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-
Today's topics

» Inference

» Sum-Product (brief recap)
» Max-Product

» Application
» Human Pose Estimation
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|
Relationship Potentials to Graphs

v

Factor Graphs:

& @j)\@ @ng
(a) (b) (c)

Left: Markov Network
Middle: Factor graph representation of ¢(a, b, ¢)
Right: Factor graph representation of ¢(a,b)¢(b, c)o(c, a)

v

v

v

v

Different factor graphs can have the same Markov network (b,c)=-(a)
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Inference in Trees

Inference in Trees
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Inference in Trees

Inference - what to infer?

» Given distribution

p(x) = plz1,...,2p) (1)
» Inference: computing functions of the distribution, e.g.
> mean
» mode
» marginal
» conditionals
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What to infer?

» Mean

» Mode (most likely state)

x* = argmax p(x)
reX

» Conditional Distributions
p(xi, x| g, 1) or  p(a; | X1, .., Tic1, Tigt, -, Tn)

» Max-Marginals

x; = argmax p(z;) = argmax E p(x)
€M €M (@150 Ti=1,Tit1,005Tn)
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Inference in Trees

Example: Pictorial Structures for Human Pose Estimation

» Find body parts (i.e. find 2D locations and orientations of head,
torso, lower/upper left/right arms/legs)

» inference for human body pose estimation:
» calculating marginals (sum-product algorithm):

argmax p(x;) = argmax Z p(z)
T, €EX; T, €EX;
(901,~~~,€Ei71,$i+1,~~~,93n)

» calculating mode (max-product algorithm):

z* = argmax p(x)
TeEX
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Inference in Trees

Be careful: max marginals not the same as max mode

» The most likely state (max mode)

x* = argmax p(z1,. ..

T1y-e5Tn

,Tp)

(2)

does not need to be the one for which the marginals are maximized:

» Foralli=1,...,n
x; = argmax p(z;)
T

xr1 = 0 Tr1 = 1

Eamle. 22 =0 0.3 0.4

> Bxample: zo=1 03 0.0

marginal p(x1) ‘ 0.6 0.4
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Inference in Trees

General singly-connected factor graphs — 1

» Consider a branching graph:

with factors
fl (a7 b)fQ(b7 Gy d)f3(c)f4(d7 €)f5(d)

» For example: find marginal p(a)
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Inference in Trees

General singly-connected factor graphs — 2

» Idea: compute messages
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Inference in Trees

Sum-Product Algorithm — Overview

» Algorithm to compute all messages efficiently

» Assuming the graph is singly-connected

1. Initialization
2. Variable to Factor message

3. Factor to Variable message

» Then compute any desired marginals

» Also known as belief propagation
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Inference in Trees

1. Initialization

» Messages from extremal (simplical) node factors are initialized to the
factor (left)

» Messages from extremal (simplical) variable nodes are set to unity
(right)

#y—a(T) = f(2) pamsr () =1

I—QQ—I
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Inference in Trees

2. Variable to Factor message

fo—sp () = H fg—a(T)
ge{ne(z)\f}
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Inference in Trees

3. Factor to Variable message

ff—sa(T) = Z o (Xp) H Hy—£(Y)

yeXy\x ye{ne(f)\=}

ﬂfﬁm(x)@

Hys— £ (Y3)

®

» We sum over all states in the set of variables

» This explains the name for the algorithm (sum-product)
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Marginal

p)oc ] wroe(@) (7)

fene(z)

/VLfl—%T(:E)

f2 . Mfé%ﬂt(‘r

e ()
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So far..

» So far marginals

» Now: finding the maximal state (mode)
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Inference in Trees

Finding the maximal state: Max-Product

» For a given distribution p(x) find the most likely state:

¥ = argmax p(zy,...,Ty) (8)
Tl Tn

» Again use factorization structure to distribute the maximisation to
local computations

OO

f(a’v b,c, d) = d’(a’ b)¢(ba C)d)(ca d) (9)

» Example: chain
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Example: Chain

max f(z) = mlg;&g;u¢($1,$2)¢($2,ﬂ?3)¢(ﬂf3,ﬂf4)
= max d(x1, x2) (22, T3) max (3, x4)
————
v(zx3)
= max P(1, 72) max P(z2,v3)7(73)
v(z2)
= maxmax¢(z1, x2)7y(z2)
1
(1)
= max~y(r)
1
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Example: Chain

» Once computed the messages (y(-)) find the optimal values

x] = argmax-y(zp)
1

ry; = argmax @(z7],x2)y(22)
T2

xy = argmax ¢(zh, x3)y(x3)
T3

ry = argmax$(x3, v4)y(Ts)
T4

» this is called backtracking (an application of dynamic programming)
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Inference in Trees

Trees

» Spot the messages:

mi}xf(a;) = max fi(a,b)fa(b,c,d)f3(c)fa(d,e)f5(d)

a,b,c,d,e
= 7
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Inference in Trees

Trees

max f(z) =

Schiele (MPII)

max fi (a‘7 b)fQ(b7 &) d)f?»(c)f4(d7 6)f5(d)

a,b,c,d,e
max max f1(a,b) max fa(b,¢,d) fs(c) f5(d) max fa(d,e)
a b c,d N~ e
————
Nf,—%zl(d) X
> Kfg—ad(d)

max max fi(a,b) max f2(b,c,d) fs(c) prr5—a(d)psy—a(d)
a b c,d ~N— —
He—s fo (c) #‘d%fg(d)

max max f1(a, b) max fa(b, ¢, d) e 1, (¢) a1 (d)

Hfo—b (b)
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Inference in Trees

Trees

max f(z) = max fi(a,b)f2(b,¢,d)fs(c)fa(d,e)f5(d)
= maxmax f1(a,b) fis,-5(b)
a N—_——
Hb— fq (v)

= rn;xx mguX fi (Ch b),ub—>f1 (b)

llflaa(a)

= mgx;z,flﬁ,l(a)
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Max-Product Algorithm

» So we need an algorithm to compute the messages

» Pick any variable as root

1. Initialisation (same as sum-product)
2. Variable to Factor message (same as sum-product)

3. Factor to Variable message

» Then compute the maximal state
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Inference in Trees

1. Initialisation

» Messages from extremal node factors are initialized to the factor

» Messages from extremal variable nodes are set to unity

ty—a(T) = f(2) paop(2) =1
f Cx wc f

» Same as for sum-product

Schiele (MPII) Probabilistic Graphical Models December 2, 2020 24 /31



Inference in Trees

2. Variable to Factor message

fz— g (x) = H fg—a(T)
ge{ne(z)\f}

i ﬂll?("lf)

L fofya( - u;Hf(;zr). f

» Same as for sum-product
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Inference in Trees

3. Factor to Variable message

Hra(@) = max o) ][ s @)
y=t ye{ne(f)\a}

Hyi—f (1)

.uy:sﬂf(?ﬂi)

» Different message than in sum-product

» This is now a max-product
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Inference in Trees

Maximal state of Variable

x* = argmax H pf—sz(T) (12)

xT

fene(z)

h g, 0(2)
f2 . Hfr—a (:C

fs
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Inference in Trees

Comments

» Products of small probabilities may lead to numerical instabilities

» Take the logarithm
In (maxp(x)) = maxIn p(x) (13)
x x

» Taking the logarithm replaces the products with sums (yields the
max-sum algorithm)
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Inference in Trees

Example: Pictorial Structures

» An Application: Human Body Pose Estimation
» Find Locations of Body Parts

[Fischler& Elschlager, 1973],[Felsenzwalb& Huttenlocher, 2000]

Schiele (MPII) Probabilistic Graphical Models



Inference in Trees

Pictorial Structures

» Each body part one variable (torso,head,etc)
(11 total)
» Each variable represented as tupel e.g.
Ytorso = (397 Y, s, 0)
» (z,y) image coordinates
» s scale
» 0 rotation of the part

» Discretize label space y (that is x,y, s, ) in
L states

» size of L e.g.
L ~ 500,000 = 125 x 125 x 4 x 8 =
Tpos. X ypos. X scales X orientations

[Felsenzwalb& Huttenlocher, 2000]
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Inference in Trees

Pictorial Structures

» Potentials:

Etorso(ytorsm X)a Erarm (yrarma X)a AR
» Pairwise potentials:

Etorso,rarm(ytorsoa yrarm)a ey

» k be the number of parts (11), L the size of
the label space (= 500, 000)

» Given new test image, max-product
algorithm complexity is O(kL?)

» For specific potentials reduction to O(kL)

[Felsenzwalb& Huttenlocher, 2000]
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Motivation for Part-Based Models
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Motivation for Part-Based Models
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Motivation for Part-Based Models
(also applicable to humans)
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One or Two Faces ?
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Part-Based Models

e Pictorial Structures [Fischler & Elschlager 1973]

» Model has two components

- parts (2D image fragments)

- structure (configuration of parts)
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The Role of Parts & Structure
Deformations [Perona, Caltech]
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Clutter [Perona, Caltech]
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Example
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Class of Object Models:
Part-Based Models / Pictorial Structures

e Pictorial Structures [Fischler & Elschlager 1973]

» Model has two components
- parts (2D image fragments)

- structure (configuration of parts)

MOUTH
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People Detection: partiSM

 Appearance of parts:
Implicit Shape Model (ISM)
[Leibe, Seemann & Schiele, CVPR 2005]
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People Detection: partiSM

 Appearance of parts:
Implicit Shape Model (ISM)
[Leibe, Seemann & Schiele, CVPR 2005]

e Part decomposition and inference:
Pictorial structures model

[Felzenszwalb & Huttenlocher, 1JCV 2005]

p(L|E) < p(E|L)p(L)

/

Body-part positions Image evidence
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Pictorial Structures Model

p(E|L)p(L)
p(L|E) x p(E|L)p(L
/ E) () (E|L)p(L)
Body-part positions Image evidence
e Two Components
»  Prior (capturing possible part configurations): p(L)

»  Likelihood of Parts (capturing part appearance): P(E|L)
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Human Body Pose Estimation

e well suited for graphical models:
» prior p(L)

models kinematic dependencies
between body parts

tree-structured prior (constraints between
body parts) lead to efficient inference

generalized distance transform
provide additional efficiency

» likelihood of body parts p(E|L)

models possible appearances of body parts

substantial improvements in recent years in
appearance modeling
and detection

find body parts =
body pose estimation

I
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Pictorial Structures:
Model Components [Andriluka,Roth,Schiele@cvpr09]

e Body is represented as flexible configuration of body parts

posterior over body poses

p(L|E) o< p(E£|L)p(L)

likelihood of observations / prior on body poses
g - likelihood | [ | )
orientation K of part N estimated parjt
sy | |- pose posteriors

\. J \\ J
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Human Body Pose Models - Prior p(L)
(may be called “cardboard models”)

* e.g. Felzenswalb & Huttenlocher - ijcv'05

* e.g.Andriluka, Roth & Schiele - cvpr'09,ijcv’11
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Pictorial Structures

e each body part one variable (torso, head, etc.)
» before: 11 parts
» in the following only 10 parts (head, torso, right/left upper/lower arm/leg)
e each variable represented as tuple
» here: ¥ = i = (24, Yi, 0, 54)

» with (x,y) image coordinates, s scale,
@ rotation of the part

e discretize label space (thatis x, y, s,0)
In L states
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Pictorial Structures

e potentials (= energies = factors)
» unaries for each body part (torso, head, ...)
» pairwise between connected body parts

* Dbody pose estimation

» max-product algorithm (MAP-estimate,
best overall configuration)

» sum-product algorithm (marginals of each part)

e complexity
» Kk be the number of body parts (e.g. k = 10)
» L the size of the label space (L e.g. several 100k)
» max-product algorithm in general: O( k L2)
» for specific pairwise potentials: O( k L)

iil p J | poplanckinsie Grgphical Models and Their Applications - December 2, 2020

18



Kinematic Tree Prior

* Notation
» from [Andriluka,Roth,Schiele@ijcv11]
» body configuration:

L={lo,l,...,In}

» each body part: [, = (jS,yiy 97;7 57;)

* Prior:

p(L) =p(lo) ]] pll)

(i,7)€G

» with p(lo) assumed uniform
» with p(li]lj) modeled using a Gaussian
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Kinematic Tree Prior

e Represent pairwise part relations
[Felzenszwalb & Huttenlocher, IJCV'05] (1)

p(L) =plo) ] plL;)

(i,7)€G

p(li|l;) = N(Tji (L) — Ti; (1) | ", B77)

part locations relative transformed
to the joint part locations
-50 ; -50
-40 -40
-30 -30
-20 N W%‘ -20
].2 ¢ -10 :\& v LA B -10 <L
0 + + —=s 0
® l 1of * / \§? 10
[ 1 20 { %&\ e 20 A .
30 ‘1 a0 30
40 40
5—050 O 5( 5_050 o 5(
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Kinematic Tree Prior

e Transformation T

( T; + s;d’t cosB; — szdzjf sin 6, \
Yi + Sid‘zgi sin 0; + Sid‘gf cos 0;
0;

\ /

» with li:(xiayiaghsi)

Tyi(l;) =

g J1
» and It = ( d;fz. > position of the joint between parts i and j,
dy represented in the coordinate system of part i
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Kinematic Tree Prior

e Prior parameters:  {T};, %"}
e Parameters of the prior are estimated with maximum likelihood

mean pose several independent samples
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Pictorial Structures:
Model Components [Andriluka,Roth,Schiele@cvpr09]

* Body is represented as flexible configuration of body parts

post\e‘rior over body poses
p(L|E) o« p(E|L)p(L)

likelihood of observations / prior on body poses

( )

estimated ~ part
pose  posteriors

i likelihood
orientation K

. n
. n
. n
. AN J
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Likelihood Model

e Assumption:
» evidence (image features) for each part independent of all other parts:

p(E|L) = Hp E|l;)

e assumption clearly not correct, but
» allows efficient computation
» works rather well in practice

» training data for different body
parts should cover “all” appearances @
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Likelihood Model

 Build on advances in object detection:

» powerful image descriptor: Shape Context
[Belongie et al., PAMI'02; Mikolajczyk&Schmid, PAMI'05]

» robust feature vector, here histogram of gradients (first derivatives)
» dense representation
» discriminative model: AdaBoost classifier for each body part

- Shape Context: 96 dimensions
(4 angular, 3 radial, 8 gradient
orientations)

- Feature Vector: concatenate the
descriptors inside part bounding box

- head: 4032 dimensions

- torso: 8448 dimensions
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Likelihood Model

e Part ‘likelihood’ derived from boosting score:

» ei(li) = feature of part i at ‘location’ |
»  weak classifiers (e.g. decision stump output):  h;(e;(l;))
» strong AdaBoost classifier score: Zai,tht(ei(li)) c [—1,+1]
» remember I; = (z;,y;,0;,8;) °
decision stump weight decision stump output
. a; the(e; (1
) = (Sl )
part location small constant to deal

with part occlusions
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Likelihood Model

Input image

Upper leg
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Likelihood Model

Input image
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Likelihood Model

Input image

Upper leg

iil p B | poplanckinsiue Graphical Models and Their Applications - December 2, 2020

informatik

29



Efficient Inference - first for Star Model

e Location L = {lp,ly,...,In}
defines where each part is positioned in image

* Dbest location given by 0 @
p(L|E) o p(L)p(E|L) O

N N
p(io) [ pslio) T pleilis ONENG
=1 1=0
:szuo H (eq|l;)
:Hp ‘ZO ez’l
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Efficient Inference - first for Star Model

* Dbest location given by MAP

mLaXp(L\E) = maXH Lillo)p(eilli))

— mLmZ (—Inp(li|lo) — Inp(e;|ls))

e consider case of 2 parts:

min (— Inp(eglly) — Inp(er|ly) — Inp(l1|lp))

l07l1

* rename things:
= min (mg(ly) + m1(l1) + d(l1,1p))

lO)ll

ifl p J | poplanckinsi Graphical Models and Their Applications - December 2, 2020
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Efficient Inference - first for Star Model

e assume d to have quadratic form, e.g.:
d(l1,lo) = [|ly = Ta(lo)|?

» T4 could be a simple offset of part 1 w.r.t. part O
» e.g. the case when p(li | lo) is Gaussian (see above)

* then  in (mo(ly) +ma(ly) + d(ly, 1))

lo,l1

= i (mollo) + min G (1) + (1, 1)

lo 1

» with the second term a generalized distance transform (DT)
algorithm exist to compute DT efficiently

» thus: _ Hll;n (mo(lo) + D1, (T1(lo)))

e finding best part configuration can be done
sequentially rather then simultaneously
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Distance Transform

e given points p € P onagrid (e.g. image) G

e distance transform associates to each location x € G the distance
to the nearest point p € P :

» Or equivalent:

. 1(q) = 0 ifgeP
DTp(x) = lé%l(l’;l {d(x,q) + 1(q)} 1) = oo otherwise
G G
example:

ol 1 d(z,q) = |z — (|

nE DTp(z) = min{|z —q| + 1(q)}

qeG

ep [Og ep [q
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Generalized Distance Transform

e replace binary function 1(q) with function f(q):

DTy(x) = min{d(z,q) + f()}

» we can assign ‘soft' membership of all grid elements to P
» f(q) is sampled on the entire grid G

°* in our case:
» fcorresponds to m4

» distance corresponds to d(ll, lo) — Hll — T (lo)H2

DT, (T1(lo)) = min {m1(l1) +d(l1,10) }
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Example - 2 Part Model of Motorbikes

O

e Model

» 2 parts (use both wheels),
simple translation between them
location given by x,y-position
in image

e 1. part unaries (log probability)
mo(lo) and m1(l1)

e 2. distance transform of m4(l1)

e 3. simply find minimum of sum:

min (mo(lo) + DTm1 (T1 (lo)))
Lo example from Dan Huttenlocher
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Example: Star Model of Motorbikes

e generalization example from Dan Huttenlocher

of 2-part case:

e part likelihood maps (log likelihood) - cost O(LN)

B i B0

e and their distance transforms - cost O(LN)

B T S
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Tree-Structured Models

e distance transform can be used for any tree-structured model

(1)
e 2 differences w.r.t. star-model @ QQ @ @

» relate position of parts to one another
using tree-structured recursion @ @
- solve using Viterbi algorithm (for MAP) Q @

- solve using forward-backward algorithm for part marginals
» parametrization of distance transform more involved

- we have transformation Tj; for each connected pair of parts
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Minimization over Tree Structures

* use dynamic programming to minimize
mmz —Inp(e;|l;) —Inp(li|l;)) = mlnz mi(l;) +dii (L, 15))

e can be expressed as a function for part palrs.

» Bc(lj) : cost of best location for part ¢ given location |; of part

e recursive equation in terms of children C; of part j passing recursive
message to parent node |

Bj(l;) = min | my; (1) + di(li, ;) + D Be(ly)

» for leaf node no children - so last term vanishes

» for root note lp no parent - so second term vanishes
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Efficient Algorithm for Trees

e MAP estimation algorithm

» tree structure allows to use Viterbi style dynamic programming
- for L locations and N parts: O(N L2) rather than O(LN)
- still typically slow as L is often in the order of 106 or 107

» coupling with distance transform for finding best pair-wise locations can be done
in linear time

- resulting method then O(NL)
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Relation to Max-Product (or Max-Sum) Rule

e Remember: variable to factor message: fl.w;(a‘)
poss@) = [T bgao) 1 ON T (e

ge{ne(@)\f} -
» when using -In(p(.)) rather than p(.) directly:

po—p(2) = Z pg—z ()

ge{ne(z)\f}

. ffyosz(2)

® |n our case:

» X corresponds to |,

» fcorresponds to dj

1, —d;; (1) = > pgny () =myi(ly) + Y Be(ly)

ge{nel;)\di; } cel
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Relation to Max-Product (or Max-Sum) Rule

e Remember: factor to variable message:
pise(z) = max ¢r(Xy) H ty— 7 (y)
€
ye{ne(f)\z}
» again when using -In(p(.)) rather than p(.) directly:

pf—az(z) = Eme\m —In(or(Xy)) + Z py—£(Y)
YR ye{ne(f)\=}

°* in our case:
» X corresponds to |, f corresponds to dj;
» for human kinematic tree prior: factor dijj has only two neighbors: |i and |;

Hd; ;—1; (lz) — Hlljl (_ ln(¢f (Xf)) + Hi;—d; (ZJ)>

B Hlll (dij (liv lj) T M —dy; (ZJ))
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Evaluation Scenarios

1. Human Pose Estimation
“‘People” dataset
[Ramanan, NIPS’06]

2. Upper-body Pose Estimation
“‘Buffy” dataset
[Ferrari et al., CVPR'08]

3. Pedestrian Detection
“TUD Pedestrians” dataset
[Andriluka et al., CVPR’08]
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Evaluation Scenarios

1. Human Pose Estimation
“People” dataset
[Ramanan, NIPS’'006]

2. Upper-body Pose Estimation
“‘Buffy” dataset
[Ferrari et al., CVPR'08]

3. Pedestrian Detection
“TUD Pedestrians” dataset
[Andriluka et al., CVPR’08]
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Part-Based Model: [Andriluka,Roth,Schiele@cvpr09]

2D Human Pose Estimation

Our model

[Ramanan,

NIPS08]

Our model

8/10

[Ramanan,

NIPS'08]
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Scenario 1: Quantitative Results [cvpr’09]

Upper Lower Upper

Method Torso
legs legs arms

Forearms Head Total

[Ramanan,
NIPS’06] 52 30 29 |7 |3 37 27
2nd parse

Our inference,
edge features from

[Ramanan,
NIPS’06]

63 48 37 26 20 45 37

Our part

detactors (SC) 29 12 8 3 4 40 14

Our prior, our
part detectors 8l 63 55 47 31 75 55
(SC)

Our prior, our
part detectors 78 58 54 44 31 66 52
(SIFT)
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Scenario 1: Model Parameters

e |n particular - how big should L be?

» remember - L depends on location (x,y), rotation and scale of parts
» table 3 @ ijcv’11:

Discretization step | Torso Upper leg Lower leg Upper arm Forearm Head | Total
8 px., 15° 84.9 67.8 60.5 63.4 454 | 48.3 48.3 | 322 2908 75.6 55.6
4 px., 15° 83.9 67.8 6146 | 659 468 | 53.2 46.3 | 32.7 32.7 76.1 56.7
2 px., 15° 83.9 69.8 61.5 66.3 46.8 | 50.7 49.8 | 33.7  33.7 76.1 57.2
2 px., 7.5° 84.9 68.3 62.0 66.3 50.7 | 53.2 50.2 | 37.0 31.2 78.5 58.2
1 px., 7.5° 84.9 69.3 63.4 | 683 488 | 51.7 50.2 | 36.6 34.2 | 79.0 58.6

» unfortunately: the larger L - the better normally the performance
» but: reasonable performance already with smallest L (8 px, 15°)
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Scenario 1: Difference in Inference Method

e comparison of sum-product and max-product rule
» table 6 @ ijcv'11

Method Torso Upper leg Lower leg Upper arm Forearm Head | Total
sum-product, 8 px., 15° 82.0 69.8 61.0 64.9 46.8 | 49.3  46.3 34.2 28.3 76.1 55.9
max-product, 8 px., 15° 79.0 64.4 57.0 59.0 415 | 424 41.5 | 322  30.7 69.8 51.8
sum-product, 1 px., 7.5° 84.9 69.3 63.4 | 68.3 48.8 51.7 503 | 36.6 34.2 | 79.0 58.6
max-product, 1 px., 7.5° 83.9 70.2 654 | 678 50.7 | 53.7 502 | 36.6 336 75.1 58.7
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Evaluation Scenarios

1. Human Pose Estimation
“‘People” dataset
[Ramanan, NIPS’06]

2. Upper-body Pose Estimation
“‘Buffy” dataset
[Ferrari et al., CVPR’08]

3. Pedestrian Detection
“TUD Pedestrians” dataset
[Andriluka et al., CVPR’08]
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Estimated upper-body poses
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Quantitative Results

Method Torso Upper arm | Lower arm Head Total
[Ferrari et al. CVPR’08] - - - - 57.9
detectors only 18.9 6.8 3.1 47.2 14.3

full model 90.7 79.3 41.2 95.9 71.3
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- generic model

- prior and appearance learned on the
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-50
l l I I max planck institut
informatik
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Quantitative Results

Method Torso Upper arm | Lower arm Head Total
[Ferrari et al. CVPR’08] - - - - 57.9
detectors only 18.9 6.8 3.1 47.2 14.3

full model 90.7 79.3 41.2 95.9 71.3
[Ferrari et aIkVPR’O9] - - - - 72.2

\

-60

—40f

-201

ot
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- generic model

- prior and appearance learned on the

“People” dataset
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Quantitative Results

Method Torso Upper arm | Lower arm Head Total

[Ferrari et al. CVPR’08] - - - - 57.9
detectors only 18.9 6.8 3.1 47.2 14.3

full model 90.7 79.3 41.2 95.9 71.3

[Ferrari et al. CVPR’09] - - - - 72.2
full model, Buffy pose prior 90.7 81.35 46.5 95.5 73.5

;

-100

-50

50

100

-50 0 50

- specialized upper body prior

- appearance learned on the “People”

dataset

l l I I max planck institut
informatik
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Typical Failure Cases

Foreshortening Part occlusion Detections on other
body parts
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Evaluation Scenarios

1. Human Pose Estimation
“People” dataset
[Ramanan, NIPS’006]

2. Upper-body Pose Estimation
“‘Buffy” dataset
[Ferrari et al., CVPR’08]

3. Pedestrian Detection
“TUD Pedestrians” dataset
[Andriluka et al., CVPR’08]
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People Detection: Results

Comparison with state-of-the art in people detection

. [Andriluka et al., CVPR’08]

our model, 8 parts, tree prior
our model, 8 parts, star prior
[Andriluka et al., CVPR’08] i
HOG (INRIA Training Set)

0.8

0 01 02 03 04 05 06 0.7 08 09 1.0
1-precision

This work
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Limitations of Kinematic Trees

* represent only relationships between connected parts
e coordination (or relation) between limbs not encoded

» critical e.g. for balance and many activities

» example: .
these two configurations i, é*
are equally probable Y A
under tree model: ' \ 4'

image from Dan Huttenlocher
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Beyond Kinematic Tree Models

e non-tree models

» larger cliques, latent variables
- introduce additional variable corresponding to common factor of limb coordination
- does not correspond to any part
- dependencies e.g. among part orientations

»  still relatively efficient inference for small clique

picture from Dan Huttenlocher
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Beyond Kinematic Tree Models

e introduce additional variable corresponding to common factor
(such as particular viewpoint or pose)

» consistency between limb positions O

can be modeled, not captured by E o ,Lh
kKinematic tree model | e of d CP f'
» rather than directly connecting A O,

—
-
~

limbs which create large cliques

0 | n
| ol {1
; f T
e sample result B v\
L«ﬂ b |
& L) ~@
AES s L - i!
Ground Truth Latent Tree Model Larger Clique
Variable Using LBP

Model (Pairwise)
example from Dan Huttenlocher
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Beyond Kinematic Tree Models O

e Repulsive Factor:
» down-weight configurations that are overlapping: @ e

oy oexp(=B) : ToU(l;1l;) > 6
i by) = { 1 ; otherwise Q - @

» loU: Intersection over Union
(measures overlap between parts)

» here only between
upper/lower legs

» note: we use loopy
belief propagation instead
of exact inference

e Results: (table 5 @ ijcv11)

Method Torso Upper leg Lower leg Upper arm Forearm Head | Total

tree model 84.9 69.3 634 | 683 488 | 51.7 50.2 | 36.6 34.2 | 79.0 58.6

tree model + repulsive factor 84.9 71.7 668 | 71.7 54.2 | 51.2 50.2 | 36.1 34.2 | 79.5 60.1
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