Exercises for Probabilistic Graphical Models Sheet No. 1

Bernt Schiele

Due Date: 25th November

Hand in: by 11:59pm by email to Apratim Bhattacharyya (abhattac at mpiinf mpg de). Begin the subject of your e-mails with [PGM_Exercise1]. Both scanned copies or typed (e.g. $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$) are allowed. You should specify your first and last name as well matriculation number on submission.

1 Probabilities

Points: 8
In this excercise, you will prove some basic, but very important rules in probability theory.

1. For any two events E_{1} and E_{2}, prove

$$
\begin{equation*}
p\left(E_{1} \cup E_{2}\right)=p\left(E_{1}\right)+p\left(E_{2}\right)-p\left(E_{1} \cap E_{2}\right) \tag{1}
\end{equation*}
$$

what if E_{1} and E_{2} are two disjoint events?
2. (Bayes' law) Given the Kolmogorov definition for conditional probabilities

$$
\begin{equation*}
p(A \mid B)=\frac{p(A \cap B)}{p(B)} \tag{2}
\end{equation*}
$$

derive Bayes' law:

$$
\begin{equation*}
p(A \mid B)=\frac{p(B \mid A) p(A)}{p(B)} \tag{3}
\end{equation*}
$$

3. (Law of total probability) Let E_{1}, \ldots, E_{n} be mutually disjoint events in the probability space Ω such that $\Omega=\bigcup_{i=1}^{n} E_{i}$. Then for any event B in the same space Ω show that

$$
\begin{equation*}
p(B)=\sum_{i=1}^{n} p\left(B \cap E_{i}\right)=\sum_{i=1}^{n} p\left(B \mid E_{i}\right) p\left(E_{i}\right) \tag{4}
\end{equation*}
$$

4. (Linearity of expectation) For any finite collection of discrete random variables X_{1}, \ldots, X_{n} with finite expectations, show that

$$
\begin{equation*}
\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] \tag{5}
\end{equation*}
$$

5. Let X, Y, Z be three disjoint subsets of random variables. We say X and Y are conditionally independent given Z if and only if

$$
\begin{equation*}
p_{X, Y \mid Z}(x, y \mid z)=p_{X \mid Z}(x \mid z) p_{Y \mid Z}(y \mid z) \tag{6}
\end{equation*}
$$

Show that X and Y are conditionally independent given Z if and only if the joint distribution for the three subsets of random variables factors in the following form:

$$
\begin{equation*}
p_{X, Y, Z}(x, y, z)=h(x, z) g(y, z) \tag{7}
\end{equation*}
$$

(Be careful to prove both directions!)

2 Complexity analysis

Points: 6

Consider the three random variables X, Y, Z all of which are binary.

- How many states do you need in general to fully specify the joint distribution $p(x, y, z)$?
- How many states are needed if the distribution does factorize in $p(x, y, z)=$ $p(x \mid y) p(y \mid z) p(z) ?$
- How many states do you need, if the variables are not binary but can take values in $\{1,2, \ldots, N\}$; consider both previous cases.
- How many states do you need to specify a distribution over all 8bit grayscale images of size 1000×1000 pixels? There are random variables $x_{1}, x_{2}, \ldots, x_{1 M}$ with $x_{i} \in\{0, \ldots, 255\}$ for $i=1, \ldots M$.
- Do you have an idea of how to represent the distribution more compactly? Provide the number of states needed by your method.

3 Chest Clinic Network

The chest clinic network above concerns the diagnosis of lung disease (tuberculosis,lung cancer, or both, or neiter). In this model a visit to asia is assumed to increase the probability of lung cancer. We have the following binary variables.

x	positive X-ray
d	Dyspnea (shortness of breath)
e	Either Tuberculosis or Lung Cancer
t	Tuberculosis
l	Lung cancer
b	Bronchitis
a	Visited Asia
s	Smoker

1. (Points: 1) Write down the factorization of the distribution implied by the graph.
2. (Points: 4) Are the following independence statements implied by the graph? (And how do you conclude this?)
(a) tuberculosis \Perp smoking|shortness of breath
(b) tuberculosis \Perp smoking|bronchitis
(c) lung cancer \Perp bronchitis|smoking
(d) visit to Asia \Perp smoking|lung cancer
(e) visit to Asia \Perp smoking|lung cancer,shortness of breath
3. (Bonus Points: 3) Calculate by hand the values for $p(d)$. The Conditional Probability Table (CPT) is:

$$
\begin{array}{lllll}
p(a=1) & =0.01, & p(s=1) & & =0.5 \\
p(t=1 \mid a=1) & =0.05, & p(t=1 \mid a=0) & & =0.01 \\
p(l=1 \mid s=1) & =0.1, & p(l=1 \mid s=0) & =0.01 \\
p(b=1 \mid s=1) & =0.6, & p(b=1 \mid s=0) & =0.3 \\
p(x=1 \mid e=1) & =0.98, & p(x=1 \mid e=0) & =0.05 \\
p(d=1 \mid e=1, b=1) & =0.9, & p(d=1 \mid e=1, b=0) & =0.7 \\
p(d=1 \mid e=0, b=1) & =0.8, & p(d=1 \mid e=0, b=0) & =0.1
\end{array}
$$

and

$$
p(e=1 \mid t, l)= \begin{cases}0 & t=0 \wedge l=0 \\ 1 & \text { otherwise }\end{cases}
$$

