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Intro

Organization 1/2

◮ Lecture 2 hours/week
◮ Wed: 14:15 – 16:00, via zoom

◮ Exercises 2 hours/week
◮ Fri: 8:30 – 10:00, via zoom
◮ Exercises start this Friday (Matlab primer)
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Intro

Organization 2/2

Where to find what:
◮ http://www.mpi-inf.mpg.de/pgm

◮ General information

◮ https://cms.sic.saarland/pgm20/
◮ Slides
◮ Recorded Lectures
◮ Pointers to Books and Papers
◮ Homework assignments

◮ “Semesterapparat” in library

◮ Registration: see cms webpage how to register
(also includes mailinglist)
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Intro

Exercises & Exam

◮ Exercises:
◮ Typically one assignment per week
◮ Theoretical and practical exercises
◮ Starts with Matlab primer
◮ Also includes programming project in the second part of the semester

(you can select or propose your own topic)
◮ To be done in groups of 2 – 3 students
◮ Final Grade: 50% exercises, 50% oral exam

(oral exam has to be passed obviously !)

◮ Exam
◮ Oral exam at the end of the semester
◮ Can be taken in English or German

◮ Tutors
◮ Apratim Bhattacharyya (abhattac@mpi-inf.mpg.de)
◮ Anna Kukleva (akukleva@mpi-inf.mpg.de)
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Intro

Offers in our Research Group

◮ Master- and Bachelor Theses

◮ HiWi-positions, etc.

in

◮ Topics in machine learning

◮ Topics in computer vision

◮ Topics in machine learning applied to computer vision

◮ Come, talk to us
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Intro

Topic overview

◮ Today: Recap – Probability and Decision theory
◮ Part 1: “Classic” Graphical Models

◮ Basics (Directed, Undirected, Factor Graphs), Learning
◮ Deterministic Inference (Sum-Prodcut, Junction Tree)
◮ Approximate Inference (Loopy BP, Sampling, Variational)

◮ Part 2: Application to Computer Vision Problems
(both classic and in the deep learning area)

◮ Body Pose Estimation,
◮ Semantic Segmentation,
◮ Image Denoising, . . .

◮ Part 3: Graph Neural Networks
◮ Graph Convolutional Neural Networks, . . .
◮ and Applications . . .
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Intro

Literature (part 1)

◮ All books in a “Semesterapparat”
◮ Main book for the graphical model part

◮ Barber, Bayesian Reasoning and Machine Learning, Cambridge
University Press, 2011, ISBN-13: 978-0521518147,
http://tinyurl.com/3flppuo

◮ Extra References
◮ Bishop, Pattern Recognition and Machine Learning, Springer New

York, 2006, ISBN-13: 978-0387310732
◮ Koller, Friedman, Probabilistic Graphical Models: Principles and

Techniques, The MIT Press, 2009, ISBN-13: 978-0262013192
◮ MacKay, Information Theory, Inference and Learning Algorithms,

Cambridge Universsity Press, 2003, ISBN-13: 978-0521642989
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Intro

Literature (part 1)
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Intro

Today’s topics

◮ Overview: Machine Learning
◮ What is machine learning ?
◮ Different problem settings and examples

◮ Probability theory

◮ Decision theory, inference and decision
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Machine Learning

Machine Learning

Overview
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Machine Learning

Machine learning – what’s that?

◮ Do you use machine learning systems already ?

◮ Can you think of an application ?

◮ Can you define the term “machine learning”?
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Machine Learning

◮ Goal of machine learning:
◮ Machines that learn to perform a task from experience

◮ We can formalize this as

y = f(x;w) (1)

y is called output variable,
x the input variable and
w the model parameters (typically learned)

◮ Classification vs regression:
◮ regression: y continuous
◮ classification: y discrete (e.g. class membership)
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Machine Learning

◮ Goal of machine learning:
◮ Machines that learn to perform a task from experience

◮ We can formalize this as

y = f(x;w) (2)

y is called output variable,
x the input variable and
w the model parameters (typically learned)

◮ learn... adjust the parameter w

◮ ... a task ... the function f

◮ ... from experience using a training dataset D, where of either
D = {x1, . . . , xn} or D = {(x1, y1), . . . , (xn, yn)}
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Machine Learning

Different Scenarios

◮ Unsupervised Learning

◮ Supervised Learning

◮ Reinforcement Learning

◮ Let’s discuss
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Machine Learning

Supervised Learning

◮ Given are pairs of training examples from X × Y

D = {(x1, y1), (x2, y2), . . . , (xn, yn)} (3)

◮ Goal is to learn the relationship between x and y

◮ Given a new example point x predict y

y = f(x;w) (4)

◮ We want to generalize to unseen data

→
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Machine Learning

Supervised Learning – Examples

Face Detection
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Machine Learning

Supervised Learning – Examples

Image Classification
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Machine Learning

Supervised Learning – Examples

Semantic Image Segmentation

Schiele (MPII) Probabilistic Graphical Models November 4, 2020 19 / 69



Machine Learning

Supervised Learning – Examples

Body Part Estimation (in Kinect)
Figure from Decision Tree Fields, Nowozin et al., ICCV11
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Machine Learning

Supervised Learning – Examples

◮ Person identification

◮ Credit card fraud detection

◮ Industrial inspection

◮ Speech recognition

◮ Action classification in videos

◮ Human body pose estimation

◮ Visual object detection

◮ Prediction survival rate of a patient

◮ ...
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Machine Learning

Supervised Learning - Models

Flashing more keywords

◮ Multilayer Perceptron (Backpropagation)

◮ (Deep) Convolutional Neural Networks (Backpropagation)

◮ Linear Regression, Logistic Regression

◮ Support Vector Machine (SVM)

◮ Boosting

◮ Graphical models
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Machine Learning

Unsupervised Learning

◮ We are given some input data points

D = {x1, x2, . . . , xn} (5)

◮ Goals:
◮ Determine the data distribution p(x) → density estimation
◮ Visualize the data by projections → dimensionality reduction
◮ Find groupings of the data → clustering

→
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Machine Learning

Unsupervised Learning – Examples

Image Priors for Denoising
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Machine Learning

Unsupervised Learning – Examples

Image Priors for Inpainting

Image from “A generative perspective on MRFs in low-level vision”,
Schmidt et al., CVPR2010

black line: statistics form original images, blue and red: statistics after applying

two different algorithms
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Machine Learning

Unsupervised Learning – Examples

Human Shape Model
SCAPE: Shape Completion and Animation of People, Anguelov et al.
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Machine Learning

Unsupervised Learning – Examples

◮ Clustering scientific publications according to topics

◮ A generative model for human motion

◮ Generating training data for Microsoft Kinect xbox controller

◮ Clustering flickr images
◮ Novelty detection, predicting outliers

◮ Anomality detection in visual inspection
◮ Video surveillance
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Machine Learning

Unsupervised Learning – Models

Just flashing some keywords (→ Machine Learning)

◮ Mixture Models

◮ Neural Networks

◮ K-Means

◮ Kernel Density Estimation

◮ Principal Component Analysis (PCA)

◮ Graphical Models (here)

Schiele (MPII) Probabilistic Graphical Models November 4, 2020 28 / 69



Machine Learning

Reinforcement Learning

◮ Setting: given a situation, find an action to maximize a reward
function

◮ Feedback:
◮ we only get feedback of how well we are doing
◮ we do not get feedback what the best action would be

(“indirect teaching”)

◮ Feedback given as reward:
◮ each action yields reward, or
◮ a reward is given at the end (e.g. robot has found his goal, computer

has won game in Backgammon)

◮ Exploration: try out new actions

◮ Exploitation: use known actions that yield high rewards

◮ Find a good trade-off between exploration and exploitation
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Machine Learning

Variations of the general theme

◮ All problems fall in these broad categories

◮ But your problem will surely have some extra twists

◮ Many different variations of the aforementioned problems are studied
separately

◮ Let’s look at some ...
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Machine Learning

Semi-Supervised Learning

◮ We are given a dataset of l labeled examples
Dl = {(x1, y1), . . . , (xl, yl)}

as in supervised learning

◮ Additionally we are given a set of u unlabeled examples
Du = {xl+1, . . . , xl+u}

as in unsupervised learning

◮ Goal is y = f(x;w)

◮ Question: how can we utilize the extra information in Du?

→

Schiele (MPII) Probabilistic Graphical Models November 4, 2020 31 / 69



Machine Learning

Semi-Supervised Learning: Two Moons

◮ Two labeled examples (red and blue) and additional unlabeled black
dots

Two moons
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Machine Learning

Transductive Learning

◮ We are given a set of labeled examples

D = {(x1, y1), . . . , (xn, yn)} (6)

◮ Additionally we know the test data points {xte1 , . . . , xtem}
(not their labels!)

◮ Can we do better, including this knowledge?

◮ This should be easier than making predictions for the entire set X
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Machine Learning

On-line Learning

◮ The training data is presented step-by-step and is never available
entirely

◮ At each time-step t we are given a new datapoint xt
(or (xt, yt))

◮ When is online learning a sensible scenario?
◮ We want to continuously update the model – we can train a model

with little data, but the model should become better over time when
more data is available (similar to how humans learn)

◮ We have limited storage for data and the model – a viable setting for
large-scale datasets (e.g. the size of the internet)

◮ How do we learn in this scenario?

Schiele (MPII) Probabilistic Graphical Models November 4, 2020 34 / 69



Machine Learning

Large-Scale Learning

◮ Learning with millions of examples

◮ Study fast learning algorithms (e.g. parallelizable, special hardware)

◮ Problems of storing the data, computing the features, etc.

◮ There is no strict definition for “large-scale”

◮ Small-scale learning: limiting factor is number of examples

◮ Large-scale learning: limited by maximal time for computation
(and/or maximal storage capacity)
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Machine Learning

Active Learning

◮ We are given a set of examples

D = {x1, . . . , xn} (7)

◮ Goal is to learn y = f(x;w)

◮ Each label yi costs something, e.g. Ci ∈ R+

◮ Question: How to learn well while paying little?

◮ This is almost always the case, labeling is expensive
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Machine Learning

Structured Output Learning

◮ We are given a set of training examples
D = {(x1, y1), . . . , (xn, yn)},

but y ∈ Y contains more structure than y ∈ R
or y ∈ {−1, 1}

◮ Consider binary image segmentation
◮ y is entire image labeling
◮ Y is the set of all labelings 2#pixels

◮ Other examples: y could be a graph, a tree,
a ranking, . . .

◮ Goal is to learn a function f(x, y;w) and predict
y = argmax

ȳ∈Y
f(x, ȳ;w)

Schiele (MPII) Probabilistic Graphical Models November 4, 2020 37 / 69



Machine Learning

Some final comments

◮ All topics are under active development and research

◮ Supervised classification: basically understood

◮ Broad range of applications, many exciting developments

◮ Adopting a “ML view” has far reaching consequences, it touches
problems of empirical sciences in general
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Probability Theory

Probability Theory

Brief Review
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Probability Theory

Brief Review

◮ A random variable (RV) X can take values from some discrete set of
outcomes X .

◮ We usually use the short-hand notation

p(x) for p(X = x) ∈ [0, 1] (8)

for the probability that X takes value x

◮ With
p(X), (9)

we denote the probability distribution over X
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Probability Theory

Brief Review

◮ Two random variables (RVs) are called independent if

p(X = x, Y = y) = p(X = x)p(Y = y) (10)

◮ Joint probability (of X and Y )

p(x, y) instead p(X = x, Y = y) (11)

◮ Conditional probability

p(x|y) instead p(X = x|Y = y) (12)
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Probability Theory

The Rules of Probability

◮ Sum rule
p(X) =

!

y∈Y
p(X,Y = y) (13)

we “marginalize out y”.
p(X = x) is also called a marginal probability

◮ Product Rule
p(X,Y ) = p(Y |X)p(X) (14)

◮ And as a consequence: Bayes Theorem or Bayes Rule

p(Y |X) =
p(X|Y )p(Y )

p(X)
(15)
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Probability Theory

Vocabulary

◮ Joint Probability

p(xi, yj) =
nij

N

◮ Marginal Probability

p(xi) =
ci
N

◮ Conditional Probability

p(yj | xi) =
nij

ci

ci =
!

j

nij

" #$ %

yj nij

xi

N =
!

ij

nij
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Probability Theory

Probability Densities

◮ Now X is a continuous random variable, eg taking values in R
◮ Probability that X takes a value in the interval (a, b) is

p(X ∈ (a, b)) =

& b

a
p(x)dx (16)

and we call p(x) the probability density over x
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Probability Theory

Probability Densities

◮ p(x) must satisfy the following conditions

p(x) ≥ 0 (17)& ∞

−∞
p(x)dx = 1 (18)

◮ The probability that x lies in (−∞, z) is given by the cumulative
distribution function

P (z) =

& z

−∞
p(x)dx (19)
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Probability Theory

Probability Densities

Figure: Probability density of a continuous variable
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Probability Theory

Expectation and Variances

◮ Expectation

E[f ] =
!

x∈X
p(x)f(x) (20)

E[f ] =

&

x∈X
p(x)f(x)dx (21)

◮ Sometimes we denote the distribution that we take the expectation
over as a subscript, eg.

Ep(·|y)[f ] =
!

x∈X
p(x|y)f(x) (22)

◮ Variance
var[f ] = E

'
(f(x)− E [f(x)])2

(
(23)
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Decision Theory

Decision Theory
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Decision Theory

Digit Classification

◮ Classify digits “a” versus “b”

Figure: The digits “a” and “b”

◮ Goal: classify new digits such that the error probability is minimized
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Decision Theory

Digit Classification - Priors

Prior Distribution

◮ How often do the letters “a” and “b” occur ?

◮ Let us assume

C1 = a p(C1) = 0.75 (24)

C2 = b p(C2) = 0.25 (25)

The prior has to be a distribution, in particular

!

k=1,2

p(Ck) = 1 (26)
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Decision Theory

Digit Classification - Class Conditionals

◮ We describe every digit using some feature vector
◮ the number of black pixels in each box
◮ relation between width and height

◮ Likelihood: How likely has x been generated from p(· | a), resp.
p(· | b)?
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Decision Theory

Digit Classification

◮ Which class should we assign x to ?

◮ The answer

◮ Class a
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Decision Theory

Digit Classification

◮ Which class should we assign x to ?

◮ The answer

◮ Class b
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Decision Theory

Digit Classification

◮ Which class should we assign x to ?

◮ The answer

◮ Class a, since p(a)=0.75
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Decision Theory

Bayes Theorem

◮ How do we formalize this?

◮ We already mentioned Bayes Theorem

p(Y |X) =
p(X|Y )p(Y )

p(X)
(27)

◮ Now we apply it

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
=

p(x|Ck)p(Ck))
j p(x|Cj)p(Cj)

(28)
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Decision Theory

Bayes Theorem

◮ Some terminology! Repeated from last slide:

p(Ck|x) =
p(x|Ck)p(Ck)

p(x)
=

p(x|Ck)p(Ck))
j p(x|Cj)p(Cj)

(29)

◮ We use the following names

Posterior =
Likelihood× Prior

Normalization Factor
(30)

◮ Here the normalization factor is easy to compute. Keep an eye out for
it, it will haunt us until the end of this class
(and longer :) )

◮ It is also called the Partition Function, common symbol Z
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Decision Theory

Bayes Theorem

Likelihood

Likelihood × Prior

Posterior = Likelihood×Prior
Normalization Factor
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Decision Theory

How to Decide?

◮ Two class problem C1, C2, plotting Likelihood × Prior
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Decision Theory

Minmizing the Error

p(error) = p(x ∈ R2, C1) + p(x ∈ R1, C2) (31)

= p(x ∈ R2|C1)p(C1) + p(x ∈ R1|C2)p(C2) (32)

=

&

R2

p(x|C1)p(C1)dx+

&

R1

p(x|C2)p(C2)dx (33)
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Decision Theory

General Loss Functions

◮ So far we considered misclassification error only

◮ This is also referred to as 0/1 loss

◮ Now suppose we are given a more general loss function

∆ : Y × Y → R+ (34)

(y, ŷ) '→ ∆(y, ŷ) (35)

◮ How do we read this?

◮ ∆(y, ŷ) is the cost we have to pay if y is the true class but we predict
ŷ instead
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Decision Theory

Example: Predicting Cancer

∆ : Y × Y → R+ (36)

(y, ŷ) '→ ∆(y, ŷ) (37)

◮ Given: X-Ray image, Question: Cancer yes or no?
Should we have another medical check of the patient?

diagnosis :
cancer normal

truth : cancer 0 1000
normal 1 0

◮ For discrete sets Y this is a loss matrix
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Decision Theory

Digit Classification

◮ Which class should we assign x to? (p(a) = p(b) = 0.5)

◮ The answer

◮ It depends on the loss
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Decision Theory

Minmizing Expected Loss (or Error)

◮ The expected loss for x (averaged over all decisions)

E[∆] =
!

k=1,...,K

!

j=1,...,K

&

Rj

∆(Ck, Cj)p(x,Ck)dx (38)

◮ And how do we predict? Decide on one y!

y∗ = argmin
y∈Y

!

k=1,...,K

∆(Ck, y)p(Ck|x) (39)

= argmin
y∈Y

Ep(·|x)[∆(·, y)] (40)
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Decision Theory

Inference and Decision

◮ We broke down the process into two steps
◮ Inference: obtaining the probabilities p(Ck|x)
◮ Decision: Obtain optimal class assignment

◮ Two steps !!

◮ The probabilites p(·|x) represent our belief of the world

◮ The loss ∆ tells us what to do with it!

◮ 0/1 loss implies deciding for max probability (exercise)
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Decision Theory

Three Approaches to Solve Decision Problems

1. Generative models: infer the class conditionals

p(x|Ck), k = 1, . . . ,K (41)

then combine using Bayes Theorem p(Ck|x) = p(x|Ck)p(Ck)
p(x)

2. Discriminative models: infer posterior probabilities directly

p(Ck|x) (42)

3. Find a discriminative function minimizing Expected Loss ∆

f : X → {1, . . . ,K} (43)

Let’s discuss these options
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Decision Theory

Generative Models

Pros:

◮ The name generative is because we can
generate samples from the learnt distribution

◮ We can infer p(x|Ck) (or p(x) for short)
Cons:

◮ With high dimensionality of x ∈ X we need a
large training set to determine the
class-conditionals

◮ We may not be interested in all quantities
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Decision Theory

Discriminative Models

Pros:

◮ No need to model p(x|Ck)
(i.e. in general easier)

Cons:

◮ No access to model p(x|Ck)
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Decision Theory

Discriminative Functions

When solving a problem of interest, do not solve a harder / more general
problem as an intermediate step.

– Vladimir Vapnik
Pros:

◮ One integrated system, we directly estimate the quantity of interest

Cons:

◮ Need ∆ during training time – revision requires re-learning

◮ No access to probabilities or uncertainty, thus difficult to reject
decision?

◮ Prominent example: Support Vector Machines (SVMs)
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Decision Theory

Next Time ...

◮ ... we will meet our new friends:
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