

Probabilistic Graphical Models and Their Applications

Dense Conditional Random Fields for Semantic Image Segmentation

@ Jan 6, 2021

Bernt Schiele

www.mpi-inf.mpg.de/gm/

Max Planck Institute for Informatics & Saarland University, Saarland Informatics Campus Saarbrücken

Overview Today's Lecture

- Semantic Image Segmentation as a Dense Labeling Problem
- Conditional Random Field (CRF) Models
 - vs. Markov Random Field Models
- Dense CRF Model
- Integration of Deep Learning and CRFs
- Suggested Readings:
 - [1] Efficient Inference in Fully Contected CRFs with Gaussian Edge Potential, Philipp Krähenbühl and Vladlen Koltun, NeurIPS 2011 (<u>https://arxiv.org/abs/1210.5644</u>)
 - [2] Conditional Random Fields Meet Deep Neural Networks for Semantic Segmentation, Arnab, Zheng, et al., IEEE Sig. Proc. Magazine, 2018 (<u>https://www.robots.ox.ac.uk/~tvg/publications/2017/CRFMeetCNN4SemanticSegmentation.pdf</u>)

Pictorial Overview of Today's Lecture

image credit: paper [2]

Semantic Image Segmentation

Probabilistic Graphical Models and Their Applications | Bernt Schiele

slide credit: Philipp Krähenbühl

Semantic Image Segmentation: Pixel-wise vs. Instance-Level

slide credit: Philipp Krähenbühl

Dense Labeling Problems

Probabilistic Graphical Models and Their Applications | Bernt Schiele

slide credit: Philipp Krähenbühl

Semantic Image Segmentation (Pixel-wise)

©mpn

Probabilistic Graphical Models and Their Applications | Bernt Schiele

slide credit: Philipp Krähenbühl

Classification

[1] TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modelin Texture, Layout, and Context, Shotton et.al. 2009 8

Classification

slide credit: Philipp Krähenbühl

Classification

- Train classifier $\psi(I)$
 - for each class I
 - TextonBoost [1]
- Pixels independent
 - noisy classification
- Large regional context
 - inaccurate around boundaries

[1] TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context, Shotton et.al. 2009 8

i-Class Object Recognition and Segmentation by Jointly Modelin

Probabilistic Graphical Models and Their Applications | Bernt Schiele

slide credit: Philipp Krähenbühl

slide credit: Philipp Krähenbühl

Probabilistic Graphical Models and Their Applications | Bernt Schiele

slide credit: Philipp Krähenbühl

slide credit: Philipp Krähenbühl

Probabilistic Graphical Models and Their Applications | Bernt Schiele

Probabilistic Graphical Models and Their Applications | Bernt Schiele

Probabilistic Graphical Models and Their Applications | Bernt Schiele

Probabilistic Graphical Models and Their Applications | Bernt Schiele

Probabilistic Graphical Models and Their Applications | Bernt Schiele

MRF Model of the (complete) Posterior for Image Denoising

• We can put the likelihood and the prior together in a single MRF model:

More Generally

$$p(X|I) = \frac{p(I|X)p(X)}{p(I)} \propto p(I|X)p(X)$$

- The quantity of interest: X = Output
 - true pixel values in image denoising
 - semantic labels in image segmentation
- The input / observation: I = Image
 - image denoising: I = noisy image
 - semantic segmentation: I = image

More Generally: Factorization Given the particular MRF Graph

slide adapted from: Stefan Roth

More Generally

• Goal of Inference often MAP (Maximum A Posteriori estimation):

$$\arg \max_{X} p(X|I) = \arg \max_{X} \left(p(I|X)p(X) \right)$$
$$= \arg \min_{X} \left(-\log p(I|X) - \log p(X) \right)$$

- For our MRF:
 - minimize the following "energy":

$$\begin{split} E(X) &= -\log p(I|X) - \log p(X) \\ &= -\sum_{i} \log p(I_i|X_i) - \sum_{i,j \in N_4} \log p(X_i, X_j) \\ &= \sum_{i} \psi_i(X_i|I) + \sum_{i,j \in N_4} \psi_{i,j}(X_i, X_j) \\ & \text{unary terms} \qquad \text{pairwise terms} \end{split}$$

More Generally: Factorization Given the particular MRF Graph

CRF (Conditional Random Field): Enhance Graphical Model with Additional Dependencies

slide credit: Philipp Krähenbühl

©mpn

Probabilistic Graphical Models and Their Applications | Bernt Schiele

slide credit: Philipp Krähenbühl

Pros:

- Probabilistic interpretation
- Parameter learning
- Combine with other models

Cons:

- Shrinking bias
- Models only local interactions

slide credit: Philipp Krähenbühl

Filtering

slide credit: Philipp Krähenbühl

slide credit: Philipp Krähenbühl

slide credit: Philipp Krähenbühl

slide credit: Philipp Krähenbühl

slide credit: Philipp Krähenbühl

slide credit: Philipp Krähenbühl

slide credit: Philipp Krähenbühl

slide credit: Philipp Krähenbühl

mpn

slide credit: Philipp Krähenbühl

mpn

slide credit: Philipp Krähenbühl 47

 $\tilde{v}_i = \sum_j w_{ij} v_j$

 $w_{ij} = \exp(-(s_i - s_j)^2 / \sigma_s) \exp(-(c_i - c_j)^2 / \sigma_c)$

- Efficient convolution
 - Permutohedral lattice [2]
 - compute all $\tilde{\nu_i}$ in linear time
 - 50-100ms / image

[2] Fast High-Dimensional Filtering Using the Permutohedral Lattice, Adams et.al. 2010

slide credit: Philipp Krähenbühl

slide credit: Philipp Krähenbühl

Probabilistic Graphical Models and Their Applications | Bernt Schiele

Pros:

- Long range interactions
- No shrinking bias
- Probabilistic interpretation
- Parameter learning
- Combine with other models

Cons:

- Very large model
 - 50'000 100'000 variables
 - billions pairwise terms
- Traditional inference very slow
 - MCMC "converges" in 36h
 - GraphCuts and alpha-exp.: no convergence in 3 days

- 0.2s / image
- Pairwise term
 - linear combination of Gaussians

Probabilistic Graphical Models and Their Applications | Bernt Schiele

WATER

?

?

?

?

0

?

?

- Potts model: µ(Xi,Xj) = [Xi≠Xj]
- Learned from data
- Appearance kernel
 - Color-sensitive
- Local smoothness
 - Discourages single pixel noise

Mean-Field Approximation

slide credit: Philipp Krähenbühl

Mean-Field Approximation

slide credit: Philipp Krähenbühl

slide credit: Philipp Krähenbühl

slide credit: Philipp Krähenbühl

©mpn

Probabilistic Graphical Models and Their Applications | Bernt Schiele

slide credit: Philipp Krähenbühl

slide credit: Philipp Krähenbühl

Efficient Message Passing

Update all variables simultaneously

$$\tilde{Q}_i^{(m)}(l) = \sum_j k^{(m)}(f_i, f_j)Q_j(l)$$

- Gaussian Convolution
 - Efficient approximation

@mpn

Probabilistic Graphical Models and Their Applications | Bernt Schiele

slide credit: Philipp Krähenbühl

slide credit: Philipp Krähenbühl

©mpn

Probabilistic Graphical Models and Their Applications | Bernt Schiele

slide credit: Philipp Krähenbühl

Parallel Mean-Field

- Not guaranteed to converge for general models
- Guaranteed to converge for fully-connected models with negative definite label compatibility
 - Potts models
 - L1 norms
 -
- Proof see Thesis or [3]
 - Reduction of Parallel Mean-Field to CCCP

[3] Parameter Learning and Convergent Inference for Dense Random Fields, Krähenbühl and Koltun, ICML 2013 42

slide credit: Philipp Krähenbühl

How Fast Will it Converge

slide credit: Philipp Krähenbühl

Cinhii

Pictorial Overview of Today's Lecture

mpn

Probabilistic Graphical Models and Their Applications | Bernt Schiele

image credit: paper [2]

101

Deep Convolutional Neural Networks...

- Top: (Sub-)Image Classification
- Bottom FCN (Fully Convolutional Neural Network)

Probabilistic Graphical Models and Their Applications | Bernt Schiele

image credit: paper [2]

Pascal VOC Semantic Segmentation Results

 Block 1: no deep learning (DL) 	Methods not using deep learning O2P [36] 47.8	
 Block 2: using deep learning (DL) but not CRF 	Methods not using a CRF SDS [37] FCN [6] Zoom-out [38]	51.6 67.2 69.6
	Methods using CRF for post-processing DeepLab [5] 71.6 EdgeNet [39] 73.6	
 Block 3: using DL + CRF 	BoxSup [40] Dilated Conv [27]	75.2 75.3
 but deep learning and CRF not trained jointly 	Centrale Boundaries [41] DeepLab Attention [42] LRR [30]	75.7 76.3 79.3
Ouestions	DeepLab v2 [43]	79.7

- Questions:
 - how to benefit better from both?
 - how to jointly learn?
 - can we perform "end-to-end" training?

table credit: paper [2]

Method

IoU [%]

Base Network

_

AlexNet VGG VGG

VGG VGG VGG VGG VGG ResNet ResNet

Dense CRF - Mean Field Inference Algorithm

How Many Mean Field Iterations?

- Classically:
 - Iterate until convergence
- Here:
 - Fix the number of iterations (in the figure T) and simply concatenate
 - called "CRF-as-RNN"

image credit: paper [2]

Pascal VOC Semantic Segmentation Results

 Block 1: no deep learning (DL) 	Methods not using deep learn O2P [36]	ing 47.8	_
 Block 2: using deep learning (DL) but not CRF 	Methods not using a CRF SDS [37] FCN [6] Zoom-out [38]	51.6 67.2 69.6	AlexNet VGG VGG
	Methods using CRF for post-processingDeepLab [5]71.6VGGTable Net [20]		
 Block 3: using DL + CRF 	BoxSup [40] Dilated Conv [27]	75.2 75.3	VGG VGG VGG
 but deep learning and CRF not trained jointly 	Centrale Boundaries [41] DeepLab Attention [42] LRR [30]	75.7 76.3 79.3	VGG VGG ResNet
 Block 4: end-to-end training of DL & CRF 	DeepLab v2 [43] Methods with end-to-end CRF	79.7 Ts	ResNet
	CRF as RNN [7] Deep Gaussian CRF [8] Deep Parsing Network [44]	74.7 75.5 77.5	VGG VGG VGG
	Context [32] Higher Order CRF [33]	77.8 77.9 80.2	VGG VGG ResNet
	Dup Gaussian Citi [0]	00.2	RUSINCE

Method

IoU [%]

Base Network

Pictorial Overview of Today's Lecture

mpn

Probabilistic Graphical Models and Their Applications | Bernt Schiele

image credit: paper [2]

107