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Today’s Topics

◮ Recap: Bayes Networks

◮ Markov Networks (slides from last time)

◮ Factor Graphs
◮ Inference

◮ exact inference (trees)
◮ sum-product algorithm
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Recap

The story so far...
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Recap

Graph Definitions

◮ A graph consists of vertices and edges

Graph

A

D C

B

E
A directed graph – directed edges.
Bayesian Networks (or Belief Networks)

A

D C

B

E

An undirected graph – undirected edges.
Markov random fields (or Markov
Networks)
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Recap

Belief Network: Example

x1 x2

x3

x4

p(x1, x2, x3, x4) = p(x4|x3)p(x3|x1, x2)p(x2)p(x1)
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Recap

Belief Networks Definition

Belief network

A belief network is a distribution of the form

p(x1, . . . , xD) =

D!

i=1

p(xi | pa(xi)), (1)

where pa(x) denotes the parental variables of x
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Recap

Collider and Conditional Independence

x1 x2

x3

◮ x3 a collider ? yes
◮ x1 ⊥⊥ x2 | x3 ? no! (explaining away)

p(x1, x2 | x3) = p(x1, x2, x3)/p(x3)

= p(x1)p(x2) p(x3 | x1, x2)/p(x3)" #$ %
∕=1 in general

◮ x1 ⊥⊥ x2 ? yes

p(x1, x2) =
&

x3

p(x3 | x1, x2)p(x1)p(x2) = p(x1)p(x2)
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Recap

Belief Networks

◮ Graphical Models specify a list of conditional independence
statements

◮ We can use D-separation to test for conditional independence

◮ Some Networks look different but are Markov equivalent (b,c,d are
Markov equivalent)

x1 x2

x3

x1 x2

x3

x1 x2

x3

x1 x2

x3

(a) (b) (c) (d)

Schiele (MPII) Probabilistic Graphical Models November 25, 2o2o 8 / 71



Recap

Markov Equivalence

Markov equivalence

Two graphs are Markov equivalent if they represent the same set of
conditional independence statements. (holds for directed and undirected
graphs)

skeleton

Graph resulting when removing all arrows of edges

immorality

Parents of a child with no connection

◮ Markov equivalent ⇔ same skeleton and same set of immoralities
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Recap

Filter View of a Graphical Model

◮ Graphical model implies a list of conditional independences
◮ Regard as filter:

◮ only distributions that satisfy all conditional independences are allowed
to pass

◮ One graph describes a whole family of probability distributions
◮ Extremes:

◮ Fully connected, no constraints, all p pass
◮ no connections, only product of marginals may pass
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Recap

Markov Networks
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Recap

Markov Networks

◮ So far, factorization with each factor a probability distribution
◮ Normalization as a by-product

◮ Alternative:

p(a, b, c) =
1

Z
φ(a, b)φ(b, c) (2)

◮ Here Z normalization constant or partition function

Z =
&

a,b,c

φ(a, b)φ(b, c) (3)
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Recap

Definitions

Potential

A potential φ(x) is a non-negative function of the variable x. A joint
potential φ(x1, . . . , xD) is a non-negative function of the set of variables.

◮ Distribution (as in belief networks) is a special choice
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Recap

Example

a

c

b

p(a, b, c) =
1

Z
φac(a, c)φbc(b, c) (4)
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Recap

Markov Network

Markov Network

For a set of variables X = {x1, . . . , xD} a Markov network is defined as a
product of potentials over the maximal cliques Xc of the graph G

p(x1, . . . , xD) =
1

Z

C!

c=1

φc(Xc) (5)

◮ Special case: cliques of size 2 – pairwise Markov network

◮ In case all potentials are strictly positive this is called a Gibbs
distribution
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Recap

Properties of Markov Networks

a

c

b

p(a, b, c) =
1

Z
φac(a, c)φbc(b, c) (6)
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Recap

Properties of Markov Networks

a

c

b
) a b

◮ Marginalizing over c makes a and b “graphically” dependent

p(a, b) =
&

c

1

Z
φac(a, c)φbc(b, c) =

1

Z
φab(a, b) (7)
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Recap

Properties of Markov Networks

a

c

b

) a b

◮ Conditioning on c makes a and b independent

p(a, b | c) = p(a | c)p(b | c) (8)

◮ This is opposite to the directed version a → c ← b where conditioning
introduced dependency
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Recap

Local Markov Property

Local Markov Property

p(x | X \ {x}) = p(x | ne(x)) (9)

◮ Condition on neighbours independent on rest
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Recap

Local Markov Property – Example

1

2

4

3

5

6

7

◮ x4 ⊥⊥ {x1, x7} | {x2, x3, x5, x6}
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Recap

Global Markov Property

Global Markov Property

For disjoint sets of variables (A,B,S) where S separates A from B, then
A ⊥⊥ B | S
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Recap

Local Markov Property – Example

1

2

4

3

5

6

7

◮ x1 ⊥⊥ x7 | {x4}
◮ and others
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Recap

Hammersley-Clifford Theorem

◮ An undirected graph specifies a set of conditional independence
statements

◮ Question: What is the most general factorization (of the joint
distribution) that satisfies these independences?

◮ In other words: given the graph, what is the implied factorization?
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Recap

Finding the Factorization

1

2

4

3

5

6

7

◮ Eliminate variable one by one

◮ Let’s start with x1

p(x1, . . . , x7) = p(x1 | x2, x3)p(x2, . . . , x7) (10)
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Recap

Finding the Factorization

1

2

4

3

5

6

7

◮ Graph specifies:

p(x1, x2, x3 | x4, . . . , x7) = p(x1, x2, x3 | x4)
⇒ p(x2, x3 | x4, . . . , x7) = p(x2, x3 | x4)

◮ Hence

p(x1, . . . , x7) = p(x1 | x2, x3)p(x2, x3 | x4)p(x4, x5, x6, x7)
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Recap

Finding the Factorization

1

2

4

3

5

6

7

◮ We continue to find

p(x1, . . . , x7) = p(x1 | x2, x3)p(x2, x3 | x4)
p(x4 | x5, x6)p(x5, x6 | x7)p(x7)

◮ A factorization into clique potentials (maximal cliques)

p(x1, . . . , x7) =
1

Z
φ(x1, x2, x3)φ(x2, x3, x4)φ(x4, x5, x6)φ(x5, x6, x7)
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Recap

Finding the Factorization

1

2

4

3

5

6

7

◮ Markov conditions of graph G ⇒ factorization F into clique potentials

◮ And conversely: F ⇒ G
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Recap

Hammersley-Clifford Theorem

Hammersely-Clifford

This factorization property G ⇔ F holds for any undirected graph
provided that the potentials are positive

◮ Thus also loopy ones: x1 − x2 − x3 − x4 − x1

◮ Theorem says, distribution is of the form

p(x1, x2, x3, x4) =
1

Z
φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ41(x4, x1)

Schiele (MPII) Probabilistic Graphical Models November 25, 2o2o 28 / 71



Recap

Filter View

◮ Let UI denote the distributions that can pass
◮ those that satisfy all conditional independence statements

◮ Let UF denote the distributions with factorization over cliques

◮ Hammersley-Clifford says : UI = UF
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Factor Graphs

Factor Graphs

Notation:

◮ for brevity in the following often φc(Xc) = φ(Xc)
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Factor Graphs

Relationship Potentials to Graphs

◮ Consider

p(a, b, c) =
1

Z
φ(a, b)φ(b, c)φ(c, a)

◮ What is the corresponding Markov network
(graphical representation)?

a

c b

◮ and which other factorization is represented by this network?

p(a, b, c) =
1

Z
φ(a, b, c)

◮ The factorization is not specified by the graph

◮ This is why we look at Factor Graphs
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Factor Graphs

Relationship Potentials to Graphs

◮ Now consider we introduce an extra node (a square) for each factor

a

c b

a

c b

a

c b

(1) (2) (3)

◮ (1): Markov Network

◮ (2): Factor graph representation of φ(a, b, c)

◮ (3): Factor graph representation of φ(a, b)φ(b, c)φ(c, a)

◮ Different factor graphs can have the same Markov network (2,3)⇒(1)
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Factor Graphs

Similarly for Directed Graphs

◮ A directed factor graph also retains the structure of the factorization
for a belief network

a

c b

a

c b

◮ But we skip those arrows usually
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Factor Graphs

Factor Graph Definition

Factor Graph

Given a function
f(x1, . . . , xn) =

!

i

ψi(Xi),

the factor graph (FG) has a node (represented by a square) for each factor
ψi(Xi) and a variable node (represented by a circle) for each variable xj .
When used to represent a distribution

p(x1, . . . , xn) =
1

Z

!

i

ψi(Xi),

a normalization constant is assumed.
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Factor Graphs

Bi-partite Graph

bipartite

A bipartite graph is a graph whose vertices can be divided into two disjoint
sets U and V such that every edge connects a vertex in U to one in V

a

c b

Factor graphs are bipartite graphs between variable nodes and factor nodes
(see example next slide)
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Factor Graphs

Factor Graph: Example 1

◮ Question: which distribution ?

◮ Answer:

p(x) =
1

Z
fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3) (11)
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Factor Graphs

Factor Graph: Example 2

◮ Question: Which factor graph ?

p(x1, x2, x3) = p(x1)p(x2)p(x3 | x1, x2) (12)

◮ Answer:
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Factor Graphs

Summary (so far)

◮ With graphical models we represent probability distributions
graphically

◮ Belief networks: directed graphs, causal dependency

◮ Markov networks: undirected, local cliques of dependent variables
◮ Factor graphs

◮ Making the factorization explicit
◮ Not a larger class of distributions, “just” a different way of drawing the

graph

◮ Always think in terms of factor graphs
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Inference in Trees

Inference in Trees
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Inference in Trees

Inference - what to infer?

◮ Given distribution
p(x) = p(x1, . . . , xn) (13)

◮ Inference: computing functions of the distribution, e.g.
◮ mean
◮ mode
◮ marginal
◮ conditionals
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Inference in Trees

Inference - what to infer?

◮ Mean
Ep(x)[x] =

&

x∈X
xp(x)

◮ Mode (most likely state)

x∗ = argmax
x∈X

p(x)

◮ Conditional Distributions

p(xi, xj | xk, xl) or p(xi | x1, . . . , xi−1, xi+1, . . . , xn)

◮ Max-Marginals

x∗i = argmax
xi∈Xi

p(xi) = argmax
xi∈Xi

&

(x1,...,xi−1,xi+1,...,xn)

p(x)
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Inference in Trees

Example: Pictorial Structures

◮ Find body parts

[Fischler& Elschlager, 1973],[Felsenzwalb& Huttenlocher, 2000]
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Inference in Trees

Variable Elimination

In the following: marginal inference in singly-connected graphs (= trees):

◮ Consider Markov chain (a, b, c, d ∈ {0, 1})
a cb d

with distribution

p(a, b, c, d) = p(a | b)p(b | c)p(c | d)p(d) (14)

◮ Task: compute the marginal p(a)
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Inference in Trees

Variable Elimination

a cb d

p(a) =
&

b,c,d

p(a, b, c, d) (15)

=
&

b,c,d

p(a | b)p(b | c)p(c | d)p(d) (16)

◮ Naive: 2× 2× 2 = 8 states to sum over (binary variables)

◮ Re-order summation:

p(a) =
&

b,c

p(a | b)p(b | c)
&

d

p(c | d)p(d)
" #$ %

γd(c)

(17)
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Inference in Trees

Variable Elimination

p(a) =
&

b,c

p(a | b)p(b | c)
&

d

p(c | d)p(d)
" #$ %

γd(c)

p(a) =
&

b

p(a | b)
&

c

p(b | c)γd(c)
" #$ %

γc(b)

p(a) =
&

b

p(a | b)γc(b)

◮ We need 2 + 2 + 2 = 6 calculations (binary variables)

◮ For a chain of length n scales linearly n ∗ 2
(cf naive approach 2n)
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Inference in Trees

Finding Conditional Marginals

◮ Again:

a cb d

p(a, b, c, d) = p(a | b)p(b | c)p(c | d)p(d)
◮ Now find p(d | a)

p(d | a) = p(d, a)

p(a)
∝

&

b,c

p(a | b)p(b | c)p(c | d)p(d)

=
&

c

&

b

p(a | b)p(b | c)
" #$ %

γb(c)

p(c | d)p(d)

def
= γc(d) not a distribution
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Inference in Trees

Finding Conditional Marginals – 2

a cb d

◮ Found that
p(d | a) = kγc(d) (18)

◮ and since
'

d p(d | a) = 1

k =
1'

d γc(d)
(19)

◮ Again γc(d) is not a distribution (but a message)
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Inference in Trees

Again, now with factor graphs

a cb d
f1 f2 f3 f4

p(a, b, c, d) =
1

Z
f1(a, b)f2(b, c)f3(c, d)f4(d) (20)

p(a, b, c) =
&

d

p(a, b, c, d) (21)

=
1

Z
f1(a, b)f2(b, c)

&

d

f3(c, d)f4(d)

" #$ %
µd→c(c)

(22)

p(a, b) =
&

c

p(a, b, c) =
1

Z
f1(a, b)

&

c

f2(b, c)µd→c(c)

" #$ %
µc→b(b)

(23)
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Inference in Trees

Inference in Chain Structured Factor Graphs

◮ Simply recurse further

◮ γm→n(n) carries the information beyond m

◮ We did not need the factors – in general (next) we will see that
making a distinction is helpful
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Inference in Trees

General singly-connected factor graphs – 1

◮ Now consider a branching graph:

a

c

b

d

f1 f2

f3

f4

f5

e

with factors
f1(a, b)f2(b, c, d)f3(c)f4(d, e)f5(d) (24)

◮ For example: find marginal p(a, b)
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Inference in Trees

General singly-connected factor graphs – 2

◮ Idea: compute messages

a

c

b

d

f1 f2

f3

f4

f5

e

µf2!b(b)

µc!f2(c)

µd!f2(d)

µf3!c(c)

µb!f1(b)

µf1!a(a)
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Inference in Trees

General singly-connected factor graphs – 3

a

c

b

d

f1 f2

f3

f4

f5

e

µf2!b(b)

µc!f2(c)

µd!f2(d)

µf3!c(c)

µb!f1(b)

µf1!a(a)

p(a, b) =
1

Z
f1(a, b)

&

c,d,e

f2(b, c, d)f3(c)f5(d)f4(d, e)

" #$ %
µf2→b(b)

µf2→b(b) =
&

c,d

f2(b, c, d) f3(c)" #$ %
µc→f2

(c)

f5(d)
&

e

f4(d, e)

" #$ %
µd→f2

(d)
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Inference in Trees

Factor-to-Variable Messages

µf2→b(b) =
&

c,d

f2(b, c, d) f3(c)" #$ %
µc→f2

(c)

f5(d)
&

e

f4(d, e)

" #$ %
µd→f2

(d)

µf2→b(b) =
&

c,d

f2(b, c, d)µc→f2(c)µd→f2(d)
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Inference in Trees

Factor-to-Variable Messages

a

c

b

d

f1 f2

f3

f4

f5

e

µf2!b(b)

µc!f2(c)

µd!f2(d)

µf3!c(c)

µb!f1(b)

µf1!a(a)

◮ Here (repeated from last slide):

µf2→b(b) =
&

c,d

f2(b, c, d)µc→f2(c)µd→f2(d) (25)

◮ more general:

µf→x(x) =
&

y∈Xf\x
φf (Xf )

!

y∈{ne(f)\x}
µy→f (y) (26)
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Inference in Trees

General singly-connected factor graphs – 4

a

c

b

d

f1 f2

f3

f4

f5

e

µf2!b(b)

µc!f2(c)

µd!f2(d)

µf3!c(c)

µb!f1(b)

µf1!a(a)

µd→f2(d) = f5(d)" #$ %
µf5→d(d)

&

e

f4(d, e)

" #$ %
µf4→d(d)

µd→f2(d) = µf5→d(d)µf4→d(d)
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Inference in Trees

Variable-to-Factor Messages

a

c

b

d

f1 f2

f3

f4

f5

e

µf2!b(b)

µc!f2(c)

µd!f2(d)

µf3!c(c)

µb!f1(b)

µf1!a(a)

◮ Here (repeated from last slide):

µd→f2(d) = µf5→d(d)µf4→d(d) (27)

◮ General:
µx→f (x) =

!

g∈{ne(x)\f}
µg→x(x) (28)
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Inference in Trees

General singly-connected factor graphs – 5

a

c

b

d

f1 f2

f3

f4

f5

e

µf2!b(b)

µc!f2(c)

µd!f2(d)

µf3!c(c)

µb!f1(b)

µf1!a(a)

◮ If we want to compute the marginal p(a)
(use factor-to-variable message):

p(a) =
1

Z
µf1→a(a) =

&

b

f1(a, b)µb→f1(b)

" #$ %
µf1→a(a)

(29)

◮ which we could also view as

p(a) =
1

Z

&

b

f1(a, b)µb→f1(b)" #$ %
µf2→b(b)

(30)
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Inference in Trees

Comments

◮ Many subscripts :)

◮ Once computed, messages can be re-used

◮ All marginals (p(c), p(d), p(c, d), ...) can be written as a function of
messages

◮ The algorithm to compute all messages: Sum-Product algorithm
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Inference in Trees

Sum-Product Algorithm – Overview

◮ Algorithm to compute all messages efficiently

◮ Assuming the graph is singly-connected (= tree)

1. Initialization

2. Variable to Factor message

3. Factor to Variable message

◮ Then compute any desired marginals

◮ Also known as belief propagation
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Inference in Trees

1. Initialization

◮ Messages from extremal (simplical) node factors are initialized to the
factor (left)

◮ Messages from extremal (simplical) variable nodes are set to unity
(right)
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Inference in Trees

2. Variable to Factor Message

µx→f (x) =
!

g∈{ne(x)\f}
µg→x(x) (31)

x

f1

f2

f3

f

µf1!x(x)

µf2!x(x)

µf3!x(x)

µx!f(x)
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Inference in Trees

3. Factor to Variable Message

µf→x(x) =
&

y∈Xf\x
φf (Xf )

!

y∈{ne(f)\x}
µy→f (y) (32)

y2

y3

y1

x
µf!x(x)

µy1!f(y1)

µy3!f(y3)

µy2!f(y2)

◮ We sum over all states in the set of variables

◮ This explains the name for the algorithm (sum-product)
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Inference in Trees

Marginal

p(x) ∝
!

f∈ne(x)
µf→x(x) (33)

x

f1

f2

f3

µf1!x(x)

µf2!x(x)

µf3!x(x)
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Inference in Trees

Message ordering

◮ Messages depend on previously computed messages

◮ Only extremal nodes/factors do not depend on other messages
◮ To compute all messages in the graph

1. leaf-to-root: (pick root node - here x3 - compute messages pointing
towards root)

2. root-to-leave: (compute messages pointing away from root)
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Inference in Trees

Computing the Partition Function

◮ The partition function (p(x) = 1
Z

(
f φf (Xf )) (normalization

constant) Z can be computed after the leaf-to-root step (no need for
the root-to-leaf step) (choose any x ∈ X )

Z =
&

X

!

f

φf (Xf ) (34)

=
&

x

&

X\{x}

!

f∈ne(x)

!

f ∕∈ne(x)
φf (Xf ) (35)

=
&

x

!

f∈ne(x)

&

X\{x}

!

f ∕∈ne(x)
φf (Xf ) (36)

=
&

x

!

f∈ne(x)
µf→x(x) (37)
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Inference in Trees

Log-Messages

◮ In large graphs, messages may become very small

◮ Work with log-messages instead λ = logµ

◮ Variable-to-factor messages

µx→f (x) =
!

g∈{ne(x)\f}
µg→x(x) (38)

then becomes
λx→f (x) =

&

g∈{ne(x)\f}
λg→x(x) (39)
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Inference in Trees

Log-Messages

◮ Work with log-messages instead λ = logµ

◮ Factor-to-Variable messages

µf→x(x) =
&

y∈Xf\x
Φf (Xf )

!

y∈{ne(f)\x}
µy→f (y) (40)

then becomes

λf→x(x) = log

)

*
&

y∈Xf\x
Φ(Xf ) exp

+

,
&

y∈{ne(f)\x}
λy→f (y)

-

.

/

0 (41)
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Inference in Trees

Trick

◮ Log-Factor-to-Variable Message:

λf→x(x) = log
&

y∈Xf\x
Φf (Xf ) exp

&

y∈{ne(f)\x}
λy→f (y) (42)

◮ large numbers lead to numerical instability

◮ Use the following equality

log
&

i

exp(vi) = α+ log
&

i

exp(vi − α) (43)

◮ With α = maxλy→f (y)
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Inference in Trees

Problems with Loops

◮ Marginalizing over d introduces new link (changes graph structure –
in contrast to singly connected graphs)

a

d

b

c

f1

f2

f3

f4

a b

c

f1

f2
f5

p(a, b, c, d) =
1

Z
f1(a, b)f2(b, c)f3(c, d)f4(d, a)

and marginal

p(a, b, c) =
1

Z
f1(a, b)f2(b, c)

&

d

f3(c, d)f4(d, a)

" #$ %
f5(a,c)
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Inference in Trees

Next Time ...

◮ ... inference when life is not so easy:
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Inference in Trees

Relationship Directed – Undirected Models: Maps

D map

A graph is said to be a D map (dependency map) of a distribution if every
conditional independence statement satisfied by the distribution is
reflected in the graph

◮ A completely disconnected graph contains all possible independence
statements for its variables

◮ ⇒ it is a trivial D map for any distribution
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Inference in Trees

Relationship Directed – Undirected Models: Maps

I map

A graph is said to be an I map (independence map) of a distribution if
every conditional independence implied by the graph is satisfied by the
distribution

◮ A fully connected graph implies no independence statements

◮ ⇒ it is a trivial I map for any distribution
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Inference in Trees

Relationship Directed – Undirected Models: Maps

perfect map

If every conditional independence property of the distribution is reflected in
the graph, and vice versa, then the graph is said to be a perfect map for
that distribution.

◮ A perfect map is therefore both I map and a D map of the distribution
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Inference in Trees

Relationship Directed – Undirected GM

◮ P – set of all distributions for a given set of variables
◮ distributions that can be represented as a perfect map

◮ using undirected graph – U
◮ using a directed graph – D
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Inference in Trees

(a) (b)

◮ Middle: conditional independence properties (A ⊥⊥ B | ∅ and
A⊤⊤B | C) cannot be expressed using an undirected graph over the
same three variables

◮ Right: conditional independence properties (A⊤⊤B | ∅,
A ⊥⊥ B | {C,D}, and C ⊥⊥ D | {A,B}) cannot be expressed using a
directed graph over the same four variables
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Inference in Trees

Counter Example

a

d

b

c

a

d

b

c

◮ Any DAG on the four variables will have (at least) one collider,
assume it is d

◮ Marginalizing out d will leave a DAG with no link between a and c

◮ Marginalizing in the undirected graph adds a link between a and c
(immoral)
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Inference in Trees

Chain Graphs

◮ What is “c”?

◮ Chain graphs contain both directed and undirected links

◮ Its class is broader than any single one alone
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