
Exercises for Probabilistic Graphical Models

Sheet No. 3

Bernt Schiele

Due Date: 4th January
Hand in: by 11:59pm by email to Apratim Bhattacharyya (abhattac at mpi-

inf mpg de). Begin the subject of your e-mails with [PGM Exercise3]. You
should specify your first and last name as well matriculation number on sub-
mission. Please send your source code and all your results in a short report as
a pdf. Explain your observations in this report.

In this exercise you are introduced to Markov random fields and their appli-
cation to image denoising. We solve

p(true|noisy) = p(T |N) = p(N |T)P (T) (1)

with gradient ascent method and compare our results to median filtering method.
Finally, we have a look at different image priors p(T) and question the meaning
of this priors as well as the independence assumption.

1 Evaluation

Before we start with image denoising, we need an evaluation framework that
generates noisy images and calculates a performance measure to compare our
algorithms.

Tasks: (2 points)

• Generate artificial images with binary pixel values xij ∈ {0, 255} that
shows stripes (see left image), i.e.,

T = toy stripes(n, m, sSize),

1

and a checkerboard pattern (right image), i.e.,

T = toy checkerboard(n, m, cSize).

T is the true image of size n×m with stripe width sSize or black square
size cSize.

• Write a function that adds Gaussian noise to an existing image T :

N = add noise(T, sigma)

Also, write a function which adds salt and pepper noise (randomly occur-
ring black and white pixels):

N = add sp noise(T, p)

• Write a function that calculates peak signal-to-noise ratio

PSNR = 20 log10

(
255√
err

)
(2)

with reconstruction error err = (T −N)2/(nm).

psnr = calc psnr(T, N)

Hints:

• You can use matlab function random() with µ = 0 to add or substract
noise values from each pixel. Be sure that your pixel values are still in the
range of [0, 255].

• You should fix the random seed in your functions with Matlab function
RandStream. This makes all results comparable to each other.

2 Median Filtering

A simple image denoising technique is median filtering. As you will find out, it
often leads to blurred images.

Tasks: (3 points)

• Write a function T = median filter(N, nsize) that replaces each pixel
in a noisy image N with the median of the pixel values in a window of
size nsize× nsize around it. Take care at the image borders.

• Evaluate this denoising procedure on our different artificial examples with
10% salt’n’pepper noise and with the image la.png downloadable from
the course website after adding Gaussian noise with σ = 25 (10% of the
range). Show images before and after denoising and document PSNR for
these images. What do you observe?

• Vary the amount of noise for the image la.png.

2

3 MRF-based Denoising with Gradient Ascent

A better denoising technique is a MRF-based method with gradient ascent:

T t+1 ← T t + η∇T log p(T |N) (3)

with log p(T |N) = log p(N |T) + log p(T) + const. const is ignored in all
further computations as it doesn’t depend on T . We need the gradient of both
the likelihood log p(N |T) and the prior log p(T). For simplicity, let’s start with
a Gaussian log-likelihood

log p(N |T) =
∑
i,j

(
− 1

2σ2
(Ni,j − Ti,j)2

)
, (4)

as well as a Gaussian log-prior

log p(T) =
∑
i,j

log(fH(Ti,j , Ti+1,j)) + log(fV (Ti,j , Ti,j+1)) (5)

with

log fH = − 1

2σ2
(Ti,j − Ti+1,j)

2 (6)

for horizontal neighbors and log fV analogously.

Tasks: (8 points)

• Write a function

lp = denoising lp(T, N, sigma)

to compute the log-posterior,

g = denoising grad llh(T, N, sigma)

to compute the gradient of the log likelihood log p(N |T), and

g = mrf grad log gaussian prior(T, sigma)

to calculate the gradient of the Gaussian prior log p(T).

• Finally, implement the gradient ascent to denoise the image

T = denoising grad ascent(N, sigma, eta).

You should initialize the gradient ascent with the noisy image N .

• Explain your parameter tuning. Which observation do you make for dif-
ferent σ and η? (See hints.)

• Evaluate your implementation with the noisy images from Task 2 for the
same noise parameters. Check the PSNR and the increasing log-posterior
curve. Compare your results with median filtering - which algorithm shows
better results and why?

3

• What happens if you initialize gradient ascent with the output of median
filtering? Is there an improvement in performance or a faster convergence
observable?

Hints:

• The gradient g should have the same size as the input image while the
log-posterior lp is just a scalar.

• You may need many iterations to reach approximate convergence (> 1000).
You can verify your algorithm by displaying the log-posterior curve.

• Start with small artificial images to see the correctness of your algorithm
and to get a feeling for the parameters. Usually, it is recommended to test
different powers of 10, i.e., σ, η ∈ {..., 10−1, 100, 101, ...}.

4 A Different Prior

As we know from the lecture, a Gaussian distribution does not match the statis-
tics of a natural image very well. A more appropriate distribution is the Student-
t distribution:

fH(Tij , Ti+1j) =

(
1 +

1

2σ2
(Ti,j − Ti+1,j)

2

)−α

(7)

Tasks: (5 points)

• Implement the gradient of this log-prior given above as

g = mrf grad log student prior(T, sigma, alpha).

Do not forget the log in your partial derivatives.

• Evaluate your denoising algorithm with this new prior, α = 1 works fine.
What do you observe?

• Display the gradient of the log-prior for the test images. Explain your
results.

5 Independence Assumption

Finally, we question the assumption that the noise in each pixel is independent.

Tasks: (2 points)

• Is this assumption reasonable?

• What happens if you add spatially dependent noise to your image, e.g., a
“noisy stripe“ like in old movies.

• Show results for both priors (Gaussian and Student-t distributions).

4

6 Bonus

(2 points) So far, we have used MRF-based image denoising for gray images
only. How would you denoise a color image?

5

	Evaluation
	Median Filtering
	MRF-based Denoising with Gradient Ascent
	A Different Prior
	Independence Assumption
	Bonus

