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Image Processing & Stereo

 Today we shift gears and look at another problem domain:
Image processing

e 3 applications of interest
» Image denoising.
» Image inpainting.
» Stereo

* Acknowledgement
» Majority of Slides (adapted) from Stefan Roth @ TU Darmstadt
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Image Denoising

 Essentially all digital images exhibit image noise to some degree.
» Even high quality images contain some noise.
» Really noisy images may look like they are dominated by noise.

 |mage noise is both:
» Visually disturbing for the human viewer.
» Distracting for vision algorithms.

 Image denoising aims at removing or reducing the amount of noise
in the image.
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Image Noise

 Image noise is a very common phenomenon that can come from a
variety of sources:

» Shot noise or photon noise due to the stochastic nature of the photons arriving at
the sensor.

- cameras actually count photons!
» Thermal noise (“fake” photon detections).
» Processing noise within CMOS or CCD, or in camera electronics.

» If we use “analog” film, there are physical particles of a finite size that cause noise
in a digital scan.
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Shot Noise

e i

Simulated shot noise (Poisson process) From Wikipedia
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Thermal Noise or “Dark Noise”

62 minute exposure with no incident light

From Jeff Medkeff (photo.net)
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Bias Noise from Amplifiers

High ISO exposure (3200)

From Jeff Medkeff (photo.net)

iil p J | oyplanckinsit - Graphical Models and Their Applications - December 9, 2020 7



Noise in Real Digital Photographs

e Combination of many different noise sources:

‘sp;’i

From dcresource.com
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Film Grain

* If we make a digital scan of a film, we get noise from the small silver
particles on the film strip:

 d t
&

The Criterion Collect
Das Testament des Dr. Mabuse, 1933
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How do we remove image noise?

e C(lassical techniques:
» Linear filtering, e.g. Gauss filtering.
» Median filtering
»  Wiener filtering
» Etc.

e Modern techniques:
» PDE-based techniques
» Wavelet techniques
» MRF-based techniques (application of graphical models :)
» Deep neural networks
» Etc.
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Linear Filtering

* The simplest idea is to use a Gaussian filter:
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Median Filter

e Replace each pixel by the median of the pixel values in a window
around it:

Sharper edges, but still blurred...

Wt et Salinge

7w = 17,7
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How do we improve on this?

* We need denoising techniques that better preserve boundaries in
Images and do not blur across them.

 There is a whole host of modern denoising techniques:
» We would need a whole semester to go through the important ones in detail.

» So we will do the area of denoising some major injustice and restrict ourselves to
what we can easily understand with what we have learned so far.
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Denoising as Probabilistic Inference

 We formulate the problem of image denoising in a Bayesian fashion
as a problem of probabilistic inference.

 For that we model denoising using a suitable posterior distribution:

p(true image|noisy image) = p(T|N)

e |dea:
» derive a graphical model that models this posterior appropriately

» use standard inference techniques (such as sum-product rule or max-product rule)
to estimate the true image that we want to recover
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Modeling the Posterior

e For this, we can apply Bayes’ rule and obtain:

likelihood of noisy given true image image prior for all true images

(observation model) ™\ j
g _ PNIT) ()

(N)
/ N

posterior normalization term (constant)
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Modeling the Likelihood p(N|T)

e The likelihood expresses a model of the observation:

» Given the true, noise free image T, we assess how likely it is to observe a
particular noisy image N.

» If we wanted to model particular real noise phenomena, we could model the
likelihood based on real physical properties of the world.

» Here, we will simplify things and only use a simple, generic noise model.

» Nevertheless, our formulation allows us to easily adapt the noise model without
having to change everything...
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Modeling the Likelihood p(N|T)

e Simplification: assume that the noise at one pixel is independent of
the others.

p(N|T) = Hp Nij|T;.;)

» often reasonable assumption, for example since sites of a CCD sensor are
relatively independent.

* Then we will assume that the noise at each pixel is additive and
Gaussian distributed:

p(N; ;|T;.5) = N(N; j — T; 4]0, 07)

. 2 :
» The variance 0 controls the amount of noise.
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Gaussian Image Likelihood p(N|T)

e We can thus write the Gaussian image likelihood as:
p(N|T) = HN i.j — Ti,410,0%)

* While this may seem a bit hacky, it works well in many applications.
» Itis suboptimal when the noise is not really independent,
such as in some high definition (HD) images.

» It also is suboptimal when the noise is non-additive, or not really Gaussian,
for example as with film grain noise.
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Modeling the Prior p(T)

e How do we model the prior distribution of true images?

e What does that even mean?

» We want the prior to describe how probabile it is (a-priori) to have a particular true
image among the set of all possible images.

probable /

improbable
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Natural Images

 What distinguishes “natural” images from “fake” ones?

» We can take a large database of natural images and study them.
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Simple Observation

* Nearby pixels often have similar intensity:

BT I-‘I A
- q # i .|-|I'|

L H‘: T '.!-:':. '}

el

e But sometimes there are large intensity changes.
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Statistics of Natural Images

e Compute the image derivative of all images in an image database
and plot a histogram:

10 - - - 10°

107} 107}

107} 107

-6 -6

107} 107 j
1 M | A P | M L L

—200  -100 0 100 200 —200  -100 0 100 200
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empirical histogram - - - fit with a Gaussian
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Statistics of Natural Images

e Compute the image derivative of all images in an image database
and plot a histogram:

0

10 - - - 10’

-2

10 |

-2

10 |

10 |

' ' ' N\
e Sharp peak at zero: Neighboring pixels most often
have identical intensities.
* Heavy tails: Sometimes, there are strong intensity
\ differences due to discontinuities in the image. )
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Modeling the prior »(T)

 The prior models our a-priori assumption about images
» here we want to model the statistics of natural images
» more specifically the local neighborhood statistics of each pixel:
- nearby pixels have often similar intensity

- but in the presence of boundaries the intensity difference can be large

» let’s formulate this as a graphical model...
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Modeling Compatibilities

* Pixel grid:

Let's assume that we want
to model how compatible
or consistent a pixel is with
its 4 nearest neighbors.
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Modeling Compatibilities

e Pixel grid (as nodes of a graph):

Denote this by drawing
a line (edge) between
two pixels (nodes).




Modeling Compatibilities

e Pixel grid (as nodes of a graph):

We do this for all pixels.
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Markov Random Fields

 This is an undirected graphical model, or
more specifically a Markov random field.

» Each edge (in this particular graph) corresponds
to a term in the (image) prior that models how
compatible two neighboring pixels are in
terms of their intensities:

compatibility of
vertical neighbors

/

p(T) =WV fu(Ti Tiv15) - fv (i, Th41)

compatibility of
horizontal neighbors

\product over all the pixels
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Modeling the Potentials

e What remains is to model the potentials
(or compatibility functions), e.g.:

fH( 1,7 —I—l,j)

e (Gaussian distributions are inappropriate:
» They do not match the statistics of natural images well.
» They would lead to blurred discontinuities.

* We need discontinuity-preserving potentials:

» One possibility: Student-t distribution.

1 o
fu(Tij, Tiv1,5) = <1+ 52 (Ti,j—TiH,j)Q) ]

00 200 -100 200 300

log- denS|ty
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MRF Model of the (complete) Posterior

* We can now put the likelihood and the prior together in a single
MRF model:

‘ T. . Pixels of the true image
b2 (hidden)

@ |V, . pixels of the noisy image
J
(observed)

Edges representing
the likelihood

""""" Edges representing
: the prior

- Hp(Ni,ﬂTi,j) HfH(Ti,j7Ti—|—1,j) v (L5, T i41)

2] 1]
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Denoising as Probabilistic Inference

* Probabilistic inference generally means one of three things

» computing the maximum of the posterior distribution - here p(T|N)
that is computing the state that is the most probable given our observations
(maximum a-posteriori (MAP) estimation)

» computing expectations over the posterior distribution, such as the mean of the
posterior

» computing marginal distributions

e Visualization of the difference between
those cases: 045 11 -

» assume we have the following posterior distribution:
in particular - the posterior may be multi-modal

Maximum (MAP estimate)

Mean
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Probabilistic Inference

 Methods that can be used for MAP estimation
» continuous optimization methods
» graph-based methods (graph cuts)
» belief propagation: in particular max-product algorithm
- however: we have a graph with cycles (=loopy) !
- no convergence / correctness guarantees !

- in practice “loopy belief propagation” obtains good results

* Method that can be used for expectations and marginal distributions

» belief propagation: in particular sum-product algorithm

- same notes as above - we have a cyclic graph - loopy belief propagation !
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Denoising as Inference - Continuous Optimization

* The most straightforward idea for maximizing the posterior is to
apply well-known continuous optimization techniques.

e Especially gradient techniques have found widespread use, e.g.:
» Simple gradient ascent, also called hill-climbing.
» Conjugate gradient methods.
» And many more.

* Since the posterior may be multi-modal, this will give us a local
optimum and not necessarily the global optimum.
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Gradient Ascent

* lteratively maximize a function f(x) :
» Initialize somewhere: J}(O)
» Compute the derivative: _f(a;) — f’(x)

» Take a step in the direction
of the derivative:

f 0.1

step size

0.15f - S - — e

» Repeat... 0.05

R I CO R O N
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Gradient Ascent

e We can do the same in multiple dimensions:

gradient
* Issues: 045}
» How to initialize?
- bad initialization with result 0.1
in “wrong” local optimum '
» How to choose the
step size 1) ? 0.05
- the wrong one can lead to :
instabilities or slow convergence. 0 = :
~0.05
-4 -2 0 2 4
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Image Denoising with Continuous Optimization

 We want to maximize the posterior:

p(T|N) o p(N|T)p(T)

equivalently we can maximize the log-posterior:

» numerically much more stable and often more convenient

log p(T|N) = log p(N|T) + log p(T) + const.

for gradient ascent we need the partial derivatives w.r.t. to a
paé;ticular pixel 1} 3 5

— {1 TIN)} = — 11 N|T ] T
T {log p(T|N)} T {logp(N|T)} + T {logp(T)}

in the following we look at the two derivatives separately
» first - the image prior and

» second - the likelihood.
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Image Denoising with Continuous Optimization

e Let us first look at the log-prior:

log p(T)

— 1Og _HfH 1,79 —|—1J) fV( 1,99 a]+1)

Zlog fu(Tij, Tita,5) +log fv (155, T; j+1) + const

i,]
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Gradient of the Log-Prior

e Calculate the partial derivative w.r.t. a particular pixel 7} ; :

0 0

0Ty, ogp(T) 8Tk,lizjong( g+ Tiv1,5) +10g fv(Ti 5, T j1) + cons

o 0
— Z log fu (15 i, Tiv1.5) + log fv (T, T; j41)
o GTM

e Only the 4 terms from the 4 neighbors remain:

+810f(TT )+alof(T Ty.1)
0T} &V Lk, Lki+1 T} g fv(Tki—1,Tk,
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Gradient of the Log-Prior

e Almost there... simply apply the chain rule:

5
%, g1 JH (Lt Tht1,1)
lo 11,1, — :
0T}, 81 (Tt Terr) fir (T, Tiot1.1)

e |ast thing: calculate derivative of the compatibility function
(or potential function)

0 %, 1 ¢
Ty, T — 14+ —(Tpy — Thy1.i)?
3Tk,sz( kil Lht11) T} ( + 202( k.l kt+1.5) )
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Gradient of the Log-Likelihood

e Letus now look at the log-likelihood

log p(N|T) = log Hp(Ni,j!Ti,j)

— Zlog]\/ i, i,j‘070'2)

e the partial derivative of the log-likelinood is thus simply:

40



Probabilistic Inference

 Methods that can be used for MAP estimation
» continuous optimization methods
» graph-based methods (graph cuts)
» belief propagation: in particular max-product algorithm
- however: we have a graph with cycles (=loopy) !
- no convergence / correctness guarantee !

- in practice “loopy belief propagation” obtains good results

* Method that can be used for expectations and marginal distributions

» belief propagation: in particular sum-product algorithm

- same notes as above - we have a cyclic graph - loopy belief propagation !
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Loopy Belief Propagation

e Empirical Observation: [Murphy,Weiss,Jordan@uai’99]
» even for graphs with cycles: simply apply belief propagation (BP)...

» observation: BP often gives good results even for graphs with cycles
(if it converges)

» issues
- may not converge !
- cycling error - old information is mistaken as new

- convergence error - unlike in a tree, neighbors need not be independent.
Loopy BP treats them as if they were

» not really well understood under which conditions BP works well for cyclic
graphs...
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Loopy Belief Propagation

 Loopy BP for Image Denoising: [Lan,Roth,Huttenlocher,Black@eccv’06]
» different update schemes: synchronous, random, ...
» synchronous message updates: all messages are updated simultaneously
» checkerboard-like update: alternate updates between neighbors

» best results (image denoising) with random updates: at each step, messages are
updated with fixed probability

e Some Results from the above paper:

original noisy result from image denoising with loopy BP
with different potentials (left: Student t-distribution)
B 3 - r’i ',‘ . ? r,—' i 8 -

_'_? L T

et e
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Denoising Results

'‘Nannnn

original image

|

noisy image,
0=20

PSNR 22.49dB
SSIM 0.528

K|
T

¥
i |
' |
11 | | 1

I

denoised using
gradient ascent

PSNR 27.60dB
SSIM 0.810

l l I I max planck institut
informatik
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Denoising Results

g1 -5 £15
g i | -
H . ':'-:

.....

'NEEREE

1
14

il

l
( n n mgn [ \
* Very sharp discontinuities. No blurring across
boundaries.
* Noise is removed quite well nonetheless.
\_ J
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Denoising Results

I&i

ﬁ

Because the noisy image is based on synthetic noise,
we can measure the performance:

PSNR: Peak signal-to-noise ratio pPSNE = 2010g,, (
SSIM [Wang et al., 04]. Perceptual similarity

MAXI>
VMSE

e (ives an estimate of how humans would assess the
quality of the image.

original image noisy image, denoised using
0=20 gradient ascent
PSNR 22.49dB PSNR 27.60dB

SSIM 0.528 SSIM 0.810
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Is this the end of the story?

 No, natural images have many complex properties that we have not
modeled.

» For example, they have complex structural properties that are not modeled with a
simple MRF based on a 4-connected grid.

» Natural images have scale-invariant statistics, our model does not.
» Responses to random linear filters are heavy-tailed.
» Etc.

10 . . . . ' 10

10

10°

l R BN
=200 =100 0 100 200 =200 =100 0 100 200

Derivative histogram on 4 Histograms of random
spatial scales (zero-mean) linear filters
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Image Processing & Stereo

 Today we shift gears and look at another problem domain:
Image processing

e 3 applications of interest
» Image denoising.
» Image inpainting.
» Stereo

* Acknowledgement
» Majority of Slides (adapted) from Stefan Roth @ TU Darmstadt
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Image Inpainting

* In image inpainting the goal in to fill in a “missing” part of an image:

» Restoration of old photographs, e.g. scratch removal...

old pﬁotograph user-supplled mask
[Bertalmio et al., 2000]
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Image Inpainting

 There are many different ways to do inpainting:
» PDEs: [Bertalmio et al, 2000], ...
» Exemplar-based: [Criminisi et al., 2003], ...
» Deep neural networks

» And many more.

e But, we can also apply what we already know:

» We model the problem in a Bayesian fashion, where we regard the inpainted
image as the true image. We are given the corrupted image with missing pixels.

p(true image|corrupted image) = p(T|C)

» Then we apply probabilistic inference...
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Image Inpainting

e We apply Bayes' rule:

p(C|T) - p(T)
p(C)

» | know this may be boring, but this general approach really is this versatile...

p(T|C) =

* Modeling the prior:
» Important observation: This is the very same prior that we use for denoising!
- We can re-use the prior model from denoising here.

» Once we have a good probabilistic model of images,
we can use it in many applications !
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Inpainting Likelihood

 Again, we assume independence of the pixels:
p(C|T) = Hp i|Tij)

e Desiderata:

» We want to keep all known pixels fixed.

» For all unknown pixels all intensities should be equally likely.
e Simple likelihood model:

o Ci | Tij) _ const, C’q;.j 1s corrupted
0(13; — Cij), C4; is not corrupted
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MRF Model of the Posterior

 The posterior for inpainting has the same graphical model structure
as the one for denoising.

e Nonetheless, the potentials

representing the likelihood
are different. : : : D
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Inpainting Results

“Corrupted” image Inpainted image obtained
(artificially corrupted for using gradient ascent
benchmarking)
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Other Inpainting Results

From [Bertalmio et al., 2000]
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Interim Summary

e Many image processing problems can be formulated as problems of
probabilistic inference.

» This is only one of many different ways of approaching these problems!

e Advantages:

» Unified approach to many different problems, in which important components
(prior) may be re-used.

» Isis relatively easy to understand what the various parts do.
» Good application performance, despite generality.

 Disadvantages:
» Computationally often expensive.
» Special purpose techniques often have somewhat better application performance.
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Image Processing & Stereo

e Last week we started to shift gears and look at another problem
domain: Image processing

e 3 applications of interest
» Image denoising.
» Image inpainting.
» Stereo

* Acknowledgement
» Majority of Slides (adapted) from Stefan Roth @ TU Darmstadt
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What is Stereo (Vision)?

e Stereo vision, stereopsis, or short stereo is the perception or
measurement of depth from two projections.

» The human visual system heavily relies on stereo vision:
- Our eyes give two slightly shifted projections of the scene.

- But only relative depth can be judged accurately by humans.
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Binocular Stereo

N

image plane

Y7

camera
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Binocular Stereo

Right
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Binocular Stereo
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Binocular Stereo

.
.
.
.
.
3
.
.
- &
:
.
;
:
K “
() )
=
- —
= =

binocular disparity
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Stereo Geometry

left right
camera camera
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Stereo Geometry

Disparity d
= difference in image position

\

left right —] |-
camera camera d
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Stereo Geometry

Disparity d
= difference in image position

\

left right —| |

Ccamera Camera d
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Stereo Geometry

B: Baseline between
cameras

f: focal length of
cameras

b \
LN

left right —| |

Ccamera Camera d
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Stereo Geometry

B B: Baseline between cameras
A

d
f

f. focal length of cameras

1
Disparity d = fB—
parity / -

\
NN

left right —| |

Ccamera Camera d

1
Depth Z = fBE
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Binocular Disparity

Z(x,y)is depth at pixel (z,y)
d(x,y) is disparity \\J

Estimate:

Z(CIZ,y) —

S
o .
1
- .
- i
¢

== =7 _ Right

¢ )

Search for best match

[Black]
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Special case: Binocular setup

Left Right

Do | need to consider this
region?

* We can answer this now:
» No, we do not have to consider this or similar regions.
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Assumption for the Rest of the Lecture:
Binocular Stereo

the cameras and estimated
disparity, recover depth in
the scene

\*J From known geometry of

2 5 . Rign

—
H—l

binocular disparity
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Correspondence Using Correlation

scanline correlation L/)\/\/\

= —>

disparity

[Black]

inl p B | s slaask it Graphical Models and Their Applications - December 9, 2020 71

informatik



Stereo matching with Dynamic Programming

e Results:

 Pretty good results already
e But no consistency between scanlines!
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Today

e How can we impose regularity constraints that impose
global consistency?

» This is also called regularization.

e Goals:
» We want consistency within and between scanlines.

» We want a model of consistency that is well supported by the properties of the
real world, i.e. by real scene depth.

» We want a model that is computationally manageable.

» We would like to find a model of consistency that does not only work for stereo,
but also for other applications.

 Approach here:

» Markov random fields
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What is Consistency?

e Before we can do anything, we need to ask
ourselves what it means to have spatial

consistency or regularity.
 Let's look at some data to get inspiration:
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What can we conclude from such data?

* |t helps us see more clearly what we know from everyday life:

» The depth of nearby points in the scene is (almost) the same.

» But sometimes, there are depth discontinuities, for example at object boundaries.
* |n other terms:

» We (as humans) have a-priori knowledge about how 3D scenes typically look like,
even if we have never seen the particular scene in question before.

e How do we exploit this a-priori knowledge for computer vision?
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Vision as Probabilistic Inference

 Before we discussed how to use Markov random fields
» for image denoising, image inpainting.
» probabilistic inference with continuous optimization / loopy belief propagation.
» all these problems are underconstrained and require prior knowledge to be solved
» We almost always have to deal with uncertain (“noisy”) data.

e Let’'s aim to use the same approach for stereo...

» we also have an underconstrained problem that requires prior knowledge to be
solved

» we also have uncertain data (matching is not perfect)
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Stereo using Probabilistic Methods

 Model using posterior distribution:

| Unce mage Uncertain state of the
measurements world

\ We're given

Want to know
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Stereo using Probabilistic Methods

 Model using posterior distribution:

» Describe the probability of the state of the world given the image measurements.

 How do we find the “best” state of the world?

» Using probabilistic inference, e.g. we maximize w.r.t. state I

— ST P — \ ( \

!
- z N
Uncertain image “ Uncertain state of the
measurements world

N 7

p(state|images)
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Modeling the Posterior  p(z|y) = p(state[images)

e How do we model the posterior?

» This can be done directly (discriminative approaches), but we will not do this now
as it is more difficult.

* Instead, we simplify the modeling problem by applying Bayes' rule
(generative approach):

likelihood

(observation model) prior

N\ j
p(images|state) - p(state)

p(state|images) =

/. p(images)
posterior normalization term (constant)
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Modeling the Likelihood p(y|z) = p(images|state)

e Again: The likelihood p(y|x) is the observation model that
describes how we obtained the image measurements, given a
particular state of the world.

» In stereo, the likelihood describes how consistent the measure image pair is,
given the disparity (the “state of the world”):

p(I°,1'|d)

»  We typically assume conditional independence of the pixels, that is given the
disparity, we assume that the intensity of the different pixels sites is independent.

p(I’,T|d) = Hp i I ld)

Hp 0T dy)
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Modeling the Likelihood

p(y|x) = p(images|state)

e Asimple model:

» We test how well the corresponding pixels match.

Hp 0T dy)
H Flli; = I(l’i—dij),j)

p(1°,1'|d)

iil p B | poplanckinsiue - Graphical Models and Their Applications - December 9, 2020

81



Modeling the Likelihood p(y|z) = p(images|state)

» f(+)is a probabilistic model of how well two pixels match that are related by the
local disparity.

- How do we choose it?
- We could just assume that it is Gaussian, no? Sure.

P(Ioall|d) = Hf(lz'o,j — ](17;—dij),j) — HN(I?(:),j — I(li—dij),j; 0, 02)
1,7 1,J
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Modeling the Prior p(z) = p(state)

e Again: The prior p(x)models our a-priori assumptions about the
world, or the state of the world.

» In stereo the prior models how probable it is to have a certain disparity map.
» We wanted to model that nearby pixels have similar disparities.
» But we also need to allow for depth / disparity discontinuities.

e Let's formalize such a prior probability mathematically

» again using a Markov random field model
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Modeling Compatibilities

e Pixel grid (as nodes of a graph):

Let's assume that we want
to model how compatible
or consistent a pixel is with
its 4 nearest neighbors.

Denote this by drawing
a line (edge) between
two pixels (nodes).

We do this for all pixels.
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Markov Random Fields

 We have again a Markov random field.

» Each edge (in this particular graph) corresponds
to a term in the prior that models how compatible
two neighboring pixels are in terms of their disparity:

compatibility of
vertical neighbor

/

p(d) =l fa(dij,dit1,5) - fv(dsj,diji1)

N
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Potts Model

 Define very simple compatibility functions:

1 1
fH(di,j,diJrl,j) — Z(T) CXp {fé(di,jvdi—kl,j)}

* Kronecker delta: 1. a=2b
)

é(a,b) = {O, a4 b

 This prior:
» Prefers to have the same disparities at neighboring pixels.
» But allows for disparity discontinuities with no penalty for large discontinuities.

» Is called a Potts model.

- Originally from statistical physics (magnetism)
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Stereo with Markov Random Fields

 \We are now ready to define a probabilistic model for stereo:

» Define an observation model, for example using the Gaussian likelihood we
discussed.

» Define a simple prior that enforces our intuitive prior knowledge about disparities /
scene depth. This can, for example, be done using a Potts model.

» Then we can do stereo reconstruction by doing inference with this model.

Example result
(from Tappen & Freeman):
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Stereo with Markov Random Fields

e Summary so far:
» We have defined the stereo problem using probabilistic models.

» We were able to integrate prior knowledge about the disparity maps using a
Markov random field based prior.

» We can solve for the disparity map using probabilistic inference.

 Advantages over window-based matching approach:
» Clearly much better results.
» The prior allows us to have a “window” size of 1 for matching.
» But of course, there a problems...

- 1. Modeling problems - does the model capture “everything”?

- 2. Inference problems - is inference computationally efficient in these models?
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Markov Random Fields for Stereo

e Markov property:

» Given its 4 neighboring
pixels, a pixel is independent
of all other pixels!

 This is a pretty reasonable
assumption, but it is
oversimplifyingthe =
problem somewhat.

» Circumventingthisisa = @Y QY OF O Y
research problem!
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Other problems of the approach so far

* The simple MRF model does not properly deal with occluded and
disoccluded areas.

» Can introduce occlusion reasoning.

* We need to properly tune the parameters:

Different parameters of the prior lead to different solutions

» Hand tuning is tedious or even too hard to do when there are many parameters.
» We can instead learn the parameters.

Images from [Zhang & Seitz]
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Did we meet our goals?

* We wanted consistency within and between scanlines.
» Yes, the MRF prior provides that.

* We wanted a model of consistency that is well supported by the
properties of the real world, i.e. by real scene depth.

» The Markov assumption behind our model is a restriction, but still quite
reasonable.

» The Potts model is restrictive, but also very simple to deal with. Better models for
the factors are not that hard to devise.

 \We wanted to find a model of consistency that not only works for
stereo, but also for other applications.

» These MRF priors are very generic. We have seen this already.
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