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Organization 1/2

» Lecture 2 hours/week
» Wed: 14:15 — 16:00, via zoom
» Exercises 2 hours/week

» Fri: 8:30 — 10:00, via zoom
» Exercises start this Friday (Matlab primer)
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Organization 2/2

Where to find what:
» http://www.mpi-inf.mpg.de/pgnm
» General information

» https://cms.sic.saarland/pgm20/

» Slides

» Recorded Lectures

» Pointers to Books and Papers
» Homework assignments

» “Semesterapparat” in library

» Registration: see cms webpage how to register
(also includes mailinglist)
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Exercises & Exam

» Exercises:

» Typically one assignment per week

» Theoretical and practical exercises

» Starts with Matlab primer

» Also includes programming project in the second part of the semester
(you can select or propose your own topic)

» To be done in groups of 2 — 3 students

» Final Grade: 50% exercises, 50% oral exam
(oral exam has to be passed obviously !)

» Exam

» Oral exam at the end of the semester
» Can be taken in English or German

» Tutors

» Apratim Bhattacharyya (abhattac@mpi-inf.mpg.de)
» Anna Kukleva (akukleva@mpi-inf.mpg.de)
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Offers in our Research Group

» Master- and Bachelor Theses
» HiWi-positions, etc.
in
» Topics in machine learning
» Topics in computer vision

» Topics in machine learning applied to computer vision

» Come, talk to us
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Topic overview

» Today: Recap — Probability and Decision theory
» Part 1: “Classic” Graphical Models
» Basics (Directed, Undirected, Factor Graphs), Learning
» Deterministic Inference (Sum-Prodcut, Junction Tree)
» Approximate Inference (Loopy BP, Sampling, Variational)
» Part 2: Application to Computer Vision Problems
(both classic and in the deep learning area)
» Body Pose Estimation,
» Semantic Segmentation,
» Image Denoising, ...
» Part 3: Graph Neural Networks

» Graph Convolutional Neural Networks, ...
» and Applications ...
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Literature (part 1)

» All books in a “Semesterapparat”
» Main book for the graphical model part

» Barber, Bayesian Reasoning and Machine Learning, Cambridge
University Press, 2011, ISBN-13: 978-0521518147,
http://tinyurl.com/3flppuo

» Extra References

» Bishop, Pattern Recognition and Machine Learning, Springer New
York, 2006, ISBN-13: 978-0387310732

» Koller, Friedman, Probabilistic Graphical Models: Principles and
Techniques, The MIT Press, 2009, ISBN-13: 978-0262013192

» MacKay, Information Theory, Inference and Learning Algorithms,
Cambridge Universsity Press, 2003, ISBN-13: 978-0521642989
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Today's topics

» Overview: Machine Learning

» What is machine learning 7
» Different problem settings and examples

» Probability theory

» Decision theory, inference and decision
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Machine Learning

Machine Learning

Overview
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Machine Learning

Machine learning — what's that?

» Do you use machine learning systems already ?

» Can you think of an application ?

» Can you define the term “machine learning”?
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Machine Learning

» Goal of machine learning:
» Machines that learn to perform a task from experience

» We can formalize this as

y=flz;w)

y is called output variable,

x the input variable and

w the model parameters (typically learned)
» Classification vs regression:

> regression: gy continuous
» classification: y discrete (e.g. class membership)
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Machine Learning

» Goal of machine learning:
» Machines that learn to perform a task from experience

» We can formalize this as
y = flz;w) (2)
y is called output variable,
x the input variable and
w the model parameters (typically learned)
» learn... adjust the parameter w

» ... atask ... the function f

» ... from experience using a training dataset D, where of either
D= {CCl, v 7$TL} or D= {(9517?/1)a EE) ($n7yn)}
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Machine Learning

Different Scenarios

» Unsupervised Learning

v

Supervised Learning

v

Reinforcement Learning

Let's discuss

v
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Machine Learning

Supervised Learning

» Given are pairs of training examples from X x Y

D ={(z1,11), (T2,92), -+, (Tn, yn) }

» Goal is to learn the relationship between x and y
» Given a new example point x predict y

y=flz;w)

» We want to generalize to unseen data
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Machine Learning

Supervised Learning — Examples

Face Detection
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Supervised Learning — Examples
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Machine Learning

Supervised Learning — Examples

Semantic Image Segmentation
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Machine Learning

Supervised Learning — Examples

Input / Truth unary

MRF

DTF

Body Part Estimation (in Kinect)
Figure from Decision Tree Fields, Nowozin et al., ICCV11
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Machine Learning

Supervised Learning — Examples

» Person identification

» Credit card fraud detection

» Industrial inspection

» Speech recognition

» Action classification in videos
» Human body pose estimation
» Visual object detection

» Prediction survival rate of a patient
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Machine Learning

Supervised Learning - Models

Flashing more keywords

v

Multilayer Perceptron (Backpropagation)

v

(Deep) Convolutional Neural Networks (Backpropagation)

v

Linear Regression, Logistic Regression
Support Vector Machine (SVM)

» Boosting

v

v

Graphical models
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Machine Learning

Unsupervised Learning

» We are given some input data points
D ={z1,22,...,2n}

» Goals:
» Determine the data distribution p(z) — density estimation
» Visualize the data by projections — dimensionality reduction
» Find groupings of the data — clustering

05 — 05
0 0
0 05 1 0 05 1
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Machine Learning

Unsupervised Learning — Examples

21

Image Priors for Denoising
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Machine Learning

Unsupervised Learning — Examples

EEEEe KLD=1.64
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Image Priors for Inpainting

¢

Image from “A generative perspective on MRFs in low-level vision”,
Schmidt et al., CVPR2010

black line: statistics form original images, blue and red: statistics after applying
two different algorithms
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Machine Learning

Unsupervised Learning — Examples
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Human Shape Model
SCAPE: Shape Completion and Animation of People, Anguelov et al.

Schiele (MPII) Probabilistic Graphical Models



Machine Learning

Unsupervised Learning — Examples

v

Clustering scientific publications according to topics

v

A generative model for human motion

v

Generating training data for Microsoft Kinect xbox controller

v

Clustering flickr images

v

Novelty detection, predicting outliers

» Anomality detection in visual inspection
» Video surveillance
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Machine Learning

Unsupervised Learning — Models

Just flashing some keywords (— Machine Learning)
» Mixture Models

Neural Networks

K-Means

Kernel Density Estimation

v

v

\4

v

Principal Component Analysis (PCA)
Graphical Models (here)

v
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Machine Learning

Reinforcement Learning

» Setting: given a situation, find an action to maximize a reward
function

» Feedback:

» we only get feedback of how well we are doing
» we do not get feedback what the best action would be
(“indirect teaching”)

» Feedback given as reward:

» each action yields reward, or
» a reward is given at the end (e.g. robot has found his goal, computer
has won game in Backgammon)

» Exploration: try out new actions
» Exploitation: use known actions that yield high rewards

» Find a good trade-off between exploration and exploitation
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Machine Learning

Variations of the general theme

v

All problems fall in these broad categories

\4

But your problem will surely have some extra twists

v

Many different variations of the aforementioned problems are studied
separately

v

Let's look at some ...
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Machine Learning

Semi-Supervised Learning

v

We are given a dataset of [ labeled examples

Dl = {(:B1,y1), B ({Bla yl)}
as in supervised learning

v

Additionally we are given a set of w unlabeled examples

Du = {xl—‘rla s 7xl+u}
as in unsupervised learning

v

Goal is y = f(z;w)

v

Question: how can we utilize the extra information in D,?
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Machine Learning

Semi-Supervised Learning: Two Moons

» Two labeled examples (red and blue) and additional unlabeled black
dots

Two moons
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Machine Learning

Transductive Learning

» We are given a set of labeled examples
D:{(:Clvyl)v"'y(mnvyn)} (6)
» Additionally we know the test data points {z¢,... 2}
(not their labels!)
» Can we do better, including this knowledge?
» This should be easier than making predictions for the entire set X
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Machine Learning

On-line Learning

v

The training data is presented step-by-step and is never available
entirely

v

At each time-step t we are given a new datapoint x;

(or (4, 41))
When is online learning a sensible scenario?

v

» We want to continuously update the model — we can train a model
with little data, but the model should become better over time when
more data is available (similar to how humans learn)

» We have limited storage for data and the model — a viable setting for
large-scale datasets (e.g. the size of the internet)

How do we learn in this scenario?

v
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Machine Learning

Large-Scale Learning

v

Learning with millions of examples

Study fast learning algorithms (e.g. parallelizable, special hardware)

v

Problems of storing the data, computing the features, etc.

v

v

There is no strict definition for “large-scale”

\4

Small-scale learning: limiting factor is number of examples

v

Large-scale learning: limited by maximal time for computation
(and/or maximal storage capacity)
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Active Learning

» We are given a set of examples
D:{xl"'wxn} (7)
» Goal is to learn y = f(z; w)
» Each label y; costs something, e.g. C; € R,
» Question: How to learn well while paying little?
» This is almost always the case, labeling is expensive
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Structured Output Learning

v

We are given a set of training examples
D= {(x17y1)7 SRR ($n7yn)}a
but y € Y contains more structure than y € R
orye{-1,1}
Consider binary image segmentation w&

> y is entire image labeling
» ) is the set of all labelings 27#Pi@els

v

» Other examples: y could be a graph, a tree,
a ranking, ...
» Goal is to learn a function f(z,y;w) and predict

Yy = argmax f(xa Y; w)
yeY
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Some final comments

v

All topics are under active development and research

v

Supervised classification: basically understood

v

Broad range of applications, many exciting developments

v

Adopting a “ML view” has far reaching consequences, it touches
problems of empirical sciences in general
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Probability Theory

Probability Theory

Brief Review
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Probability Theory

Brief Review

» A random variable (RV) X can take values from some discrete set of
outcomes X

» We usually use the short-hand notation
p(z) for p(X =z) €[0,1] (8)

for the probability that X takes value x
» With
p(X), (9)

we denote the probability distribution over X
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Probability Theory

Brief Review

» Two random variables (RVs) are called independent if
PX =z,Y =y) =pX =z)p(Y =y) (10)
» Joint probability (of X and Y)
p(x,y) instead p(X =z, =y) (11)
» Conditional probability

p(z|y) instead p(X = z|Y =y) (12)

Schiele (MPII) Probabilistic Graphical Models November 4, 2020 41 / 69



The Rules of Probability

» Sum rule

p(X) =) p(X,Y =y) (13)

yey
we “marginalize out y".
p(X = x) is also called a marginal probability
» Product Rule
p(X,Y) = p(Y|X)p(X) (14)

» And as a consequence: Bayes Theorem or Bayes Rule

pXY)p(Y)

p(v]x) = P
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Vocabulary

» Joint Probability

Nij Ci = E :nij

—

» Marginal Probability

Yj nij
C;
p(r:) = %

» Conditional Probability Ti
p(yj | z;) = — N Z"U
C; ij
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Probability Densities

» Now X is a continuous random variable, eg taking values in R
» Probability that X takes a value in the interval (a,b) is

b
p(X € (a,b)) = / ple)dz (16)

and we call p(z) the probability density over x
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Probability Theory

Probability Densities

» p(z) must satisfy the following conditions

p(x) = 0 (17)
/ p(r)de = 1 (18)

» The probability that x lies in (—o0, 2) is given by the cumulative
distribution function

P(z) = / " p(a)da (19)

—00
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Probability Densities

ox &

Figure: Probability density of a continuous variable
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Probability Theory

Expectation and Variances

» Expectation

E[f] = > p(z)f(x) (20)

reX

E[f] = /meﬂmm (21)

» Sometimes we denote the distribution that we take the expectation
over as a subscript, eg.

p( \y ZP (zly)f (22)

TeX

» Variance

var[f] = E [ ((2) - E[f(2)))?] (23)

Schiele (MPII) Probabilistic Graphical Models November 4, 2020 47 / 69



Decision Theory

Decision Theory
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Digit Classification

» Classify digits “a” versus “b"

111

11

Lt rl L1 ]

“w_n

Figure: The digits “a" and “b"

» Goal: classify new digits such that the error probability is minimized
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Digit Classification - Priors

Prior Distribution

» How often do the letters “a” and “b" occur ?

» Let us assume

01 =a p(cl) =0.75 (24)
CQ =b p(CQ) =0.25 (25)

The prior has to be a distribution, in particular

> plCr) =1 (26)

k=1,2

Schiele (MPII) Probabilistic Graphical Models November 4, 2020 50 / 69



Digit Classification - Class Conditionals

» We describe every digit using some feature vector

» the number of black pixels in each box
» relation between width and height

» Likelihood: How likely has x been generated from p(- | a), resp.

p(- | b)?
EZEHEEE p(x|a)
(i
r
p(z[b) /\
xr
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Digit Classification

e
el

» Which class should we assign x to ?
» The answer

» Class a
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Digit Classification

p(z|a) p(x|b)

» Which class should we assign x to ?
» The answer
» Class b
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Digit Classification

xTr
» Which class should we assign x to 7
» The answer
» Class a, since p(a)=0.75
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Decision Theory

Bayes Theorem

» How do we formalize this?

» We already mentioned Bayes Theorem

_ p(X[Y)p(Y)
p(v1x) = P (27)
» Now we apply it
p(Celz) = p(x|Ck)p(Ck)  p(z|Ck)p(Ck) (28)

ple) X, p@|Cp(Cy)
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Decision Theory

Bayes Theorem

» Some terminology! Repeated from last slide:

p(x|Ce)p(Ck) _ _p(x|Cr)p(Cr)
p(z) > p(x|Cj)p(C;)

We use the following names

p(Cylz) =

(29)

v

Likelihood x Pri
Posterior = el .oo. > rror (30)
Normalization Factor

v

Here the normalization factor is easy to compute. Keep an eye out for
it, it will haunt us until the end of this class
(and longer :) )

v

It is also called the Partition Function, common symbol Z
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Decision Theory

Bayes Theorem

Mlb) Likelihood

X
p(x|a)P(a)
p(x|b)P(D) Likelihood x Prior
S~
X

plalx) >L/ p(b]x) Posterior LikelihoodxPrior

~ Normalization Factor

X
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How to Decide?

» Two class problem C1, Cs, plotting Likelihood x Prior

p(.T,C1)

p(z,Cs)

R Ro

Schiele (MPII) Probabilistic Graphical Models November 4, 2020 58 / 69



Decision Theory

Minmizing the Error

p(,C1)

Ry Ra

p(error) = p(z € Ry, C1) + p(x € Ry,C2)
= p(x € R2|C1)p(Ch) + p(x € R1|C2)p(C2)

= | p(alC)p(Cr)dx + / p(2|Co)p(Ca)d
Ro Ry
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Decision Theory

General Loss Functions

v

So far we considered misclassification error only

v

This is also referred to as 0/1 loss

» Now suppose we are given a more general loss function
A YxY—=>Ry (34)
(4.9) = Aly, 9) (35)
» How do we read this?
» A(y,7) is the cost we have to pay if y is the true class but we predict

7 instead
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Decision Theory

Example: Predicting Cancer

A: YxYoR, (36)
(¥, 9) = Ay, 9) (37)

» Given: X-Ray image, Question: Cancer yes or no?
Should we have another medical check of the patient?

diagnosis :
cancer normal
truth : cancer 0 1000
normal 1 0

» For discrete sets ) this is a loss matrix
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Digit Classification

I

T =25

» Which class should we assign x to? (p(a) = p(b) = 0.5)
» The answer

» It depends on the loss

Schiele (MPII) Probabilistic Graphical Models November 4, 2020

62 / 69



Decision Theory

Minmizing Expected Loss (or Error)

» The expected loss for = (averaged over all decisions)

= > ) /ACk, p(z, Cy)dx (38)

k=1,.,K j=1,...K

» And how do we predict? Decide on one y!

v = agmin Y ACLp(Cila) (39)
yey _ 1. K
= argmmEp(.m[A(-,y)] (40)
yey
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Decision Theory

Inference and Decision

v

We broke down the process into two steps

» Inference: obtaining the probabilities p(Cy|x)
» Decision: Obtain optimal class assignment

» Two steps !!

» The probabilites p(-|x) represent our belief of the world
» The loss A tells us what to do with it!
» 0/1 loss implies deciding for max probability (exercise)
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Decision Theory

Three Approaches to Solve Decision Problems

1. Generative models: infer the class conditionals

p(alC), k=1,...,K (41)
then combine using Bayes Theorem p(Cx|z) = ’%
2. Discriminative models: infer posterior probabilities directly
p(Cx|) (42)

3. Find a discriminative function minimizing Expected Loss A

Frx—={l,... K} (43)

Let's discuss these options
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Generative Models

Pros:

» The name generative is because we can
generate samples from the learnt distribution

» We can infer p(z|Ck) (or p(x) for short)
Cons:

» With high dimensionality of z € A we need a
large training set to determine the
class-conditionals

» We may not be interested in all quantities
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Decision Theory

Discriminative Models

Pros:

» No need to model p(z|Cx)
(i.e. in general easier)

Cons:

» No access to model p(z|Cy)
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Decision Theory

Discriminative Functions

When solving a problem of interest, do not solve a harder / more general
problem as an intermediate step.
— Vladimir Vapnik

Pros:

» One integrated system, we directly estimate the quantity of interest
Cons:

» Need A during training time — revision requires re-learning

» No access to probabilities or uncertainty, thus difficult to reject

decision?
» Prominent example: Support Vector Machines (SVMs)
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Next Time ...

» ... we will meet our new friends:

f fa
()—~(%) (—) /@
(%) '@ ;

fs !

(%) (%) (%)

(@) Bayesian Network (b) Markov Random Field () Factor Graph
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