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Overview Today’s Lecture

e Brief Recap
e Graph Signals & Graph Convolutional Filters
e Graph Neural Networks vs Fully Connected Graph Networks

e Permutation Equivariance

e
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Graphs are Common...

» Graphs are generic models of signal structure that can help to learn in several practical problems

Recommendation Systems

Authorship Attribution

Predict the rating a customer would give to a product

,r—l 3 I

» In both cases there exists a graph that contains meaningful information about the problem to solve
slide credit: Alejandro Ribeiro
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Authorship Attribution with Word Adjacency Networks

» Nodes represent different function words and edges how often words appear close to each other

= A proxy for the different ways in which different authors use the English language grammar

William Shakespeare Christopher Marlowe

Soug
Gumoug
¥

» WAN differences differentiate the writing styles of Marlowe and Shakespeare in, e.g., Henry VI

slide credit: Alejandro Ribeiro

Segarra-Eisen-Egan-Ribeiro, Attributing the Authorship of the Henry VI Plays by Word Adjacency, Shakespeare Quarterly 2016, doi.org/1



Recommendation System with Collaborative Filtering

» Nodes represent different customers and edges their average similarity in product ratings

= The graph informs the completion of ratings when some are unknown and are to be predicted

Variation Diagram for Original (sampled) ratings Variation Diagram for Reconstructed (predicted) ratings

R -1--"‘--.
- ~—

» Variation energy of reconstructed signal is (much) smaller than variation energy of sampled signal
slide credit: Alejandro Ribeiro



Neural Networks and Convolutional Neural Networks

» There is overwhelming empirical and theoretical justification to choose a neural network (NN)

Challenge is we want to run a NN over this But we are good at running NNs over this
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» Generic NNs do not scale to large dimensions =- Convolutional Neural Networks (CNNs) do scale

slide credit: Alejandro Ribeiro
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Convolutional Neural Networks and Graph Neural Networks

» CNNs are made up of layers composing convolutional filter banks with pointwise nonlinearities

Process graphs with graph convolutional NNs Process images with convolutional NNs
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» Generalize convolutions to graphs = Compose graph filter banks with pointwise nonlinearities

» Stack in layers to create a graph (convolutional) Neural Network (GNN)

slide credit: Alejandro Ribeiro
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Convolutional Neural Networks and Graph Neural Networks

» CNNs and GNNe are minor variations of linear convolutional filters

= Compose filters with pointwise nonlinearities and compose these compositions into several layers

slide credit: Alejandro Ribeiro
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Neural Networks

A4
7]
Layer 1
» A neural network composes a cascade of layers X1
X1
A4
» Each of which are themselves compositions of -
z> = Hy x4 > xzza[zz}
linear maps with pointwise nonlinearities Layer 2
X2
X2
» Does not scale to large dimensional signals x |
Z3
Z3ZH3,X2 > X3:0'|:Z3}
Layer 3
> x3 = ®(x; H)
slide credit: Alejandro Ribeiro 9
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Convolutional Neural Networks (CNNs)

» A convolutional NN composes a cascade of layers 7
zi = hy »x > xlza[zl}
i e Layer 1
» Each of which are themselves compositions of
X1
convolutions with pointwise nonlinearities .
Y
k 2
» Scales well. The Deep Learning workhorse 2y =hy * x > Xp = U[Zz}
Layer 2
» A CNNs are minor variation of convolutional filters X2
X2
= Just add nonlinearity and compose "
® Z3
= They scale because convolutions scale 23 = h3 * x > X3 = 0[23}
Layer 3
> x3 = ®(x; H)

"-' ini p il Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Alejandro Ribeiro 10



When we Think of Time Signal as Supported by a Line Graph

- : K—1
r4
» Those convolutions are polynomials on the =Y hcha i o a[zl}
k=0
adjacency matrix of a line graph Layer 1
X1
X1
Y
K—1
| =
Zy = h2kSkX1 > X2:O'[Zz}
k=0
Layer 2
. . . X
» Just another way of writing convolutions and § *
2
Just another way of writing CNNs v
K—1 . z3
Z3 = h3kS X > X3:0'|:23}
, L. k=0
» But one that lends itself to generalization Layer 3
> x3 = ®(x; H)

Probabilistic Graphical Models and Their Applications | Bernt Schiele

slide credit: Alejandro Ribeiro
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Graph Neural Networks (GNNs)

» The graph can be any arbitrary graph

» The polynomial on the matrix representation S

becomes a graph convolutional filter

W24 W6
?/» 6 ﬂ
w34 Wo5 Whs6 wa7 RN
0 -
Q0.0

, S -7
W35 W57

¥
K—1
7]
zlzzmkskx > xlza[zl}
k=0
Layer 1
X1
X1
¥
K—1
k 22
Zy = thS X1 > XQZU[ZQ}
k=0
Layer 2
X2
X2
L
K—1 . z3
Z3 = h3kS X > X3:0'|:Z3}
k=0
Layer 3

> x3 = ®(x; S, H)

il p il Probabilistic Graphical Models and Their Applications | Bernt Schiele
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Graph Neural Networks (GNNs)

A4
K—1 ‘ Zi
Zy = hik " x > Xy =a|z
» A graph NN composes a cascade of layers : kz=0 b : [ 1}
Layer 1
X1
» Each of which are themselves compositions of X1
- - - - - - - ‘(
graph convolutions with pointwise nonlinearities K=i : 2
Zy = h2kS X1 > X2:O'[Zz}
k=0
Layer 2
» A NN with linear maps restricted to convolutions %5
X2
- - - \r
» Recovers a CNN if S describes a line graph K—1 i
k 3
z3:Zh3kS X > X3:0'|:Z3}
k=0
Layer 3

> x3 = ®(x; S, H)
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slide credit: Alejandro Ribeiro
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Nodes, Edges, Weights

» A graph is a triplet G = (V, £, W), which includes vertices V, edges £, and weights W
= Vertices or nodes are a set of n labels. Typical labels are V = {1,...,n}
= Edges are ordered pairs of labels (/). We interpret (i,j) € £ as “i can be influenced by j."

= Weights w; € R are numbers associated to edges (/,). “Strength of the influence of j on i."

W42 W46

?VS

~_ w\_____,/
W3s Ws7

slide credit: Alejandro Ribeiro
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Directed Graphs

» Edge (/,J) is represented by an arrow pointing from j into /. Influence of node j on node i
= This is the opposite of the standard notation used in graph theory
» Edge (i,j) is different from edge (j,i) = It is possible to have (i,j) € .£ and (j,i) € £

» If both edges are in the edge set, the weights can be different = It is possible to have wj # w;

—

W35

Ww7s
w31 87
v
Ws7

slide credit: Alejandro Ribeiro
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Symmetric Graphs

» A graph is symmetric or undirected if both, the edge set and the weight are symmetric
= Edges come in pairs = We have (/,j) € € if and only if (j,i) € £

= Weights are symmetric = We must have w; = wj; for all (i,j) € £

Woq W6
i
W34 W2

e
W/’Q S .
5 Wse Wyt
W23 We7
>-0._0_0—~

Vv

W53 — Wi3s Ws7

slide credit: Alejandro Ribeiro
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Unweighted Graph

» A graph is unweighted if it doesn’t have weights
= Equivalently, we can say that all weights are units = w;; =1 for all (i,j) € £

» Unweighted graphs could be directed or symmetric

OWO

slide credit: Alejandro Ribeiro
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Weighted Symmetric Graph

» Graphs can be directed or symmetric. Separately, they can be weighted or unweighted.

» Most of the graphs we encounter in practical situations are symmetric and weighted

Wao4 Wiae
&£ &
P @
W34 Wasg Whs6 Wa7
W23 We7

w Y\‘*-—-_._._—-“"‘”
W35 Ws7

slide credit: Alejandro Ribeiro
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Graph Shift Operators

» Graphs have matrix representations. Which in this course, we call graph shift operators (GSOs)

slide credit: Alejandro Ribeiro
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Adjacency Matrix

» The adjacency matrix of graph G = (V, £, W) is the sparse matrix A with nonzero entries

» If the graph is symmetric, the adjacency matrix is symmetric = A = K" .

Waq4 = Wag2

&L~
le:VV)
WBI_V%\')O °

u

W53 = W35

W32 = W23

Aij = w;, forall (i,j) e &

W45 = Wig

w21
w31

o

W12

w32
w42

W13
W23

W53

0 0 ]
wos O

0 W35

0 W45
Wis4 0 |

As in the example

slide credit: Alejandro Ribeiro
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Adjacency Matrix for Unweighted Graph

» For the particular case in which the graph is unweighted. \Weights interpreted as

Aij =1, forall (i,j)eé&

1
@ O
/

0 4 % O 0

¥y O 4 4 0

o 1 A= 1 1 0 ( 1
0 1 O O 1

I ) 1 1 0

\) 0 0
~Q._0
1

units

slide credit: Alejandro Ribeiro
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Neighborhood and Degree

» The neighborhood of node i is the set of nodes that influence i = n(i) :={j: (i,j) € £}

» Degree d; of node i is the sum of the weights of its incident edges = d; = Z wij = Z Wij
JEN(i) Ji(iJ))EE}

W24 = Wi2
4 A
w1
| / » Node 1 neighborhood = n(1) ={2,3}
1 w3 = wag Was = Weq
\ » Node 1 degree = n(1) = wyo + wis
W13
W53 = W35

slide credit: Alejandro Ribeiro
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Degree Matrix

» The degree matrix is a diagonal matrix D with degrees as diagonal entries = D; = d;

» Write in terms of adjacency matrix as D = diag(Al). Because (Al); = >  w; = d;

A

1
®© O
/

¢ 0 0 0 0

0 3 0 0 0
o 1 1 D=0 D 3 O '0

O 0 0 2 O

0O O 2

'1\,0 ° I 0 0 _
- 7
1

slide credit: Alejandro Ribeiro
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Laplacian Matrix

» The Laplacian matrix of a graph with adjacency matrix Ais = L =D — A = diag(Al) — A
» Can also be written explicitly in terms of graph weights A; = w;
= Off diagonal entries = Lj = —Aj = —w;

= Diagonal entries = L; = di = Z Wy
jen(i)

1
© O
1
r B = =B & O /
i @ =l =d P
o [ |
0 -1 0 2 -1
9_ 0
-
1

slide credit: Alejandro Ribeiro
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Graph Shift Operator

» The Graph Shift Operator S is a stand in for any of the matrix representations of the graph

Adjacency Matrix Laplacian Matrix Normalized Adjacency Normalized Laplacian

S=A S=1L S=A s=1L

» If the graph is symmetric, the shift operator S is symmetric = S =S7

» The specific choice matters in practice but most of results and analysis hold for any choice of S

slide credit: Alejandro Ribeiro
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Graph Signals

» Graph Signals are supported on a graph. They are the objets we process in Graph Signal Processing

slide credit: Alejandro Ribeiro
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Graph Signals

» Consider a given graph G with n nodes and shift operator S
» A graph signal is a vector x € R" in which component x; is associated with node i

» To emphasize that the graph is intrinsic to the signal we may write the signal as a pair = (S,x)

X2 ' X4 X6

h °X8
X3 ° X7

X5

» The graph is an expectation of proximity or similarity between components of the signal x

x ini p i Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Alejandro Ribeiro 28




Graph Signal Diffusion

» Multiplication by the graph shift operator implements diffusion of the signal over the graph

» Define diffused signal y = Sx = Components are y; = Z Wij Xj = \ “

JEnN(i)

= Stronger weights contribute more to the diffusion output

= Codifies a local operation where components are mixed with components of neighboring nodes.

2 wo4 X4 Wae X6
X1 W34 Wo5 W56 W47 X3
w23 We7
A - - 7 X7
X3 3B X na slide credit: Alejandro Ribeiro
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Diffusion Sequence

» Compose the diffusion operator to produce diffusion sequence = defined recursively as

x(k+1) — Sx(k), with x© = x

» Can unroll the recursion and write the diffusion sequence as the power sequence = x'¥) = §*x

slide credit: Alejandro Ribeiro

Calll pu
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Observations about Diffusion Sequences

» The kth element of the diffusion sequence x*) diffuses information to k-hop neighborhoods

= One reason why we use the diffusion sequence to define graph convolutions

» We have two definitions. One recursive. The other one using powers of S

= Always implement the recursive version. The power version is good for analysis

x(1) — §x(0) — gly x(2) = sx(1) = §2¢ x(3) = sx(2) = §3x

slide credit: Alejandro Ribeiro
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Graph Convolutional Filters

» Graph convolutional filters are the tool of choice for the linear processing of graph signals

slide credit: Alejandro Ribeiro
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Graph Filters

» Given graph shift operator S and coefficients hi, a graph filter is a polynomial (series) on S
S
k=0
» The result of applying the filter H(S) to the signal x is the signal

W = S)x_thSx

» We say that y = h s x is the graph convolution of the filter h = {h}72, with the signal x

slide credit: Alejandro Ribeiro
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From Local to Global Information

» Graph convolutions aggregate information growing from local to global neighborhoods

» Consider a signal x supported on a graph with shift operator S. Along with filter h = { hy ?:—01

K1
» Graph convolution output = y = hxs x = hoS°x 4+hS'x +hS%x +hS°x 4+...= Z heS* x
k=0

slide credit: Alejandro Ribeiro
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Transferability of Filters Across Graphs

» The same filter h = {hc}72, can be executed in multiple graphs = We can transfer the filter

Graph Filter on a Graph Same Graph Filter on Another Graph

» Graph convolution output = y = hxs x = hoS° x +h;S'x +hS’x +h:S°x +... = Z hkSkx
k=0

» Output depends on the filter coefficients h, the graph shift operator S and the signal x

slide credit: Alejandro Ribeiro
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Graph Convolution Filters as Diffusion Operators

» A graph convolution is a weighted linear combination of the elements of the diffusion sequence

» Can represent graph convolutions with a shift register = Convolution = Shift. Scale. Sum

e V _‘ s » ‘; v:‘: : .-..,:‘ ‘.: s L ; .
“\ & xﬂ R 7, S o TR < "'\ ) w v >
L& mSSaPp” 1Bt o
‘ [ v. \ \‘*‘:‘ ’ i‘ ¥ ‘ ¥ ..‘ y 1:‘:‘ i \‘ ’ v
‘:a_n- -\ . : ~ N T g \:
* L L ey
S%% Slx S%x
> S > S > S
ho hy h
i 2 B y=h *5 X
hoS° h, St h,S? h 53
09 X + Mma°x + N237x + n3

slide credit: Alejandro Ribeiro
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Time Convolutions as a Particular Case of Graph Convolutions

slide credit: Alejandro Ribeiro
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Convolutions in Time

» Convolutional filters process signals in time by leveraging the time shift operator

XO e 1 XO & 1 XO N 1 XO
X - X2 — -
X1 f X3 I X1 § X_9 ® x1 X_3 X_»p [
Xp Xn—1 = shift(x,) X;i_n= shift2(xn) A — shiftg(xn)
Xn Xn—1 Xpn—2 Xn—3
> 1 > 1 > 1
ho hl hz h3
+ >+ >+ >+ LR
& A 4 & g
hoxn h1Xp—1 haxp—2 h3xp—3
K1
» The time convolution is a linear combination of time shifted inputs = y, = E 1% )
k=0

slide credit: Alejandro Ribeiro
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Time Signals Represented as Graph Signals

» Time signals are representable as graph signals supported on a line graph S = The pair (S, x)

X0 X0 X0 )
X2 X-—l X2 X—l X—l
Xl I X3 T Xl I x 9 I p Xl X_3 X 2 T
2 3
X Sx D% avx

0 0 0 X_3
= sfea] =sfs(sn)] = [FHEE| ) - [

X3 xO

» Components of the shift sequence are powers of the adjacency matrix applied to the original signal

= We can rewrite convolutional filters as polynomials on S, the adjacency of the line graph

fif i p ([} Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Alejandro Ribeiro
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The Convolution as a Polynomial on the Line Adjacency

» The convolution operation is a linear combination of shifted versions of the input signal

» But we now know that time shifts are multiplications with the adjacency matrix S of line graph

X X X X

2 X2 " | 9 ) b | A X-1 ¥
X1 & 3 I x1 ¥ o I xq A3 X_o I
L ®

-0->0-0-0— -0->0-0-60— -0->-0-0->0—> > > > > >
S Six S2x S3x
> S > S > S
h[) hl h? h3
y = h xg x
hoS°x h1S'x hyS?x h3S>x
|
» Time convolution is a polynomial on adjacency matrix of line graph = y=hxx = E hS"x
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The Time Convolution Gneralized to Arbitrary Graphs

» |f we let S be the shift operator of an arbitrary graph we recover the graph convolution

gv gl S2 g3
X " S X = S X 3 S X
hg h1 h2 h3
i i - y = h %g x
A 4 A 4 A i
hoS°x hS'x h,S?x hyS3x

slide credit: Alejandro Ribeiro
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Learning with Graph Signals

» Almost ready to introduce GNNs. We begin with a short discussion of learning with graph signals

slide credit: Alejandro Ribeiro
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Empirical Risk Minimization

» In this course, machine learning (ML) on graphs = empirical risk minimization (ERM) on graphs.

» In ERM we are given:
= A training set 7 containing observation pairs (x,y) € 7. Assume equal length x,y, € R"
= A loss function /(y,y) to evaluate the similarity between y and an estimate ¥
= A function class C

» Learning means finding function ®* € C that minimizes loss E(y? dD(x)) averaged over training set

» We use ®*(x) to estimate outputs § = ®"(x) when inputs x are observed but outputs y are unknown

slide credit: Alejandro Ribeiro
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Empirical Risk Minimization with Graph Signals

» In ERM, the function class C is the degree of freedom available to the system’s designer

®* = argmin Z g(y,d)(x))

beC (x,9)ET

» Designing a Machine Learning = finding the right function class C

» Since we are interested in graph signals, graph convolutional filters are a good starting point

Probabilistic Graphical Models and Their Applications | Bernt Schiele slide credit: Alejandro Ribeiro 44




Learning with Graph Convolutional Filters

» Input / output signals x / y are graph signals supported on a common graph with shift operator S

» Function class = graph filters of order K supported on S = &(x) = Z heS¥x = (x;S,h)
= = ®(x; S.h
RN Z:thskx —z)(x h)
k=0

» Learn ERM solution restricted to graph filter class = h™ = argmin Z f(y? ®(x;S,h ))
h
(x,y)eT

= Optimization is over filter coefficients h with the graph shift operator S given

slide credit: Alejandro Ribeiro
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When the Output is Not a Graph Signal: Readout

» Outputs y € R” are not graph signals = Add readout layer at filter's output to match dimensions

Wi
» Readout matrix A € R™*" yields parametrization = A x ®(x;S,h) = A x Z h.S*x
k=0

K—1 ’ :

z=®(x;S.h A x ®(x;S.h

——3 zZ — E hkSkx ( )‘ A —>( )
k=0

A

» Making A trainable is inadvisable. Learn filter only. = h™ = argmin Z E(y, A < O x; S:h))
(x,y)eT

» Readouts are simple. Read out node i = A = e/ . Read out signal average = A =1".

slide credit: Alejandro Ribeiro
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Graph Neural Networks (GNNs)

slide credit: Alejandro Ribeiro
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Pointwise Nonlinearity

» A pointwise nonlinearity is a nonlinear function applied componentwise. Without mixing entries

i X1 ] T O(Xl) i
X2 O'(XQ)
» The result of applying pointwise o to a vector x is = & [x} =] | =
| xn | L o(xn) |

» A pointwise nonlinearity is the simplest nonlinear function we can apply to a vector

» RelLU: o(x)=max(0, x). Hyperbolic tangent: o(x)=(e* —1)/(e** +1). Absolute value: o(x)=|x|.

» Pointwise nonlinearities decrease variability. = They function as demodulators.

slide credit: Alejandro Ribeiro
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Learning with a Graph Perceptron

» Graph filters have limited expressive power because they can only learn linear maps

K—1
» A first approach to nonlinear maps is the graph perceptron = ®(x) =0 [ Z heS*x | = ®(x; S,h)
k=0
§ X1 i i O’(Xl) ]
K—1 ®(x; S, | X2 o(x2)
X - z:thSkx = U[z] —(x) ) O“[x]:(_f : =
k=0 : :
Perceptron . Xn | s O-(Xf?) _

» Optimal regressor restricted to perceptron class = h" = argmin E f(y, ®(x;S,h ))
h
(x.y)eT

= Perceptron allows learning of nonlinear maps = More expressive. Larger Representable Class
slide credit: Alejandro Ribeiro
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Graph Neural Network (GNN)

» To define a GNN we compose several graph perceptrons = We layer graph perceptrons

» Layer 1 processes input signal x with the perceptron hy = [hio, ..., h1.k—1] to produce output x;

K—1
X1 :O'[Zl} —O'|:Z hlkst]
k=0

» The Output of Layer 1 x; becomes an input to Layer 2. Still x; but with different interpretation

» Repeat analogous operations for L times (the GNNs depth) = Yields the GNN predicted output x;

slide credit: Alejandro Ribeiro
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The GNN Layer Recursion

» A generic layer of the GNN, Layer 7, takes as input the output x;—; of the previous layer (¢ — 1)

» Layer ¢ processes its input signal x,—1 with perceptron hy = [heo, . . ., he.k—1] to produce output x¢

K—1
Xp = O‘[Zg] = O'|:; hfk Sk Xg,lil

» With the convention that the Layer 1 input is xo = X, this provides a recursive definition of a GNN

> If it has L layers, the GNN output = x; = cb(x; s, hl,...,hL) - q>(x; S,’H)

» The filter tensor H = [hy, ... h;] is the trainable parameter. The graph shift is prior information

' slide credit: Alejandro Ribeiro
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slide credit: Alejandro Ribeiro

GNN Block Diagram

XO —t 4
_ . : K—1 >
» lllustrate definition with a GNN with 3 layers z1= 3 hySKx L X — 0[21}
k=0
Layer 1
\rxl
» Feed input signal x = xp into Layer 1 X1
A
K—1
e 7 A
i K 7o — hgkskxl 2‘; xzzcr[zz}
X1=J[21]:G ths X0 k=0
k—0 Layer 2
\fxz
X2
» Last layer output is the GNN output = ®(x;S, H) v
K1 ) -
Z3=Z hgks X2 > X3=0'[23}
=> Parametrized by filter tensor H = [hy, h2, h3] k=0

L Layer 3
X3 = ®(x;S,H)

e u
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GNN Block Diagram

XO —t 4
. moom . - = z
» lllustrate definition with a GNN with 3 layers z1= 3 hySKx L X — 0[21}
k=0
Layer 1
\rxl
» Feed Layer 1 output as an input to Layer 2 X1
A
K—1
K-1 k 22
K Zoi = hop S™ x1 > xzzcr[zz}
X2=J[Z2]:G thks X1 k=0
k—0 Layer 2
\fxz
X2
» Last layer output is the GNN output = ®(x;S, H) v
K1 ) -
Z3=Z hgks X2 > X3=0'[23}
=> Parametrized by filter tensor H = [hy, h2, h3] k=0

L Layer 3
X3 = ®(x;S,H)

ULy -
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GNN Block Diagram

XO —t 4
. moom . - = z
» lllustrate definition with a GNN with 3 layers z1= 3 hySKx L X — 0[21}
k=0
Layer 1
\rxl
» Feed Layer 2 output as an input to Layer 3 X1
A
K—1
K-1 k 22
K Zoi = hop S™ x1 > xzzcr[zz}
X3=J[Z3]:G Zh3k5 X2 k=0
k—0 Layer 2
\fxz
X2
» Last layer output is the GNN output = ®(x;S, H) v
K1 ) -
Z3=Z hgks X2 > X3=0'[23}
=> Parametrized by filter tensor H = [hy, h2, h3] k=0

L Layer 3
X3 = ®(x;S,H)



Some Observations about Graph Neural Networks
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Components of a Graph Neural Network

Z]

N
=
Il
=
=
==
wn
»
L 4
*
iy
Il
q
| —|
N
i
| I—

» A GNN with L layers follows L recursions of the form k=0

K—1 ¥
Xp = CJ'|:ZQ:| = O’[Z hey S¥ Xg_ll =

k=0 y
K—1 ; 25
7o — hoi S x1 > xzzo[zz}
k=0
Layer 2
» A composition of L layers. Each of which itself a... X1
Y
X1
Y
= Compositions of Filters & Pointwise nonlinearities K=1 . 23
Z3 = h3k5 X2 > X3=O'[Z3}
k=0

Y T T
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Components of a Graph Neural Network

Xp =X

Z]

Y
>
i
Il
Q

{ —
N
e

| I—

K—1
Zy = Z hyk sk x
k=0

» A GNN with L layers follows L recursions of the form

K—1 ¥
Xp = CJ'|:ZQ:| = O’[Z hey S¥ Xg_ll =

k=0 y
K~—1
23
Zo — thSkxl > xzzo[zz}
k=0
Layer 2
» Filters are parametrized by... X1
Y
X1
Y
= Coefficients hyi, and graph shift operators S K=1 . 23
Z3 = hgks X2 > X3=O'[Z3}
k=0




Components of a Graph Neural Network

» A GNN with L layers follows L recursions of the form

K-—1
K= CJ'|:ZQ:| = O’[Z hok Sng_ll

k=0

» Output x; = P(x;S,H) parametrized by...

= Learnable Filter tensor H = [hy,... h;]

N

Xp =X

slide credit: Alejandro Ribeiro

K—1 z
Zl:z hlkskx > X1=O'[Zl}
k=0
Layer 1
\rxl
X1
Y
K=1 . P
Zo — hoj S™ x1 > xzzo[zz}
k=0
Layer 2
X1
4
X1
Y
K—1 z3
Z3 = hgks X2 > X3=O'[Z3}
k=0
L Layer 3
x3 = ®(x; S, H)
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Learning a Graph Neural Network

K—1 ; -
lez hlkS X > xlza[zl}
k=0
» Learn Optimal GNN tensor H* = (h},h}, h}) as Layer 1
\rx]‘
X1
H* = argmin Z E(d)(x; S,?{),y) |
(x,y)ET K—-1 2
Zo — thSkxl > xzzd[zz}
k=0
Layer 2
el it y o x
» Optimization is over tensor only. Graph S is given v
X1
- - - - ‘r
= Prior information given to the GNN K—1 ,
3
Z3 = hgks X2 > X3=O'[Z3}
k=0
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Graph Neural Networks and Graph Filters

Xp =X
» GNNs are minor variations of graph filters o
z
z1=Zh1ks”‘x L x1=a[zl}
k=0
- - , L ol Layer 1
» Add pointwise nonlinearities and layer compositions
\rx]‘
: - s i - X1
=> Nonlinearities process individual entries
A
s . K~—1 .
= Component mixing is done by graph filters only 2y = by 5%y 2 s a 0«[22}
k=0
Layer 2
2 |
» GNNs do work (much) better than graph filters - Y
Y
K1 : -
Zg:Z hgks X2 > X3=O'[Z3}
k=0

L Layer 3
x3 = ®(x; S, H)

X\\Qf‘;:' -__— I\’ - e e e



Fully Connected Neural Networks
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The Road not Taken: Fully Convolutional Neural Networks

» We chose graph filters and graph neural networks (GNNs) because of our interest in graph signals
» We argued this is a good idea because they are generalizations of convolutional filters and CNNs

» We can explore this better if we go back to the road not taken = Fully connected neural networks

?ﬁ | E%g E 553
000000000, 05,
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Learning with a Linear Classifier

» Instead of graph filters, we choose arbitrary linear functions = ®(x) = &(x; H) = Hx

X z = 90:H)

» Optimal regressor is ERM solution restricted to linear class = H" = argmin Z €(¢(x; H)’y)
(x.y)€T

slide credit: Alejandro Ribeiro
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Learning with a Linear Perceptron

» We increase expressive power with the introduction of a perceptrons = ®(x) = ®(x; H) = O{HX]

v
4

X z
z=Hx 0’[2}

Perceptron

> O(x; H)

» Optimal regressor restricted to perceptron class = H" = argmin Z E(di(x; H)?y)

(x,y)€T

slide credit: Alejandro Ribeiro
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Fully Connected Neural Network

» A generic layer, Layer ¢/ of a FCNN, takes as input the output x,—; of the previous layer (¢ — 1)

» |ayer ¢ processes its input signal x,_; with a linear perceptron H, to produce output x;

X = a[zf,] - U[Hf x{__l]

» With the convention that the Layer 1 input is Xo = X, this provides a recursive definition of a GNN

» The filter tensor H = [Hy, ..., H;]| is the trainable parameter.

slide credit: Alejandro Ribeiro

Probabilistic Graphical Models and Their Applications | Bernt Schiele 65



Fully Connected Neural Network

» lllustrate definition with an FCNN with 3 layers

» Feed input signal x = xg into Layer 1

= o]a] = o[ Hux]

» Output ®(x; H) Parametrized by H = [H1, Ho, H3]

slide credit: Aleja

Xp =X
7
z; = Hix > xlzo[zl}
\rxl
X1
Y
Z3
zo = Hy x1 > xzzd[zg}
X2
¥
X2
¥
Z3
z3 = H3a x > X3 =0z
3 3 A2 3 3

ndro Ribeiro

Layer 2
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Fully Connected Neural Network

z
z; = Hix > x1=o[zl}
» lllustrate definition with an FCNN with 3 layers )
ayer 1
\rxl
X1
» Feed Layer 1 output as an input to Layer 2 .
2]
zo = Hy x1 > xzzd[zg}
X2 =0 [22] = [ H> X1] Layer 2
x2
Y
X2
Y
» Output ®(x; H) Parametrized by H = [H1, Ho, H3] e 73 o 0[23}




Fully Connected Neural Network

» lllustrate definition with an FCNN with 3 layers

» Feed Layer 2 output as an input to Layer 3

o = ofzs] = o[ Hsxa]

» Output ®(x; H) Parametrized by H = [H1, Ho, H3]

slide credit: Aleja

Xp =X
7
z; = Hix > x1=o[zl}
\rxl
X1
A
Z3
zo = Hy x1 > xzzd[zg}
X2
Y
X2
¥
Z3
z3 = H3a x > X3 =0z
3 3 A2 3 3

ndro Ribeiro

Layer 2



Neural Networks vs Graph Neural Networks
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Which is Better: Graph NN or Fully Connected NN

» Since the GNN is a particular case of a fully connected NN, the latter attains a smaller cost

m|n Z €(¢ )g m%iin Z f(tb(x;S;’H)?y)

(x,y)€T (x,y)€T

» The fully connected NN does better. But this holds for the training set

» |n practice, the GNN does better because it generalizes better to unseen signals

= Because it exploits internal symmetries of graph signals codified in the graph shift operator

slide credit: Alejandro Ribeiro
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Generalization with a Neural Network

» Suppose the graph represents a recommendation system where we want to fill empty ratings
» We observe ratings with the structure in the left. But we do not observe examples like the other two

» From examples like the one in the left, the NN learns how to fill the middle signal but not the right

X10

slide credit: Alejandro Ribeiro
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Generalization with a Graph Neural Network

» The GNN will succeed at predicting ratings for the signal on the right because it knows the graph

» The GNN still learns how to fill the middle signal. But it also learns how to fill the right signal

X10

slide credit: Alejandro Ribeiro
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Permutation Equivariance of GNNs

» The GNN exploits symmetries of the signal to effectively multiply available data

» This will be formalized later as the permutation equivariance of graph neural networks

X10
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Permutation Equivariance of Graph Filters

» We will show that graph convolutional filters are equivariant to permutations

slide credit: Alejandro Ribeiro
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Permutation Matrices

Definition (Permutation matrix)

A square matrix P is a permutation matrixif it has binary entries so that P € {0, 1}"*"

and it further satisfies P1 =1and P'1 = 1.

» The product P7x reorders the entries of the vector x.

» The product PSP is a consistent reordering of the rows and columns of S

slide credit: Alejandro Ribeiro
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Permutation Matrices

Definition (Permutation matrix)

A square matrix P is a permutation matrixif it has binary entries so that P € {0, 1}"*"

and it further satisfies P1 =1and P'1 = 1.

» Since P1 = P71 = 1 with binary entries = Exactly one nonzero entry per row and column of P

» Permutation matrices are unitary = P'P = 1. Matrix P’ undoes the reordering of matrix P

slide credit: Alejandro Ribeiro
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Relabelling of Graph Signals

» If (S, x) is a graph signal, (P"SP,P'x) is a relabeling of (S, x). Same signal. Different names

Graph signal x Supported on S Graph signal X = P " x supported on S=PTsp

X10 Xg

» Processing should be label-independent = Permutation equivariance of graph filters and GNNs

slide credit: Alejandro Ribeiro
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Graph Filters and the Permutation of Graph Signals

» Graph filter H(S) is a polynomial on shift operator S with coefficients hx. Outputs given by

K—1
H(S)x =~ hS*x
k=0

» We consider running the same filter on (S, x) and permuted (relabeled) (5.%) = (PSP, P"x)

=1 K—1
H(S)x = > mS'x H(S)x = hiS*%
k=0 k=0
» Filter H(S)x = Coefficients hy. Input signal x. Instantiated on shift S

» Filter H(g)ﬁ = Same Coefficients hy. Permuted Input signal X. Instantiated on permuted shift S

slide credit: Alejandro Ribeiro

fff ini p | I Probabilistic Graphical Models and Their Applications | Bernt Schiele 78




Permutation Equivariance of Graph Filters

Theorem (Permutation equivariance of graph filters)

Consider consistent permutations of the shift operator S =P7SP and input signal X = P”x. Then

H(S)x = P H(S)x

» Graph filters are equivariant to permutations = Permute input and shift = Permute output

slide credit: Alejandro Ribeiro
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Proof of Permutation Equivariance of Graph Filters

Proof: Write filter output in polynomial form. Use permutation definitions S=P'SP and £ =P'x

=
L}

K—1

5 A k
HS% = S héfx = hk(PTSP> P x
0 0

>~
Il
>~
Il

> In the powers (PTSP)k . P and PT undo each other (P'P — 1) = (PTSP)k =p’ (S)kP

» Substitute this into filter's output expression. Cancel remaining PP’ = | product. Factor P

K—1 K—1 K—1
HS)R = > mP'SPP'x = > mP's‘x = PT ) mSc = PTH(S)x |
k=0 k=0 k=0

slide credit: Alejandro Ribeiro
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Graph Filter Processing is Independent of Graph Labeling

» We requested signal processing independent of labeling = Graph filters fulfill this request

= Permute input and shift = Relabel input = Permute output = Relabel output

Graph signal x Supported on S Graph signal X = P x supported on S=PTsp

X10 X8

slide credit: Alejandro Ribeiro
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Graph Filter Processing is Independent of Graph Labeling

» We requested signal processing independent of labeling = Graph filters fulfill this request

= Permute input and shift = Relabel input = Permute output = Relabel output

Filter's output H(S)x Supported on S Filter's Output H(g)i supported on S

XQ X X12 X

8 9
pre s S X5
{ xq x7 xg HE i x4 x10
X6 \ X‘2/ X3

slide credit: Alejandro Ribeiro
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Graph Filter Processing is Independent of Graph Labeling

» We requested signal processing independent of labeling = Graph filters fulfill this request

= Permute input and shift = Relabel input = Permute output = Relabel output

Filter's output H(S)x Supported on S Equivariance theorem = H(8)% = PTH(S)x

XQ X

8
pr 3
x1 x7 xg

X9
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Permutation Equivariance of Graph Neural Networks

» We will show that graph neural networks inherit the permutation equivariance of graph filters

slide credit: Alejandro Ribeiro
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GNNs and Permutations of Graph Signals

» L layers recursively process outputs of previous layers. GNN Output parametrized by tensor H

K-—1
Xy _O'[ Z hngng_ll =0

k=0

H;(S)x£_1] <1>(x; S, 7{,) = %
- : & o\ _ (pT T
» We consider running the same GNN on (S, x) and permuted (relabeled) (S,%) = (P'SP,P"x)
o(x s, H) o(% 8§ M)

» GNN Cb(x; S,’H) =3 Tensor H. Input signal x. Instantiated on shift S

» GNN CD()’E; S, ’H) = Same Tensor H. Permuted Input signal X. Instantiated on permuted shift S

slide credit: Alejandro Ribeiro
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Theorem (Permutation equivariance of graph neural networks)

Consider consistent permutations of the shift operator S =P7SP and input signal X = P”x. Then

d(%;S,H) = P d(x;S,H)

» GNNSs equivariant to permutations = Permute input and shift = Permute output

slide credit: Alejandro Ribeiro
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Proof of Permutation Equivariance of GNNs

Proof: GNN Layer ¢ recursion on signal x,—; and shift S = x, =o Z hex S¥x0_1 | = & H:(S)x/—1

GNN Layer ¢ recursion on signal X,_; and shift S =% =0 Z ho S¥%0_1 | =0 H((g)x(_l

» Assume Layer ¢ inputs satisfy %,_1 = P”x,_1. Filters are equivariant. Linearity is pointwise

%, = U{H,{(é)sa{l] - O'[PTHg(S)Xgl] - PTU[Hg(S)x{;ll = P'x,

» This in an induction step At Layer 1 we have ¥ = P”x by hypothesis. Induction is complete. |
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GNNs Processing is Independent of Labeling

» GNNs, same as graph filters, perform label-independent processing. The nonlinearity is pointwise

= Permute input and shift = Relabel input = Permute output = Relabel output

Graph signal x Supported on S Graph signal x = X supported on S = S

X10 X8
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GNNs Processing is Independent of Labeling

» GNNs, same as graph filters, perform label-independent processing. The nonlinearity is pointwise

= Permute input and shift = Relabel input = Permute output = Relabel output

A

GNN output ®(x; S, H) supported on S GNN &(%;S.,H) =P ®(x;S,H)on S =P'S

XQ X X12 X

8 9
gxz axs

x| x7 xg HE ' x4 x10
xﬁ \ x2/ x3
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Equivariance to Permutations and Signal Symmetries

» Equivariance to permutations allows GNNs to exploit symmetries of graphs and graph signals

» By symmetry we mean that the graph can be permuted onto itself = S=FP"'S
» Equivariance theorem implies = CD( X 577{) = d)( AL S fH) = d)(x; S,'H)
From observing x supported on S Learn to process ' ' x supported on S = S

Gy

() :

X10

X11 Xx12
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Symmetry is Rare but Quasi-Symmetry is Common

» Graph not symmetric but close to symmetric = perturbed version of a permutation of itself

X10
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