrates the part detec-
tors and uses them as the appearance model.

2. Generic Model for People Detection and
Pose Estimation

To facilitate reliable detection of people across a wide
variety of poses, we follow [4] and assume that the body
model is decomposed into a set of parts. Their configuration
is denoted as L = {l0, l1, . . . , lN}, where the state of part i
is given by li = (xi, yi, �i, si). xi and yi is the position of
the part center in image coordinates, �i is the absolute part
orientation, and si is the part scale, which we assume to be
relative to the size of the part in the training set.

Depending on the task, the number of object parts may
vary (see Figs. 2 and 3). For upper body detection (or pose
estimation), we rely on 6 different parts: head, torso, as well
as left and right lower and upper arms. In case of full body
detection, we additionally consider 4 lower body parts: left
and right upper and lower legs, resulting in a 10 part model.
For pedestrian detection we do not use arms, but add feet,
leading to an 8 part model.

Given the image evidence D, the posterior of the part
configuration L is modeled as p(L|D) � p(D|L)p(L),
where p(D|L) is the likelihood of the image evidence given
a particular body part configuration. In the pictorial struc-
tures approach p(L) corresponds to a kinematic tree prior.
Here, both these terms are learned from training data, ei-
ther from generic data or trained more specifically for the
application at hand. To make such a seemingly generic
and simple approach work well, and to compete with more
specialized models on a variety of tasks, it is necessary to
carefully pick the appropriate prior p(L) and an appropriate
image likelihood p(D|L). In Sec. 2.1, we will first intro-
duce our generative kinematic model p(L), which closely
follows the pictorial structures approach [4]. In Sec. 2.2,
we will then introduce our discriminatively trained appear-
ance model p(D|L).

2

prior on body poseslikelihood of observations 

posterior over body poses

[Andriluka,Roth,Schiele@cvpr09]

p(L|E) � p(E|L)p(L)
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Human Body Pose Models - Prior p(L)  
(may be called “cardboard models”)

• e.g. Felzenswalb & Huttenlocher - ijcv’05 

• e.g. Andriluka, Roth & Schiele - cvpr’09,ijcv’11

16
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Pictorial Structures

• each body part one variable (torso, head, etc.) 
‣ before: 11 parts 

‣ in the following only 10 parts (head, torso, right/left upper/lower arm/leg) 

• each variable represented as tuple 
‣ here: 

‣ with (x,y) image coordinates, s scale,  
   rotation of the part 

• discretize label space (that is x, y, s,   ) 
in L states

17

yi = li = (xi, yi, �i, si)

✓

✓
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Pictorial Structures

• potentials (= energies = factors) 
‣ unaries for each body part (torso, head, ...) 

‣ pairwise between connected body parts 

• body pose estimation 
‣ max-product algorithm (MAP-estimate, 

best overall configuration) 

‣ sum-product algorithm (marginals of each part) 

• complexity 
‣ k be the number of body parts (e.g. k = 10) 

‣ L the size of the label space (L e.g. several 100k) 

‣ max-product algorithm in general: O( k L2) 

‣ for specific pairwise potentials: O( k L )

18
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Kinematic Tree Prior

• Notation  
‣ from [Andriluka,Roth,Schiele@ijcv11] 

‣ body configuration: 

‣ each body part: 

• Prior: 

‣ with p( l0 ) assumed uniform 

‣ with p( li | lj ) modeled using a Gaussian 

19

l7l5 l6 l8

l9

l10

l2

l1

l3

l4

L = {l0, l1, . . . , lN}

li = (xi, yi, �i, si)

p(L) = p(l0)
Y

(i,j)2G

p(li|lj)
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• Represent pairwise part relations  
[Felzenszwalb & Huttenlocher, IJCV’05] 

Kinematic Tree Prior

20

l1
l2

part locations relative 
 to the joint

transformed 
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Kinematic Tree Prior

• Transformation T 

‣ with 

‣ and                                   position of the joint between parts i and j,  
                                         represented in the coordinate system of part i  

21

Tji(li) =

0

BB@

xi + sidjix cos �i � sidjiy sin �i
yi + sidjix sin �i + sidjiy cos �i

�i
si

1

CCA

dji =

✓
djix
djiy

◆
li = (xi, yi, �i, si)
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Kinematic Tree Prior

• Prior parameters:  
• Parameters of the prior are estimated with maximum likelihood

22
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Figure 2. (left) Kinematic prior learned on the multi-view and
multi-articulation dataset from [15]. The mean part position is
shown using blue dots; the covariance of the part relations in the
transformed space is shown using red ellipses. (right) Several in-
dependent samples from the learned prior (for ease of visualiza-
tion given fixed torso position and orientation).

[14], and use AdaBoost [7] to train discriminative part clas-
sifiers. Our detectors are evaluated densely and are boot-
strapped to improve performance. Strong detectors of that
type have been commonplace in the pedestrian detection lit-
erature [1, 12, 13, 24]. In these cases, however, the em-
ployed body models are often simplistic. A simple star
model for representing part articulations is, for example,
used in [1], whereas [12] does not use an explicit part repre-
sentation at all. This precludes the applicability to strongly
articulated people and consequently these approaches have
been applied to upright people detection only.

We combine this discriminative appearance model with a
generative pictorial structures approach by interpreting the
normalized classifier margin as the image evidence that is
being generated. As a result, we obtain a generic model
for people detection and pose estimation, which not only
outperforms recent work in both areas by a large margin, but
is also surprisingly simple and allows for exact and efficient
inference.
More related work: Besides the already mentioned related
work there is an extensive literature on both people (and
pedestrian) detection, as well as on articulated pose estima-
tion. A large amount of work has been advocating strong
body models, and another substantial set of related work
relies on powerful appearance models.

Strong body models have appeared in various forms. A
certain focus has been the development of non-tree mod-
els. [17] imposes constraints not only between limbs on
the same extremity, but also between extremities, and relies
on integer programming for inference. Another approach
incorporate self-occlusion in a non-tree model [8]. Either
approach relies on matching simple line features, and only
appears to work on relatively clean backgrounds. In con-
trast, our method also works well on complex, cluttered
backgrounds. [20] also uses non-tree models to improve
occlusion handling, but still relies on simple features, such
as color. A fully connected graphical model for represent-
ing articulations is proposed in [2], which also uses dis-
criminative part detectors. However, the method has sev-

eral restrictions, such as relying on absolute part orienta-
tions, which makes it applicable to people in upright poses
only. Moreover, the fully connected graph complicates in-
ference. Other work has focused on discriminative tree
models [16, 18], but due to the use of simple features, these
methods fall short in terms of performance. [25] proposes
a complex hierarchical model for pruning the space of valid
articulations, but also relies on relatively simple features. In
[5] discriminative training is combined with strong appear-
ance representation based on HOG features, however the
model is applied to detection only.

Discriminative part models have also been used in con-
junction with generative body models, as we do here.
[11, 21], for example, use them as proposal distributions
(“shouters”) for MCMC or nonparametric belief propaga-
tion. Our paper, however, directly integrates the part detec-
tors and uses them as the appearance model.

2. Generic Model for People Detection and
Pose Estimation

To facilitate reliable detection of people across a wide
variety of poses, we follow [4] and assume that the body
model is decomposed into a set of parts. Their configuration
is denoted as L = {l0, l1, . . . , lN}, where the state of part i
is given by li = (xi, yi, �i, si). xi and yi is the position of
the part center in image coordinates, �i is the absolute part
orientation, and si is the part scale, which we assume to be
relative to the size of the part in the training set.

Depending on the task, the number of object parts may
vary (see Figs. 2 and 3). For upper body detection (or pose
estimation), we rely on 6 different parts: head, torso, as well
as left and right lower and upper arms. In case of full body
detection, we additionally consider 4 lower body parts: left
and right upper and lower legs, resulting in a 10 part model.
For pedestrian detection we do not use arms, but add feet,
leading to an 8 part model.

Given the image evidence D, the posterior of the part
configuration L is modeled as p(L|D) � p(D|L)p(L),
where p(D|L) is the likelihood of the image evidence given
a particular body part configuration. In the pictorial struc-
tures approach p(L) corresponds to a kinematic tree prior.
Here, both these terms are learned from training data, ei-
ther from generic data or trained more specifically for the
application at hand. To make such a seemingly generic
and simple approach work well, and to compete with more
specialized models on a variety of tasks, it is necessary to
carefully pick the appropriate prior p(L) and an appropriate
image likelihood p(D|L). In Sec. 2.1, we will first intro-
duce our generative kinematic model p(L), which closely
follows the pictorial structures approach [4]. In Sec. 2.2,
we will then introduce our discriminatively trained appear-
ance model p(D|L).

2

mean pose several independent samples

{Tji,⌃
ji}
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• Body is represented as flexible configuration of body parts

Pictorial Structures: 
Model Components
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Figure 2. (left) Kinematic prior learned on the multi-view and
multi-articulation dataset from [15]. The mean part position is
shown using blue dots; the covariance of the part relations in the
transformed space is shown using red ellipses. (right) Several in-
dependent samples from the learned prior (for ease of visualiza-
tion given fixed torso position and orientation).

[14], and use AdaBoost [7] to train discriminative part clas-
sifiers. Our detectors are evaluated densely and are boot-
strapped to improve performance. Strong detectors of that
type have been commonplace in the pedestrian detection lit-
erature [1, 12, 13, 24]. In these cases, however, the em-
ployed body models are often simplistic. A simple star
model for representing part articulations is, for example,
used in [1], whereas [12] does not use an explicit part repre-
sentation at all. This precludes the applicability to strongly
articulated people and consequently these approaches have
been applied to upright people detection only.

We combine this discriminative appearance model with a
generative pictorial structures approach by interpreting the
normalized classifier margin as the image evidence that is
being generated. As a result, we obtain a generic model
for people detection and pose estimation, which not only
outperforms recent work in both areas by a large margin, but
is also surprisingly simple and allows for exact and efficient
inference.
More related work: Besides the already mentioned related
work there is an extensive literature on both people (and
pedestrian) detection, as well as on articulated pose estima-
tion. A large amount of work has been advocating strong
body models, and another substantial set of related work
relies on powerful appearance models.

Strong body models have appeared in various forms. A
certain focus has been the development of non-tree mod-
els. [17] imposes constraints not only between limbs on
the same extremity, but also between extremities, and relies
on integer programming for inference. Another approach
incorporate self-occlusion in a non-tree model [8]. Either
approach relies on matching simple line features, and only
appears to work on relatively clean backgrounds. In con-
trast, our method also works well on complex, cluttered
backgrounds. [20] also uses non-tree models to improve
occlusion handling, but still relies on simple features, such
as color. A fully connected graphical model for represent-
ing articulations is proposed in [2], which also uses dis-
criminative part detectors. However, the method has sev-

eral restrictions, such as relying on absolute part orienta-
tions, which makes it applicable to people in upright poses
only. Moreover, the fully connected graph complicates in-
ference. Other work has focused on discriminative tree
models [16, 18], but due to the use of simple features, these
methods fall short in terms of performance. [25] proposes
a complex hierarchical model for pruning the space of valid
articulations, but also relies on relatively simple features. In
[5] discriminative training is combined with strong appear-
ance representation based on HOG features, however the
model is applied to detection only.

Discriminative part models have also been used in con-
junction with generative body models, as we do here.
[11, 21], for example, use them as proposal distributions
(“shouters”) for MCMC or nonparametric belief propaga-
tion. Our paper, however, directly integrates the part detec-
tors and uses them as the appearance model.

2. Generic Model for People Detection and
Pose Estimation

To facilitate reliable detection of people across a wide
variety of poses, we follow [4] and assume that the body
model is decomposed into a set of parts. Their configuration
is denoted as L = {l0, l1, . . . , lN}, where the state of part i
is given by li = (xi, yi, �i, si). xi and yi is the position of
the part center in image coordinates, �i is the absolute part
orientation, and si is the part scale, which we assume to be
relative to the size of the part in the training set.

Depending on the task, the number of object parts may
vary (see Figs. 2 and 3). For upper body detection (or pose
estimation), we rely on 6 different parts: head, torso, as well
as left and right lower and upper arms. In case of full body
detection, we additionally consider 4 lower body parts: left
and right upper and lower legs, resulting in a 10 part model.
For pedestrian detection we do not use arms, but add feet,
leading to an 8 part model.

Given the image evidence D, the posterior of the part
configuration L is modeled as p(L|D) � p(D|L)p(L),
where p(D|L) is the likelihood of the image evidence given
a particular body part configuration. In the pictorial struc-
tures approach p(L) corresponds to a kinematic tree prior.
Here, both these terms are learned from training data, ei-
ther from generic data or trained more specifically for the
application at hand. To make such a seemingly generic
and simple approach work well, and to compete with more
specialized models on a variety of tasks, it is necessary to
carefully pick the appropriate prior p(L) and an appropriate
image likelihood p(D|L). In Sec. 2.1, we will first intro-
duce our generative kinematic model p(L), which closely
follows the pictorial structures approach [4]. In Sec. 2.2,
we will then introduce our discriminatively trained appear-
ance model p(D|L).

2

prior on body poseslikelihood of observations 

posterior over body poses

[Andriluka,Roth,Schiele@cvpr09]

p(L|E) � p(E|L)p(L)
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Likelihood Model

• Assumption: 
‣ evidence (image features) for each part independent of all other parts: 

• assumption clearly not correct, but 
‣ allows efficient computation 

‣ works rather well in practice 

‣ training data for different body  
parts should cover “all” appearances

24

p(E|L) =
NY

i=0

p(E|li)
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Likelihood Model

• Build on advances in object detection: 
‣ powerful image descriptor: Shape Context                

[Belongie et al., PAMI’02; Mikolajczyk&Schmid, PAMI’05] 

‣ robust feature vector, here histogram of gradients (first derivatives) 

‣ dense representation 

‣ discriminative model: AdaBoost classifier for each body part

25

- Shape Context: 96 dimensions   
(4 angular, 3 radial, 8 gradient 
orientations) 

- Feature Vector: concatenate the 
descriptors inside part bounding box 

- head: 4032 dimensions 
- torso: 8448 dimensions
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Likelihood Model

• Part ‘likelihood’ derived from boosting score: 
‣ ei(li) = feature of part i at ‘location’ li 

‣ weak classifiers (e.g. decision stump output):  

‣ strong AdaBoost classifier score:  

‣ remember 

26

li = (xi, yi, �i, si)

part location

decision stump outputdecision stump weight

small constant to deal  
with part occlusions

p̃(E|li) = max

✓P
t �i,tht(ei(li))P

t �i,t
, ⇥0

◆

ht(ei(li))X

t

�i,tht(ei(li)) 2 [�1,+1]
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Likelihood Model

27

Upper leg

 [Ramanan,  
NIPS’06]
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Likelihood Model
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Upper legInput image TorsoHead

 [Ramanan,  
NIPS’06]
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Likelihood Model
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Upper legInput image TorsoHead

 [Ramanan,  
NIPS’06]
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likelihoods
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Efficient Inference - first for Star Model

• Location 
defines where each part is positioned in image 

• best location given by 

30

l0

l2l1

l3
l4

L = {l0, l1, . . . , lN}

p(L|E) � p(L)p(E|L)

= p(l0)
NY

i=1

p(li|l0)
NY

i=0

p(ei|li)

=
NY

i=0

p(li|l0)
NY

i=0

p(ei|li)

=
NY

i=0

p(li|l0)p(ei|li)
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Efficient Inference - first for Star Model

• best location given by MAP: 

• consider case of 2 parts: 

• rename things:

31

max
L

p(L|E) = max
L

NY

i=0

(p(li|l0)p(ei|li))

= min
L

NX

i=0

(� ln p(li|l0)� ln p(ei|li))

min
l0,l1

(� ln p(e0|l0)� ln p(e1|l1)� ln p(l1|l0))

= min
l0,l1

(m0(l0) +m1(l1) + d(l1, l0))
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Efficient Inference - first for Star Model

• assume d to have quadratic form, e.g.: 

‣ T1 could be a simple offset of part 1 w.r.t. part 0 

‣ e.g. the case when p(li | l0) is Gaussian (see above) 

• then 

‣ with the second term a generalized distance transform (DT)  
algorithm exist to compute DT efficiently 

‣ thus: 

• finding best part configuration can be done  
sequentially rather then simultaneously

32

d(l1, l0) = ||l1 � T1(l0)||2

min
l0,l1

(m0(l0) +m1(l1) + d(l1, l0))

= min
l0

✓
m0(l0) + min

l1
(m1(l1) + d(l1, l0))

◆

= min
l0

(m0(l0) +DTm1(T1(l0)))
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Distance Transform

• given points             on a grid (e.g. image) G 
• distance transform associates to each location              the distance 

to the nearest point             :    

‣ or equivalent:

33

p 2 P

x 2 G
p 2 P

DTP (x) = min
p2P

{d(x, p)}

1(q) =

⇢
0 if q 2 P
1 otherwise

G 

p q 

G 

p q 

example:
d(x, q) = |x� q|
DTP (x) = min

q2G
{|x� q|+ 1(q)}

DTP (x) = min
q2G

{d(x, q) + 1(q)}
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Generalized Distance Transform

• replace binary function 1(q) with function f(q): 

‣ we can assign ‘soft’ membership of all grid elements to P 

‣ f(q) is sampled on the entire grid G 

• in our case:  
‣ f corresponds to m1 

‣ distance corresponds to 

34

DTf (x) = min
q2G

{d(x, q) + f(q)}

DTm1(T1(l0)) = min
l1

{m1(l1) + d(l1, l0)}

d(l1, l0) = ||l1 � T1(l0)||2
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Example - 2 Part Model of Motorbikes

• Model 
‣ 2 parts (use both wheels),  

simple translation between them 
location given by x,y-position  
in image 

• 1. part unaries (log probability) 
m0(l0) and m1(l1) 

• 2. distance transform of m1(l1) 

• 3. simply find minimum of sum:

35

min
l0

(m0(l0) +DTm1(T1(l0)))

DTm1(T1(l0))

m0(l0) m1(l1)

example from Dan Huttenlocher
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Example: Star Model of Motorbikes

• generalization 
of 2-part case: 

• part likelihood maps (log likelihood) - cost O(LN)  

• and their distance transforms - cost O(LN)

36

example from Dan Huttenlocher
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Tree-Structured Models

• distance transform can be used for any tree-structured model 

• 2 differences w.r.t. star-model 
‣ relate position of parts to one another  

using tree-structured recursion 
- solve using Viterbi algorithm (for MAP) 

- solve using forward-backward algorithm for part marginals 

‣ parametrization of distance transform more involved 
- we have transformation Tij for each connected pair of parts

37
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Minimization over Tree Structures

• use dynamic programming to minimize 

• can be expressed as a function for part pairs: 
‣ Bc(lj) : cost of best location for part c given location lj of part j 

• recursive equation in terms of children Cj of part j passing recursive 
message to parent node li: 

‣ for leaf node no children - so last term vanishes 

‣ for root note l0 no parent - so second term vanishes
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Bj(li) = min
lj

0

@mj(lj) + dij(li, lj) +
X

c2Cj

Bc(lj)

1

A

min
L

NX

i=0

(� ln p(ei|li)� ln p(li|lj)) = min
L

NX

i=0

(mi(li) + dij(li, lj))
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Efficient Algorithm for Trees

• MAP estimation algorithm 
‣ tree structure allows to use Viterbi style dynamic programming 

- for L locations and N parts: O(N L2) rather than O(LN)   

- still typically slow as L is often in the order of 106 or 107 

‣ coupling with distance transform for finding best pair-wise locations can be done 
in linear time 
- resulting method then O(NL)

39
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Relation to Max-Product (or Max-Sum) Rule

• Remember: variable to factor message: 

‣ when using -ln(p(.)) rather than p(.) directly: 

• in our case:  
‣ x corresponds to lj,  

‣ f corresponds to dij

40

µx�f (x) =
X

g⇥{ne(x)\f}
µg�x(x)

µlj�dij (lj) =
X

g⇥{ne(lj)\dij}

µg�lj (lj) = mj(lj) +
X

c⇥Cj

Bc(lj)

µx�f (x) =
Y

g⇥{ne(x)\f}
µg�x(x)
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Relation to Max-Product (or Max-Sum) Rule

• Remember: factor to variable message: 

‣ again when using -ln(p(.)) rather than p(.) directly: 

• in our case:  
‣ x corresponds to li, f corresponds to dij 

‣ for human kinematic tree prior: factor dij has only two neighbors: li and lj
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µf�x(x) = max
y⇥Xf\x

�f (Xf )
Y

y⇥{ne(f)\x}
µy�f (y)

µf�x(x) = min
y⇥Xf\x

� ln(�f (Xf )) +
X

y⇥{ne(f)\x}
µy�f (y)

µdij!li(li) = min
lj

�
� ln(�f (Xf )) + µlj!dij (lj)

�

= min
lj

�
dij(li, lj) + µlj!dij (lj)

�
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Evaluation Scenarios

42

3.  Pedestrian Detection        
“TUD Pedestrians” dataset 
[Andriluka et al., CVPR’08]

2. Upper-body Pose Estimation 
“Buffy” dataset               
[Ferrari et al., CVPR’08]

1. Human Pose Estimation 
“People” dataset   
[Ramanan, NIPS’06]
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Evaluation Scenarios

43

3.  Pedestrian Detection           
“TUD Pedestrians” dataset 
[Andriluka et al., CVPR’08]

2. Upper-body Pose Estimation 
“Buffy” dataset               
[Ferrari et al., CVPR’08]

1. Human Pose Estimation 
“People” dataset   
[Ramanan, NIPS’06]
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Part-Based Model: 
2D Human Pose Estimation

44

[Andriluka,Roth,Schiele@cvpr09]
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Scenario 1: Quantitative Results [cvpr’09]

45

Method Torso
Upper 
legs

Lower 
legs

Upper 
arms Forearms Head Total

[Ramanan, 
NIPS’06] 
2nd parse

52 30 29 17 13 37 27

Our inference, 
edge features from 

[Ramanan, 
NIPS’06]

63 48 37 26 20 45 37

Our part 
detectors (SC) 29 12 18 3 4 40 14

Our prior, our 
part detectors 

(SC)
81 63 55 47 31 75 55

Our prior, our 
part detectors 

(SIFT)
78 58 54 44 31 66 52
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Scenario 1: Model Parameters

• in particular - how big should L be? 
‣ remember - L depends on location (x,y), rotation and scale of parts 

‣ table 3 @ ijcv’11: 

‣ unfortunately: the larger L - the better normally the performance 

‣ but: reasonable performance already with smallest L (8 px, 15o)

46
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Scenario 1: Difference in Inference Method

• comparison of sum-product and max-product rule 
‣ table 6 @ ijcv’11

47
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Evaluation Scenarios

48

3.  Pedestrian Detection           
“TUD Pedestrians” dataset 
[Andriluka et al., CVPR’08]

2. Upper-body Pose Estimation 
“Buffy” dataset               
[Ferrari et al., CVPR’08]

1. Human Pose Estimation 
“People” dataset   
[Ramanan, NIPS’06]
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Estimated upper-body poses

49
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Quantitative Results

50

Method Torso Upper arm Lower arm Head Total

[Ferrari et al. CVPR’08] - - - - 57.9

detectors only 18.9 6.8 3.1 47.2 14.3

full model 90.7 79.3 41.2 95.9 71.3
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Quantitative Results

51

Method Torso Upper arm Lower arm Head Total

[Ferrari et al. CVPR’08] - - - - 57.9

detectors only 18.9 6.8 3.1 47.2 14.3

full model 90.7 79.3 41.2 95.9 71.3

[Ferrari et al. CVPR’09] - - - - 72.2
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Quantitative Results
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Method Torso Upper arm Lower arm Head Total

[Ferrari et al. CVPR’08] - - - - 57.9

detectors only 18.9 6.8 3.1 47.2 14.3

full model 90.7 79.3 41.2 95.9 71.3

[Ferrari et al. CVPR’09] - - - - 72.2

full model, Buffy pose prior 90.7 81.35 46.5 95.5 73.5

- specialized upper body prior  
- appearance learned on the “People” 

dataset
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Typical Failure Cases
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Foreshortening Detections on other 
 body parts

Part occlusion
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Evaluation Scenarios
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3.  Pedestrian Detection   
“TUD Pedestrians” dataset  
[Andriluka et al., CVPR’08]

2. Upper-body Pose Estimation 
“Buffy” dataset               
[Ferrari et al., CVPR’08]

1. Human Pose Estimation 
“People” dataset   
[Ramanan, NIPS’06]
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People Detection: Results
• Comparison with state-of-the art in people detection
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[Andriluka et al., CVPR’08] This work
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Limitations of Kinematic Trees

• represent only relationships between connected parts 
• coordination (or relation) between limbs not encoded 
‣ critical e.g. for balance and many activities 

‣ example: 
these two configurations 
are equally probable 
under tree model:
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image from Dan Huttenlocher
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Beyond Kinematic Tree Models

• non-tree models 
‣ larger cliques, latent variables 

- introduce additional variable corresponding to common factor of limb coordination 

- does not correspond to any part 

- dependencies e.g. among part orientations 

‣ still relatively efficient inference for small clique
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picture from Dan Huttenlocher
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Beyond Kinematic Tree Models

• introduce additional variable corresponding to common factor  
(such as particular viewpoint or pose) 
‣ consistency between limb positions  

can be modeled, not captured by  
kinematic tree model 

‣ rather than directly connecting  
limbs which create large cliques 

• sample result
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example from Dan Huttenlocher
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Beyond Kinematic Tree Models

• Repulsive Factor: 
‣ down-weight configurations that are overlapping: 

‣ IoU: Intersection over Union  
(measures overlap between parts) 

‣ here only between  
upper/lower legs 

‣ note: we use loopy  
belief propagation instead  
of exact inference 

• Results: (table 5 @ ijcv11)
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f(li, lj) =

⇢
exp(��) : IoU(li, lj) > ⇥

1 : otherwise


