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Overview Today’s Lecture

Motivation
» Graph neural networks and neural message passing
» Machine learning on graphs

Convolutions in Time, Space and on Graphs

Graph Neural Networks and Graph Convolutional Networks

Graphs and Graph Shift Operators
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Traditional vs. Deep End-to-End Training

Traditional pipeline

(Hand-designed) | Classifier
Feature extractor “on top”

v
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Output

slide credit: Thomas Kipf
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Traditional vs. Deep End-to-End Training

Traditional pipeline

(Hand-designed) Classifier
Feature extractor “on top”

\ 4
v

\ 4

End-to-end learning

Deep neural network

Output

v

Output

slide credit: Thomas Kipf
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Deep Learning for Data on "Grids™

I M AG E N E T Speech data

o

Natural language o
processing (NLP) Predicate / Verb Phrase

Prepositional Phrase

Noun Phrase
Noun Phrase

Article Noun Verb Preposition Article Noun
| I |

The cat sat on the mat.

Grid games

slide credit: Thomas Kipf
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Deep Learning for Data on "Grids™

I M AG E N ET Speech data

Grid games

Natural language Sentence
pTOCESSi ng (N LP) Predicate / Verb Phrase

Prepositional Phrase

Noun Phrase

Noun Phrase

Article Noun Verb Preposition Article Noun

I I
The cat sat on the mat.

Deep neural nets that exploit:

- translation equivariance (weight sharing)
- hierarchical compositionality

slide credit: Thomas Kipf
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Graph-Structured / Relational Data

A lot of real-world data does not “live” on grids

Social networks
Citation networks ®

R @
Communication networks
Multi-agent systems [ o9
& ® ® ® ?
® ® ® ® = ®
®
° 0 o &
hd ®
@ o 9 ®
® g

slide credit: Thomas Kipf

ini p | I Probabilistic Graphical Models and Their Applications | Bernt Schiele 7



Graph-Structured / Relational Data

A lot of real-world data does not “live” on grids

Social networks YL %
Citation networks ®
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Communication networks
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slide credit: Thomas Kipf
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Graph-Structured / Relational Data

U.S.A

A lot of real-world data does not “live” on grids b
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Graph-Structured / Relational Data

U.S.A

A lot of real-world data does not “live” on grids b
o :university
" educated at

Mikhail Baryshnikov J . Vaganova Academy
Social networks R YL }
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Protein interaction

networks b :“T""";:"_",“??" h
Standard deep learning architectures
like CNNs and RNNs don’t work here!
Road maps
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Graph Neural Networks

The bigger picture:

Hidden layer
I/ B
[ ]
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Input ® o
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Hidden layer

slide credit: Thomas Kipf
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Graph Neural Networks

The bigger picture: Notation: G = (V,£) or G = (A, X)
Hidden layer Hidden layer « Adjacency matrix A € RAYXN
{ \ | / ;3 K . Feature matrix X € RYV*F
i . .. ’ . .. ’ Output
) ) — 7 ReLU | e Z° ReLU A\
SV i i e BVl o = R e S

Main idea: Pass messages between pairs of nodes & agglomerate
slide credit: Thomas Kipf
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"Classic"” Spatial Convolution Filter (3x3 here)

[1] Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

Probabilistic Graphical Models and Their Applications | Bernt Schiele
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Convolutional Neural Networks (on Grids)

Single CNN layer
with 3x3 filter:

A

L0

0 b

slide credit: Thomas Kipf
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Convolutional Neural Networks (on Grids)

Single CNN layer

with 3x3 filter: h
0

h, ..
O
o

O CB\O h,

h; € RY are (hidden layer) activations of a pixel/node

slide credit: Thomas Kipf
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Convolutional Neural Networks (on Grids)

Single CNN layer

with 3x3 filter: h
0

h;
C)\O/O Update for a single pixel:
C CB : « Transform messages individually W ;h;

\O » Add everything up » . W;h;
O 6 h;

h; € RY are (hidden layer) activations of a pixel/node

slide credit: Thomas Kipf
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Convolutional Neural Networks (on Grids)

Single CNN layer

with 3x3 filter: h
0

h;
C)\O/O Update for a single pixel:
C CB : « Transform messages individually W ;h;

\O » Add everything up » . W;h;
O 6 h;

h; € RY are (hidden layer) activations of a pixel/node

Full update:

h{™) = o (W'n{" + Wi'n{ + .. + W{'n{")

slide credit: Thomas Kipf
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Graph convolutional networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this
undirected graph:

o O
O O
O O

slide credit: Thomas Kipf
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Graph convolutional networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update
undirected graph: for node in red:

O O O O
O O O O
O O O O

slide credit: Thomas Kipf
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Graph convolutional networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update
undirected graph: for node in red:

OOOO Oj)g(j

O O

slide credit: Thomas Kipf
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Graph convolutional networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update
undirected graph: for node in red:

o Ny o N5

O O O/\o

Update
rule: hng) =X I)VV 4 Z hu

jeN;

N; : neighbor indices  C;; : norm. constant
(fixed/trainable)

slide credit: Thomas Kipf
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Graph convolutional networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this Calculate update Desirable properties:
undirected graph: for node in red: « Weight sharing over all locations
 Invariance to permutations

O O ’p * Linear complexity O(E)
O 8 * Applicable both in transductive
O and inductive settings

O O O/'\o

Limitations:

- Does not consider pairwise interactions

- No support for different edge types
Update R — o [ WOWO 0
rule: ; =0 os
F(J ‘
JEN;
Scalability: subsample messages [Hamilton et al., NIPS 2017] M : neighbor indices  C;; : norm. constant

(fixed/trainable)
slide credit: Thomas Kipf
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Graph Neural Networks

Graph Representation Initial Representation
of Problem of each node

slide credit: Miltos Allamanis
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Graph Neural Networks

Task Specific

2 Stuff + Loss

Output Representations
of each Node

Initial Representation
of each node

slide credit: Miltos Allamanis
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Graph Neural Networks

Task Specific

Stuff + Loss

slide credit: Miltos Allamanis
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Neural Message Passing

EEEREE &
n
ht—l

o Current
& =f(@—©) Node State

Ol T

= =-f(@—0) .

o ) L B P
45

@

[l N BN N NN

Summarize
Received
Current Neighbor Prepare “Message” Information
States
N B BN B EE
hi
Next
Node State

slide credit: Miltos Allamanis
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Neural Message Passing

I T
hi_,
o Current
™ =f(b ® ) Node State

:f(E—bF )

o
REEET

Prepare “Message” o

(ENE B N § mE
ht
Next
Node State

Current Neighbor
States

-
hi = qc | hi—q, U ft( ?—1*k’htil)

k
r: -ﬁ
nJ n] o slide credit: Miltos Allamanis

Probabilistic Graphical Models and Their Applications | Bernt Schiele 27



Gated GNNs

i B BN EE N
t-1
Current
™ =f(o D) Node State

:f(E—-F)

AEL
Current Neighbor Prepare “Message” o
States
\ J EE= = o m ae
| hi

n; Next

m= v ExhyZy Node State
'Il,,':?'lj—)?'l
Li et al (2015). Gated graph sequence neural networks. slide credit: Miltos Allamanis
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Graph Convolutional Neural Networks (GCNs)

Kipf et al (2016). Semi-supervised classification with graph convolutional networks.

EEEEEE &
t-1
Current
Node State

T - T
Current Neighbor Prepare “Message” o
States
HEE B R B BN
h¢
n _ . w, (e, + i Next
t numNeighbors +1 t\ 1 — e Node State

slide credit: Miltos Allamanis
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Graph Neural Networks: Message Passing

slide credit: Miltos Allamanis
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Graph Neural Networks: Message Passing (synchronous - all to all)

slide credit: Miltos Allamanis
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Graph Neural Networks: Output

time

* node selection
* node classification
* graph classification

al https://github.com/microsoft/tf-gnn-samples/

slide credit: Miltos Allamanis
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Output Example: Binary Node Classification

x, = a(w'h} + b)
Binary cross entropy

L(Xn, Yn) = Yn * logx, + (L yn) log(1 — xp)

time

slide credit: Miltos Allamanis
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Overview Today’s Lecture

Motivation
» Graph neural networks and neural message passing
» Machine learning on graphs

Convolutions in Time, in Space and on Graphs

Graph Neural Networks and Graph Convolutional Networks

Graphs and Graph Shift Operators
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Neural Networks and Convolutional Neural Networks

» There is overwhelming empirical and theoretical justification to choose a neural network (NN)

Challenge is we want to run a NN over this But we are good at running NNs over this
® % o ® ®© 0060000000 00
.....0.. .0'.0.; 0 000060060000
o * g * ®© 0006060000 0 00
% § oo e e

v @ b ® 0 00006000000

(& ..o@.O
oo S 00 °° 0 o000 0600 0 00
. o 4 .“o e 0000000000
.: o’ .."o".o. ©0 0000000000
ok e ¢ 0000000000

» Generic NNs do not scale to large dimensions =- Convolutional Neural Networks (CNNs) do scale

slide credit: Alejandro Ribeiro
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Convolutional Neural Networks and Graph Neural Networks

» CNNs are made up of layers composing convolutional filter banks with pointwise nonlinearities

Process graphs with graph convolutional NNs Process images with convolutional NNs
° %% o ® 000000000 0 0
.....0.. .0’.0.; 00000000000
.0~.... o‘.. l 00000000 0 00
:..Q.s.o S\ ® 00000000000
o A o .00 *° ®© 0 06060000090 00

e ° o ."o 00000000000
. ) ."o'.i. e 00000000000
e R o0 0000000000

» Generalize convolutions to graphs = Compose graph filter banks with pointwise nonlinearities

» Stack in layers to create a graph (convolutional) Neural Network (GNN)

slide credit: Alejandro Ribeiro
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Convolutions in Time, in Space, and on Graphs

» How do we generalize convolutions in time and space to operate on graphs?

= Even though we do not often think of them as such, convolutions are operations on graphs

slide credit: Alejandro Ribeiro
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Time and Space can be Represented as Graphs

» We can describe discrete time and space using graphs that support time or space signals

Description of time with a directed line graph Description of images (space) with a grid graph

TXOO TXOI TXOQ TX{JS TX04 TXOS TXOG TXOT

10 I 11 I X172 I *13 I X14 I X15 I X16 I X1

i > > <—> Rl <> <> >

.{_
-
X0 X1 X2 X3 X4 X5 X6 : : : '
-0—0—0—0—0—-0—-0- Lo Lo Lo $om Lo s Loos Lo
<
—

%30 IX31 Ix32 IX33 I X34 I X35 I *36 IX?J'

v v v v v v v v

» Line graph represents adjacency of points in time. Grid graph represents adjacency of points in space

slide credit: Alejandro Ribeiro
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Convolutions in Time and Space

» Use line and grid graphs to write convolutions as polynomials on respective adjacency matrices S

Description of time with a directed line graph Description of images (space) with a grid graph

X00 X01 x02 x03 T x4 1 Xo5 X06 X07
00 01 02 03 04 pamg 05 3 07

¥ x17
10 11 £ £ee 17
X0 X1 X2 X3 X4 X5
-0—0—0—0—0—0- , I TN P P T
20 Lot e (il E ol el e e L
x30 x31 x32 X33y X34 ¥ X35 ¥y 36 x37

> Filter with coefficients hx = Output z=hoS'x +mS'x +hS’x +mSx +...=) h S*x
k=0

slide credit: Alejandro Ribeiro

|
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Arbitrary Graphs

» Time and Space are pervasive and important, but still a (very) limited class of signals

» Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph

X9 w24 4 W46 X6
L =
“’/*e @ e‘\
xq w34 wos  Wsg w47 xg
5 - 7 - 7
3 w35 xg w57 v

» Nodes are customers. Signal values are product ratings. Edges are cosine similarities of past scores

slide credit: Alejandro Ribeiro
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Arbitrary Graphs

» Time and Space are pervasive and important, but still a (very) limited class of signals

» Use graphs as generic descriptors of signal structure with signal values associated to nodes and
edges expressing expected similarity between signal components

A signal supported on a graph Another signal supported on another graph

X9 w24 4 W46 X6
L =
“’/*e @ e‘\
xq w34 wos  Wsg w47 xg
5 - 7 - 7
3 w35 xg w57 v

» Nodes are drones. Signal values are velocities. Edges are sensing and communication ranges

slide credit: Alejandro Ribeiro

ini p il Probabilistic Graphical Models and Their Applications | Bernt Schiele 41



Convolutions on Graphs

» We've already seen that convolutions in time and space are polynomials on adjacency matrices

Description of time with a directed line graph Description of images (space) with a grid graph

X00 X01 X02 x3 T x4 T Xo5 06 X07
00 01 02 03 04 aamg 05 06 07

5 A b
10 11 o 13 17
X0 X1 X2 X3 X4 X5
Q000 00 Lo Low Lon Do Dow Do Lo
20 Lot e (il E o el e e L
X30 x31 X32 X33 ¥ X34 y X35 ¥ X36 X37
30 31 pamd 32 Aomg 33 Aoy 34 E<—ED 37

> Filter with coefficients hx = Output z=hoS'x +mS'x +hS’x +mSx +...=) h S*x
k=0

slide credit: Alejandro Ribeiro

|
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Convolutions on Graphs

» For graph signals we define graph convolutions as polynomials on matrix representations of graphs

A signal supported on a graph Another signal supported on another graph
X2 w24 X4 W46 X6
. gy ¥ g X3 ) %2 X0 o n *8
X1 g W34 a5 W5b a7 o e
}E\—»:' ol . ' e/"'{ —0n -
oo
; ; ‘s 0 1 2 3 k
» Filter with coefficients hy = Outputz= hoS'x +hS'x +hSx +hS'x +...= E h, S"x
k=0
» Graph convolutions share the locality of conventional convolutions. Recovered as particular case

1 ina p [ Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Alejandro Ribeiro
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Convolutional Neural Networks and Graph Neural Networks

» CNNs and GNNe are minor variations of linear convolutional filters

= Compose filters with pointwise nonlinearities and compose these compositions into several layers

slide credit: Alejandro Ribeiro
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Neural Networks

» A neural network composes a cascade of layers

» Each of which are themselves compositions of

linear maps with pointwise nonlinearities

» Does not scale to large dimensional signals x

A4
7]
zi = Hix > xlza[zl}
Layer 1
X1
X1
A4
Z3
z> = Hy x4 > xzza[zz}
Layer 2
X2
X2
Y
Z3
Z3ZH3,X2 > X3:0'|:Z3}
Layer 3
> x3 = ®(x; H)

il p il Probabilistic Graphical Models and Their Applications | Bernt Schiele
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Convolutional Neural Networks (CNNs)

» A convolutional NN composes a cascade of layers 7
zi = hy »x > xlza[zl}
i e Layer 1
» Each of which are themselves compositions of
X1
convolutions with pointwise nonlinearities .
Y
k 2
» Scales well. The Deep Learning workhorse 2y =hy * x > Xp = U[Zz}
Layer 2
» A CNNs are minor variation of convolutional filters X2
X2
= Just add nonlinearity and compose "
® Z3
= They scale because convolutions scale 23 = h3 * x > X3 = 0[23}
Layer 3
> x3 = ®(x; H)

"-' ini p il Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Alejandro Ribeiro 46



When we Think of Time Signal as Supported by a Line Graph

- : K—1
r4
» Those convolutions are polynomials on the =Y hcha i o a[zl}
k=0
adjacency matrix of a line graph Layer 1
X1
X1
Y
K—1
| =
Zy = h2kSkX1 > X2:O'[Zz}
k=0
Layer 2
. . . X
» Just another way of writing convolutions and § *
2
Just another way of writing CNNs v
K—1 . z3
Z3 = h3kS X > X3:0'|:23}
, L. k=0
» But one that lends itself to generalization Layer 3
> x3 = ®(x; H)

Probabilistic Graphical Models and Their Applications | Bernt Schiele

slide credit: Alejandro Ribeiro
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Graph Neural Networks (GNNs)

» The graph can be any arbitrary graph

» The polynomial on the matrix representation S

becomes a graph convolutional filter

W24 W6
?/» 6 ﬂ
w34 Wo5 Whs6 wa7 RN
0 -
Q0.0

, S -7
W35 W57

¥
K—1
7]
zlzzmkskx > xlza[zl}
k=0
Layer 1
X1
X1
¥
K—1
k 22
Zy = thS X1 > XQZU[ZQ}
k=0
Layer 2
X2
X2
L
K—1 . z3
Z3 = h3kS X > X3:0'|:Z3}
k=0
Layer 3

> x3 = ®(x; S, H)

il p il Probabilistic Graphical Models and Their Applications | Bernt Schiele
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Graph Neural Networks (GNNs)

A4
K—1 ‘ Zi
Zy = hik " x > Xy =a|z
» A graph NN composes a cascade of layers : kz=0 b : [ 1}
Layer 1
X1
» Each of which are themselves compositions of X1
- - - - - - - ‘(
graph convolutions with pointwise nonlinearities K=i : 2
Zy = h2kS X1 > X2:O'[Zz}
k=0
Layer 2
» A NN with linear maps restricted to convolutions %5
X2
- - - \r
» Recovers a CNN if S describes a line graph K—1 i
k 3
z3:Zh3kS X > X3:0'|:Z3}
k=0
Layer 3

> x3 = ®(x; S, H)

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Alejandro Ribeiro 49




Graph Neural Networks (GNNs)

K—1 ‘ Zi
. . ) . zlzzthx > xlza[zl}
» There is growing evidence of scalability. k=0 T
ayer
X1
» A GNN is a minor variation of a graph filter &
Y
A : K—1 z
= Just add nonlinearity and compose 2, = hy S¥ x; Zs X g[zz}
k=0
Layer 2
» Both are scalable because they leverage the ®
X2
signal structure codified by the graph v
K—1
Z3
Z3 = h3kSkX2 > X3:0'|:Z3}
k=0
Layer 3

> x3 = ®(x; S, H)

e 1n pre Probabilistic Graphical Models and Their Applications | Bernt Schiele

slide credit: Alejandro Ribeiro
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The Road Ahead

slide credit: Alejandro Ribeiro
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Objectives of This Part of the Course

Develop the ability to use Graph Neural
Networks in practical applications

Understand the fundamental properties
of Graph Neural Networks

Define Graph Neural Network

Architectures

slide credit: Alejandro Ribeiro
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Some Interim Remarks...

» | told you a lot about architectures today in the form of convolutions. Just to give you a taste.
= Don't worry if you didn't understand. Will revisit graph filters and graph neural networks

= We will also study graph recurrent neural networks

» Can't use blindly = GNNs have properties that explain why they work. And why they don't

= Permutation Equivariance. Stability to deformations. Transferability

slide credit: Alejandro Ribeiro
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Overview Today’s Lecture

Motivation
» Graph neural networks and neural message passing
» Machine learning on graphs

Convolutions in Time, Space and on Graphs

Graph Neural Networks and Graph Convolutional Networks

Graphs and Graph Shift Operators

l\g; i p il Probabilistic Graphical Models and Their Applications | Bernt Schiele
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slide credit: Alejandro Ribeiro

Probabilistic Graphical Models and Their Applications | Bernt Schiele 55



Nodes, Edges, Weights

» A graph is a triplet G = (V, £, W), which includes vertices V, edges £, and weights W
= Vertices or nodes are a set of n labels. Typical labels are V = {1,...,n}
= Edges are ordered pairs of labels (/). We interpret (i,j) € £ as “i can be influenced by j."

= Weights w; € R are numbers associated to edges (/,). “Strength of the influence of j on i."

W42 W46

?VS

~_ w\_____,/
W3s Ws7

slide credit: Alejandro Ribeiro
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Directed Graphs

» Edge (/,J) is represented by an arrow pointing from j into /. Influence of node j on node i
= This is the opposite of the standard notation used in graph theory
» Edge (i,j) is different from edge (j,i) = It is possible to have (i,j) € .£ and (j,i) € £

» If both edges are in the edge set, the weights can be different = It is possible to have wj # w;

—

W35

Ww7s
w31 87
v
Ws7

slide credit: Alejandro Ribeiro
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Symmetric Graphs

» A graph is symmetric or undirected if both, the edge set and the weight are symmetric
= Edges come in pairs = We have (/,j) € € if and only if (j,i) € £

= Weights are symmetric = We must have w; = wj; for all (i,j) € £

Woq W6
i
W34 W2

e
W/’Q S .
5 Wse Wyt
W23 We7
>-0._0_0—~

Vv

W53 — Wi3s Ws7

slide credit: Alejandro Ribeiro
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Unweighted Graph

» A graph is unweighted if it doesn’t have weights
= Equivalently, we can say that all weights are units = w;; =1 for all (i,j) € £

» Unweighted graphs could be directed or symmetric

OWO
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Weighted Symmetric Graph

» Graphs can be directed or symmetric. Separately, they can be weighted or unweighted.

» Most of the graphs we encounter in practical situations are symmetric and weighted

Wao4 Wiae
&£ &
P @
W34 Wasg Whs6 Wa7
W23 We7
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W35 Ws7
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Graph Shift Operators

» Graphs have matrix representations. Which in this course, we call graph shift operators (GSOs)
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Adjacency Matrix

» The adjacency matrix of graph G = (V, £, W) is the sparse matrix A with nonzero entries

» If the graph is symmetric, the adjacency matrix is symmetric = A = K" .

Waq4 = Wag2
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Adjacency Matrix for Unweighted Graph

» For the particular case in which the graph is unweighted. \Weights interpreted as

Aij =1, forall (i,j)eé&

1
@ O
/

0 4 % O 0

¥y O 4 4 0

o 1 A= 1 1 0 ( 1
0 1 O O 1

I ) 1 1 0

\) 0 0
~Q._0
1
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Neighborhood and Degree

» The neighborhood of node i is the set of nodes that influence i = n(i) :={j: (i,j) € £}

» Degree d; of node i is the sum of the weights of its incident edges = d; = Z wij = Z Wij
JEN(i) Ji(iJ))EE}

W24 = Wi2
4 A
w1
| / » Node 1 neighborhood = n(1) ={2,3}
1 w3 = wag Was = Weq
\ » Node 1 degree = n(1) = wyo + wis
W13
W53 = W35
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Degree Matrix

» The degree matrix is a diagonal matrix D with degrees as diagonal entries = D; = d;

» Write in terms of adjacency matrix as D = diag(Al). Because (Al); = >  w; = d;

A

1
®© O
/

¢ 0 0 0 0

0 3 0 0 0
o 1 1 D=0 D 3 O '0

O 0 0 2 O
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'1\,0 ° I 0 0 _
- 7
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Laplacian Matrix

» The Laplacian matrix of a graph with adjacency matrix Ais = L =D — A = diag(Al) — A
» Can also be written explicitly in terms of graph weights A; = w;
= Off diagonal entries = Lj = —Aj = —w;

= Diagonal entries = L; = di = Z Wy
jen(i)

1
© O
1
r B = =B & O /
i @ =l =d P
o [ |
0 -1 0 2 -1
9_ 0
-
1
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Normalized Graph Representations

» Normalized adjacency and Laplacian matrices express weights relative to the nodes’ degrees

W,j

» Normalized adjacency matrix = A := D™ "/?AD'/? = Results in entries (A); = —
I

» The normalized adjacency is symmetric if the graph is symmetric = AT = A.
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Normalized Graph Representations

. : - T ~1f2s pu=112 - .
» Normalized Laplacian matrix = L: =D "/“LD™ /. Same normalization of adjacency matrix

» Given definitions normalized representations = L = D~ 1/2 (D — A) D2 = I-A

= The normalized Laplacian and adjacency are essentially the same linear transformation.

» Normalized operators are more homogeneous. The entries in the vector Al tend to be similar.
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Graph Shift Operator

» The Graph Shift Operator S is a stand in for any of the matrix representations of the graph

Adjacency Matrix Laplacian Matrix Normalized Adjacency Normalized Laplacian

S=A S=1L S=A s=1L

» If the graph is symmetric, the shift operator S is symmetric = S =S7

» The specific choice matters in practice but most of results and analysis hold for any choice of S
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