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Overview Today’s Lecture

Semantic Image Segmentation as a Dense Labeling Problem

Conditional Random Field (CRF) Models
» vs. Markov Random Field Models

Dense CRF Model
Integration of Deep Learning and CRFs

Suggested Readings:

» [1] Efficient Inference in Fully Contected CRFs with Gaussian Edge Potential, Philipp Krahenbuhl
and Vladlen Koltun, NeurlPS 2011 (https://arxiv.org/abs/1210.5644)

» [2] Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation, Arnab,
Zheng, et al., IEEE Sig. Proc. Magazine, 2018
(https://www.robots.ox.ac.uk/~tva/publications/2017/CRFMeetCNN4SemanticSegmentation. pdf)
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Pictorial Overview of Today's Lecture
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image credit: paper [2]
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Semantic Image Segmentation

slide credit: Philipp Krahenbunhl
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Semantic Image Segmentation:
Pixel-wise vs. Instance-Level

slide credit: Philipp Krahenbuhl
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Dense Labeling Problems

bottle

bottle |

.
car Cir

J
* pixel-wise labeling

o spatial coherence

slide credit: Philipp Krahenbuhl
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Semantic Image Segmentation (Pixel-wise)

slide credit: Philipp Krahenbuhl
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Classification

* Train classifier (l)
e for each class |

 TextonBoost [1]

[1] TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling
Texture, Layout, and Context, Shotton et.al. 2009 8
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Classification

* Train classifier y(l)
« for each class |
« TextonBoost [1]

* Pixels independent

* noisy classification

[1] TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling
Texture, Layout, and Context, Shotton et.al. 2009 8

slide credit: Philipp Krahenbuhl
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Classification

* Train classifier Y(l)
* for each class |
 TextonBoost [1]

* Pixels independent

* noisy classification

e Large regional context

* inaccurate around

boundaries

[1] TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling
Texture, Layout, and Context, Shotton et.al. 2009 8
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Random Field Models

slide credit: Philipp Krahenbuhl
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Random Field Models

FE(X) = Zw.i(X?:) oh Z Vi (X5, X5)

unary term pairwise term

slide credit: Philipp Krahenbuhl
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Random Field Models

FE(X) = Z?’D'i(X’f’) oh Z Vi (X5, X5)

/ o \

unary term pairwise term

* Probabilistic interpretation P(X) = %exp(—E(X))

slide credit: Philipp Krahenbuhl
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Random Field Models

B(X) =) () + ) $i(Xi, X;)

/ - \

unary term pairwise term

* Probabilistic interpretation P(X) = %exp(—E(X))

 MAP inference |
 most likely labeling
* lowest energy

slide credit: Philipp Krahenbuhl
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Energy vs. Probability
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slide adapted from: Stefan Roth
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Energy vs. Probability
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Cost or energy Probability density
slide adapted from: Stefan Roth
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Energy vs. Probability

0.01

0.008f

Smaller penalty / higher o
probability for outliers _ oes /A

: : : c\ -
Cost or energy Probability density

slide adapted from: Stefan Roth
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Energy vs. Probability

0.01
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Cost or energy Probability density

slide adapted from: Stefan Roth
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Energy vs. Probability
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slide adapted from: Stefan Roth

Probabilistic Graphical Models and Their Applications | Bernt Schiele 19



MRF Model of the (complete) Posterior for Image Denoising

e We can put the likelihood and the prior together in a single MRF model:

‘ T. . pixels of the true image
vsJ (hidden)

o N ; pixels of the noisy image
........ (Observed)

Edges representing
the likelihood

Edges representing
the prior

il 7Ti.5) HfH igs Lit1,5) - fv(Tig, Ti i)

\\

%J'
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More Generally

4
>

>
4

p]X)p(X)

p(X|I) = o)

x p(I|X)p(X)

The quantity of interest: X = Output
true pixel values in image denoising
semantic labels in image segmentation

The input / observation: | = Image
image denoising: | = noisy image
semantic segmentation: | = image

l\g; ini p I Probabilistic Graphical Models and Their Applications | Bernt Schiele
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More Generally: Factorization Given the particular MRF Graph

quantities of interest (hidden)

pixels of the image (observed)

Edges representing

the likelihood
Edges representing
the prior
p(X|I) o< p(I|X)p HpI\X 1] »(x: X;)
ajENél
slide adapted from: Stefan Roth

/;
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More Generally

e Goal of Inference often MAP (Maximum A Posteriori estimation):
arg max p(X|I) = arg max (p({|X)p(X))
= argmin (—log p(I|X) — logp(X))
e For our MRF:

» minimize the following "energy":
E(X) = —logp(I|X) — log p(X)
= — Zlogp(lz"Xi) - ) logp(X;, X))

1,7€Ny
_§¢1X’I+§ wszzaX)
1,JEN4
unary terms pairwise terms
f’;
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More Generally: Factorization Given the particular MRF Graph

quantities of interest (hidden)

pixels of the image (observed)

Edges representing

the likelihood
Edges representing
the prior
E(X) = Z%’(Xz‘u) + Z Vi, (Xi, X5)
i 1,]ENy
unary terms pairwise terms

slide adapted from: Stefan Roth
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CRF (Conditional Random Field):
Enhance Graphical Model with Additional Dependencies

' X; quantities of interest (hidden)

. I pixels of the image (observed)

sz XD+ Y (X, X0)

1,JEN4
unary terms pairwise terms
slide adapted from: Stefan Roth
/=~
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Random Field Models

unary term

slide credit: Philipp Krahenbuhl
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Random Field Models

E(X)= Z%(Xz') il Z Wy (Xi; X ;)

i,jEN

Yii(Xi, X)) = [XizXi]
Potts Model
(used e.g. for stereo matching

-

conditional random field

slide credit: Philipp Krahenbuhl
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Random Field Models

E(X)= Z%(Xz') il Z Wy (Xi; X ;)

i,jEN

Yii(Xi,Xj) = 100[Xi#X]]
Potts Model
(used e.g. for stereo matching

-

conditional random field

slide credit: Philipp Krahenbuhl
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Random Field Models

E(X) = Z?MX@') R (X, X))

i,jEN

Yii(Xi,Xj) = 100[Xi#X]]
Potts Model
(used e.g. for stereo matching

conditional random field

slide credit: Philipp Krahenbuhl
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Random Field Models

E(X)= Z%(Xz') il Z Wy (Xi; X ;)

i,jEN

Yii(Xi, Xj) = wii[ XizX]]

wii=exp(-a(ci-c;j)?)

conditional random field

slide credit: Philipp Krahenbuhl
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Random Field Models

5o = Z%(Xz') T Z Vi (X, X;)

i,jEN
Yii(Xi, X)) = wi[ XizX]]

wii=exp(-a(ci-c;j)?)

weight horizontal

slide credit: Philipp Krahenbuhl
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Random Field Models

i) = Z%(Xz') T Z Vi (X, X;)

i,jEN
Yii(Xi, X)) = wi[ XizX]]

wii=exp(-a(ci-cj)?)

weight vertical

slide credit: Philipp Krahenbuhl
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Random Field Models

E(X)= sz(Xz) il Z Wy (Xi; X ;)

i,jEN

Yii(Xi,Xj) = 100w;;[Xi=X]

conditional random field
color sensitive
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Random Field Models

Pros:

* Probabilistic interpretation

* Parameter learning

e Combine with other models

slide credit: Philipp Krahenbuhl
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Random Field Models

Pros:

* Probabilistic interpretation
* Parameter learning
 Combine with other models
Cons:

* Shrinking bias

* Models only local interactions

slide credit: Philipp Krahenbuhl
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Filtering

classifier labeling

slide credit: Philipp Krahenbuhl
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Filtering

classifier log likelihood

slide credit: Philipp Krahenbuhl
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Filtering

blurred log likelihood
Gaussian gs=2px

slide credit: Philipp Krahenbuhl
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Filtering

blurred labeling
Gaussian gs=2px

slide credit: Philipp Krahenbuhl
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Filtering

blurred labeling
Gaussian gs=6px

slide credit: Philipp Krahenbuhl
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Filtering

Conditional Random Field (CRF)

slide credit: Philipp Krahenbuhl
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Filtering

blurred labeling
Bilateral 0s=60pXx oc=15

slide credit: Philipp Krahenbuhl
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Filtering

Conditional Random Field (CRF)
color sensitive

slide credit: Philipp Krahenbuhl
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Filtering

V; = E ’LU,l;j’Uj
]

wij = exp(-(si-s))?/os) exp(-(ci-c)*/oc)

[2] Fast High-Dimensional Filtering Using the Permutohedral Lattice, Adams et.al. 2010

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 44



Filtering

V; = E ’LU,l;j’Uj
]

wij = exp(-(si-s))?/os) exp(-(ci-c)*/oc)

[2] Fast High-Dimensional Filtering Using the Permutohedral Lattice, Adams et.al. 2010
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Filtering

V; = E ’LU,l;j’Uj
]

wij = exp(-(si-s))?/os) exp(-(ci-c)*/oc)

[2] Fast High-Dimensional Filtering Using the Permutohedral Lattice, Adams et.al. 2010
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Filtering

V; = E ’LU,l;j’Uj
]

wij = exp(-(si-s))?/os) exp(-(ci-c)*/oc)

[2] Fast High-Dimensional Filtering Using the Permutohedral Lattice, Adams et.al. 2010
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Filtering

V; = E ’LU,l;j’Uj
]

wij = exp(-(si-s))?/os) exp(-(ci-c)*/oc)

[2] Fast High-Dimensional Filtering Using the Permutohedral Lattice, Adams et.al. 2010
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Filtering

V; = E ’LU,l;j’Uj
]

exp(-(si-sj)%/0s)

[2] Fast High-Dimensional Filtering Using the Permutohedral Lattice, Adams et.al. 2010

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 49




Filtering

E 'w,,;jvj
J

exp(-(ci-c)?/o.)

[2] Fast High-Dimensional Filtering Using the Permutohedral Lattice, Adams et.al. 2010

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 50



Filtering

V; = E ’LU,l;j’Uj
)

wij = exp(-(si-s))?/os) exp(-(ci-c)*/oc)

» Efficient convolution
* Permutohedral lattice [2]
 compute all Vi in linear time

 50-100ms / image

[2] Fast High-Dimensional Filtering Using the Permutohedral Lattice, Adams et.al. 2010

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbunhl
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Filtering

Pros:

* Propagates information over
large distances

* up to 1/3 of image

slide credit: Philipp Krahenbuhl
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Filtering

Pros:

* Propagates information over
large distances

* up to 1/3 of image

Cons:
* No probabilistic interpretation
* No joint inference

* No learning

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 53




Dense Random Fields

slide credit: Philipp Krahenbuhl
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Dense Random Fields

slide credit: Philipp Krahenbuhl
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Dense Random Fields

Z¢ )( Iy Z wz_} XHX

-

unary term pairwise term

slide credit: Philipp Krahenbuhl
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Dense Random Fields

E(X)= Z’¢’—i(X-i) + > (X, X)

/ ‘Z-,’je_'\f \

unary term pairwise term

* Every node is connected to every other node
» Connections weighted differently

slide credit: Philipp Krahenbuhl
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Dense Random Fields

slide credit: Philipp Krahenbuhl

Probabilistic Graphical Models and Their Applications | Bernt Schiele 58



Dense Random Fields

slide credit: Philipp Krahenbuhl
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Dense Random Fields

Pros:

* Long range interactions

* No shrinking bias

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 60




Dense Random Fields

Pros:
Long range interactions
No shrinking bias

Probabilistic interpretation

Parameter learning

Combine with other models

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 61




Dense Random Fields

Cons:
e Very large model
* 50°000 - 100°000 variables

e billions pairwise terms

* Traditional inference very slow

« MCMC “converges” in 36h

 GraphCuts and alpha-exp.: no
convergence in 3 days

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krdahenbihl 62



Dense Random Fields

* Efficient inference

* 0.2s/image

* Pairwise term

* |inear combination of
Gaussians

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 63




Dense Random Fields

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 64



Dense Random Fields

Z If)-ij (X5, Xj)

1>)

i (X X5) = ) EM™(f, f) ™ (X5, X;)

m

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 65



Dense Random Fields

Z If)-ij (X, Xj)

i>]

K (fis £5)

Gaussian kernel k(m

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 66



Dense Random Fields

Z If)-ij (X, Xj)

i>]

1 (m) (){i’ X])

Gaussian kernel k™ Label compatibility p™

e S o O
st
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Dense Random Fields

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 68



Dense Random Fields

w1 (X, Xj)

pa (X, X; )
« Label compatibility

« Potts model: u(Xi,Xj) = [XizXi]

s I
ol
o m

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 69



Dense Random Fields

w1 (X, Xj)

pa (X, X; )
« Label compatibility

« Potts model: u(Xi,Xj) = [XizXi]

* Learned from data
—
KRN
Rl
—

l il p il Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenblhl 70



Dense Random Fields

« Label compatibility

« Potts model: u(Xi,Xj) = [Xi#Xi]
* Learned from data
* Appearance kernel

« Color—sensitive

Probabilistic Graphical Models and Their Applications | Bernt Schiele

slide credit: Philipp Krahenbunhl
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Dense Random Fields

2
8:; — 384
o (X, X;) exp —%
20,),

« Label compatibility
« Potts model: u(Xi,Xj) = [XizX]]
* Learned from data
 Appearance kernel
« Color—sensitive
* Local smoothness

» Discourages single pixel noise

(57

3~

i p il Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenblihl 72



Efficient Inference

i> 7

Find most likely assignment (MAP)

(X) where P(X) = = exp(—E(X))

Z

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 73



Efficient Inference

Find most likely a= (MAP)
O

(o
WP = Z e B(X))

Z

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 74



Efficient Inference

Find most likely a<~ (MAP)
O

(s
T = argmax P/~ “?'\’\ oS — & exp(—F (X))

i /

Mean Field approximation

Find Q(X)=][iQi(Xi) close to P(X) in terms of
KL-divergence D(Q||P)

T~ arg max Q(X)

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 75



Mean-Field Approximation

slide credit: Philipp Krahenbuhl
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Mean-Field Approximation

slide credit: Philipp Krahenbuhl
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Efficient Inference

Mean Field algorithm

Initialize Q:(1) = - exp(~:())

slide credit: Philipp Krahenbuhl
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Efficient Inference

Mean Field algorithm

Initialize Q:(l) = Zi exp(—i(l))

Until convergence:

slide credit: Philipp Krahenbuhl
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Efficient Inference

Mean Field algorithm

Initialize Q:(l) = Zi exp(—i(l))

Until convergence:

 Message passing: Q™ (1) =Y k™(f;, £;)Q;(1)

slide credit: Philipp Krahenbuhl
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Efficient Inference

Mean Field algorithm

Initialize Q:(l) = Zi exp(—i(l))

Until.convergence:
 Message passing: Q™ (1) =Y k™(f;, £;)Q;(1)

» Compatibility transform: Q™) =S u™ @, 0)Q™ (1)
l

slide credit: Philipp Krahenbuhl

Probabilistic Graphical Models and Their Applications | Bernt Schiele 81




Efficient Inference

Mean Field algorithm

Initialize Q:(1) = - exp(~:())

Until convergence:

« Message passing: Q\"(0) ZU”’J Fi 13)Q; )
« Compatibility transform: Q("”)(l’)-z,u =), DO™ (1)

o Local update: Q;(1) = exp(—v: (1) ZQ(”‘ 1))

m

slide credit: Philipp Krahenbuhl

Probabilistic Graphical Models and Their Applications | Bernt Schiele 82




Efficient Inference

Mean Field algorithm

Initialize Q:(1) = - exp(~:())

Until convergence:

« Message passing: Q\"(0) ZU”’J Fi 13)Q; )
« Compatibility transform: Q("”)(l’)-z,u =), DO™ (1)

o Local update: Q;(1) = exp(—v: (1) ZQ(”‘ 1))

m

* Normalize Q;

slide credit: Philipp Krahenbuhl

Probabilistic Graphical Models and Their Applications | Bernt Schiele 83




Efficient Inference

Mean Field algorithm

Initialize Qi(l) = - exp(~i(1)) O(N)

Until convergence:

 Message passing: Q™ (1) =Y k™(f;, £;)Q;(1)

O(N) Compatibility transform: Q("’é‘)(l’)-Z;t'”*')(l’ )Q™ (1)

O(N) Local update: Q;(1) = exp(—;(l) ZQ(”‘ 1))
O(N) Normalize Qi

m

slide credit: Philipp Krahenbuhl
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Efficient Inference

Mean Field algorithm

Initialize Qi(l) = - exp(~i(1)) O(N)

Until convergence:
O(N?) Message passing: @™ (1) ZU”’) Fir £7)Q5(0)
O(N) Compatibility transform: O (1) = Z,u, =N (1)

O(N) Local update: Q;(1) = exp(—;(l) ZQ(”‘ 1))
O(N) Normalize Qi

m

slide credit: Philipp Krahenbuhl
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Efficient Message Passing

« Update all variables simultaneously

A (= SRR e )
7

 Gaussian Convolution

* Efficient approximation

slide credit: Philipp Krahenbuhl
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Efficient Inference

Mean Field algorithm

Initialize Qi(l) = - exp(~:(1)) O(N)

Until convergence:

O(N) Message passing:  High-dimensional filter

O(N) Compatibility transform: Q("’é‘)(l’)—Zp’“)(l’ )Q™ (1)

O(N) Local update: Q;(l) = exp(—;(l) ZQ(”‘ 1))
O(N) Normalize Qi

m

slide credit: Philipp Krahenbuhl
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Efficient Inference

Mean Field algorithm

Initialize Qi(l) = - exp(~i(1)) O(Nagiil -

Until convergence:

O(N) Message passsitiie) | sional filter

O(N;] L) = exp(—i1) = 3 O (1)
O(N) ‘ o Qi m

slide credit: Philipp Krahenbuhl

ﬁ‘ ini p il Probabilistic Graphical Models and Their Applications | Bernt Schiele 88




Parallel Mean-Field

* Not guaranteed to converge for general models

* Guaranteed to converge for fully-connected models with
negative definite label compatibility

* Potts models

* L1 norms

* Proof see Thesis or [3]

* Reduction of Parallel Mean-Field to CCCP

[3] Parameter Learning and Convergent Inference for Dense Random Fields,
Krahenbuhl and Koltun, ICML 2013 42

slide credit: Philipp Krahenbuhl

Probabilistic Graphical Models and Their Applications | Bernt Schiele
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How Fast Will it Converge

()
(&)
)
(@)
| -
()
>
>
.
N

5 10 £

Number of iterations

slide credit: Philipp Krahenbunhl
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Iteration 0

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 91



Iteration1

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 92



Iteration 2

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 93



Iteration 10

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 94



Results MSRC

unary

grass
bird

water tree

J |
- building “

tree
car

road

grid

grass
bird

water

building ! 5

tree
car

road

fully con.

grass
bird

water

building

™ tree
car

road

Probabilistic Graphical Models and Their Applications | Bernt Schiele
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Results MSRC

MSRC dataset
* 591 images

e 21 classes

TIME GLOBAL AVERAGE

UNARY . 84.0 76.6

GRID CRF 1s 84.6 il

FCCRF 0.2s 86.0 78.3
FILTER 0.05s 85.0

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbihl 96



Results MSRC

standard gt

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Philipp Krahenbuhl 97



Results MSRC

accurate gt
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Results MSRC

MSRC Accurate annotations

* 94 images

* hand annotated (30 min each)

 unary train on standard anno.

e 5-fold cross validation

GLOBAL AVERAGE

UNARY 83.2+1.5 80.6+2.3
GRID CRF 84.8+1.5 82.4+1.8

FC CRF 88.2+0.7 84.7+0.7
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Results MSRC

MSRC Accurate annotations » u | |y connecteo

* 94 images

* hand annotated (30 min each)

 unary train on standard anno.

e 5-fold cross validation

GLOBAL AVERAGE

UNARY 83.2+1.5 80.6+2.3
GRID CRF 84.8+1.5 82.4+1.8

FC CRF 88.2+0.7 84.7+0.7
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Pictorial Overview of Today's Lecture

Texton Feature

b
Extractor

Boosting Classifier

image credit: paper [2]

Grid CRF

Result

Input Image

Texton Feature

e
Extractor

Boosting Classifier

Result

Deep Convolutional Neural Network

Convolutional

—
Feature Extractor

Linear Classifier =

Unary

Input Image Result
~ Deep Convolutional Neural Network
._.':. Convolutional : -
’ — Linear Classifier =  CRFInference Layer — =
Feature Extractor
Input Image

Result
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Deep Convolutional Neural Networks...

e Top: (Sub-)Image Classification
e Bottom FCN (Fully Convolutional Neural Network)

“tabby cat”

M obk 6. 00000 ‘
56'5% '5% ’1—6 O Qq |‘ l ‘ |

conv oluhonah/ahon

tabby cat heatmap

o0

image credit: paper [2]
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Pascal VOC Semantic Segmentation Results

Method IoU [%] Base Network
. Methods not using deep learning
e Block 1: no deep learning (DL) 02P [36] 478 =
Methods not using a CRF
_ _ SDS [37] 51.6 AlexNet
e Block 2: using deep learning (DL) FCN | 11[__ | g yag
/00m-ou _ ;

» but not CRF

Methods using CRF for post-processing

DeepLab [7] 71.6 VGG

EdgeNet [39] 73.6 VGG

e BoxSup [40] 75.2 VGG

e Block 3: using DL + CRF Dilated Conv [27) 75.3 VGG
. . . Centeals. Bowndiries 75.7 VGG

» but deep learning and CRF not trained jointly Di‘;gﬁ;b :t‘[‘;n?;‘f“[_[ _JJ sews hutes
LRR [30] 79.3 ResNet

DeepLab v2 [47] 79.7 ResNet

Questions:
» how to benefit better from both?
» how to jointly learn?

» can we perform "end-to-end" training? table credit: paper [2]

o e
(A

l\&f i p il Probabilistic Graphical Models and Their Applications | Bernt Schiele 103



Dense CRF - Mean Field Inference Algorithm

Algorithm 1 Mean field inference for Dense CRF [4], com-
posed from common CNN operations.

1 S
Qu'([) < STy &XP (Uu(1)) > Initialization
while not converged do

QU (1) « Xy 20 K™ (£, £,)Qu (1) for all m

> Message Passing
Qu(l) + X, w™ Q™ () v
i 5 > Weighting Filter Outputs L
Qu(l) < D yer u(l, 1) Qu(l’) Q

> Compatibility Transform

Mean field iteration

v

+ —» Softmax

.__
A 4

Filtering —» Conv [ Conv

v

Qu(l) + Uu(l) = Qu(D)
> Adding Unary Potentials

Qu(l) + = EXPEQ”“,}) exp (Cju(l))

> Normalizing
end while

image credit: paper [2]
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How Many Mean Field Iterations?

e Classically:
» lterate until convergence
e Here:

» Fix the number of iterations (in the figure T) and simply concatenate
» called "CRF-as-RNN"

CRF-as-RNN

ke u o Q°  Meanfield Q' Meanfield 0 Q™ R
e iteration iteration T " iteration
t t t

image credit: paper [2]
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Pascal VOC Semantic Segmentation Results

Method IoU [%] Base Network
. Methods not using deep learning
e Block 1: no deep learning (DL) 02P [36] 478 =
Methods not using a CRF
_ _ SDS [37] 51.6 AlexNet
e Block 2: using deep learning (DL) FCN | 11[__ | g yag
/00m-ou _ :

» but not CRF

Methods using CRF for post-processing

DeepLab [7] 71.6 VGG
EdgeNet [1V] 73.6 VGG
. : BoxSup [£0] 75.2 VGG
* Block 3: using DL + CRF Dilated Conv [27] 753 VGG
. . . . Centrale Boundaries [+ !] 759 VGG
» but deep learning and CRF not trained jointly DeeplLab Atiention [42] 6.3 VGG
LRR [30] 79.3 ResNet
DeepLab v2 [47] 79.7 ResNet
o BIOCk 4: end'to-end training Of DL & CRF Methods with end-to-end CRFs
CRF as RNN [7] 74.7 VGG
Deep Gaussian CRF [£] 75.5 VGG
Deep Parsing Network [44] 7 VGG
Context [17] 77.8 VGG
Higher Order CRF [33] 77.9 VGG
Deep Gaussian CRF [#] 80.2 ResNet
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Pictorial Overview of Today's Lecture

Texton Feature

b
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Boosting Classifier

image credit: paper [2]
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Feature Extractor
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Unary
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