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Today’s Topics

◮ Directed Graphical Models
◮ Belief Networks or Bayesian Networks

◮ Some Graph Terminology
◮ Undirected Graphical Models

◮ Markov Networks or Markov Random Fields

Reading Material:

◮ D. Barber, Bayesian Reasoning and Machine Learning,
Sections: 3.1, 3.2, 3.3, 4.1, 4.2

◮ C. Bishop, Pattern Recognition and Machine Learning,
Chapter 8.1, 8.2, 8.3
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Prelimaries

Some Notation and Basics for Random Variables
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Prelimaries

Modeling Your Knowledge

◮ Events (random variables) - notation: (X,Y, Z)
◮ e.g. it rained, the street is wet, you are older than 23
◮ may affect each other
◮ may be (conditionally) independent

◮ We will use graphs to encode this information
◮ event is a vertex
◮ “dependence is an edge”

◮ This leads to a “graphical model” that captures and expresses
relations among variables

◮ Think of graphical models as a modeling language

◮ Our interest: algorithms for learning and inference in these graph
based representations
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Prelimaries

Probability Variables – Basics

◮ Random variables X, Y , and Z

Chain Rule

p(X,Y ) = p(X|Y )p(Y )

p(X,Y, Z) = p(X|Y, Z)p(Y, Z)

= p(X|Y, Z)p(Y |Z)p(Z)

Bayes’ Theorem

p(X|Y ) =
p(X,Y )

p(Y )
=

p(Y |X)p(X)

p(Y )
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Prelimaries

Probability Variables – Basics

◮ Two random variables X and Y

Independence

X and Y are independent if

p(X,Y ) = p(X)p(Y )

◮ Provided p(X) ∕= 0, p(Y ) ∕= 0 this is equivalent with

p(X | Y ) = p(X) ⇔ p(Y | X) = p(Y ) (1)
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Prelimaries

Probability Variables – Notation

◮ Sets of random variables X ,Y,Z

Conditional independence

X and Y are independent provided we know the state of Z if
p(X ,Y | Z) = p(X | Z)p(Y | Z) for all states of X ,Y,Z.
They are conditionally independent given Z

◮ For conditional independence we write

X ⊥⊥ Y | Z (2)

◮ And thus we write for (unconditional) independence

X ⊥⊥ Y | ∅ or shorter X ⊥⊥ Y (3)
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Prelimaries

Probability Variables – Notation

◮ Similarly we write
X⊤⊤Y | Z (4)

for conditionally dependent sets of random variables

◮ and
X⊤⊤Y | ∅ or shorter X⊤⊤Y (5)

for unconditionally dependent random variables
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Prelimaries

Dependent or Not?

◮ a is independent of b (a ⊥⊥ b)

◮ b is independent of c (b ⊥⊥ c)

◮ c and a are ... ?

◮ Consider this distribution

p(a, b, c) = p(b)p(a, c) (6)

◮ a ⊥⊥ b and b ⊥⊥ c because:

p(a, b) = p(b)
!

c

p(a, c) = p(b)p(a) (7)

p(c, b) = p(b)
!

a

p(a, c) = p(b)p(c) (8)

◮ So a and c may or may not be independent
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Prelimaries

Graph Definitions

◮ A graph consists of vertices and edges

Graph

A

D C

B

E

A directed graph – directed edges.
Bayesian Networks
(or Belief Networks)

A

D C

B

E

An undirected graph – undirected edges.
Markov Random Fields
(or Markov Networks)
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Belief Networks

Belief Networks or Bayesian Networks (BN)
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Belief Networks

An Example

◮ Mr. Holmes leaves his house
◮ He sees that the lawn in front of his house is wet
◮ This can have two reasons: he left the sprinkler turned on or it rained

during the night.
◮ Without any further information the probability of both events increases

◮ Now he also observes that his neighbour’s lawn is wet
◮ This lowers the probability that he left his sprinkler on. This event is

“explained away”
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Belief Networks

Example Continued

◮ Let’s formalize:
◮ There are several random variables

◮ R ∈ {0, 1}, R = 1 means it has been Raining
◮ S ∈ {0, 1}, S = 1 means Sprinkler was left on
◮ N ∈ {0, 1}, N = 1 means Neighbour’s lawn is wet
◮ H ∈ {0, 1}, H = 1 means Holmes’ lawn is wet

◮ How many states to be specified?

p(R,S,N,H) = p(H | R,S,N)" #$ %
23=8

p(N | R,S)" #$ %
22=4

p(R | S)" #$ %
2

p(S)"#$%
1

◮ 8 + 4 + 2 + 1 = 15 numbers needed to specify all probabilities

◮ In general 2n − 1 for binary states only
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Belief Networks

Example – Conditional Independence

◮ As a modeler of this problem we have prior knowledge of causal
dependencies

◮ Holmes’ grass, Neighbour’s grass, Rain, Sprinkler

◮ p(H | R,S,N) = p(H | R,S)

◮ p(N | R,S) = p(N | R)

◮ p(R | S) = p(R)

◮ In effect our model becomes

p(R,S,N,H) = p(H | R,S)" #$ %
4

p(N | R)" #$ %
2

p(R)"#$%
1

p(S)"#$%
1

◮ How many states? 8
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Belief Networks

This Example as a Belief Network

R

N H

S

p(R,S,N,H) = p(H | R,S)p(N | R)p(R)p(S)

◮ This is called a directed graphical model or belief network

Schiele (MPII) Probabilistic Graphical Models November 11, 2o2o 16 / 69



Belief Networks

This example as a Belief Network

R

N H

S

◮ This is called a directed graphical model or belief network
◮ Observed variables are drawn shaded

◮ observing the wet grass
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Belief Networks

This example as a Belief Network

R

N H

S

◮ This is called a directed graphical model or belief network
◮ Observed variables are drawn shaded

◮ observing the wet grass
◮ observing the neighbours wet grass
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Belief Networks

Example – Inference

◮ The most pressing question is: was the sprinkler on?
◮ in other words what is p(S = 1 | H = 1)?

◮ First we need to specify the eight states
(conditional probability table = CPT)

p(R = 1) = 0.2, p(S = 1) = 0.1

p(N = 1 | R = 1) = 1, p(N = 1 | R = 0) = 0.2

p(H = 1 | R = 1, S) = 1, p(H = 1 | R = 0, S = 1) = 0.9

p(H = 1 | R = 0, S = 0) = 0

◮ p(S = 1 | H = 1) = . . . = 0.3382

◮ p(S = 1 | H = 1, N = 1) = . . . = 0.1604 (explained away)
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Belief Networks

Belief Networks

Belief network

A belief network is a distribution of the form

p(x1, . . . , xD) =

D&

i=1

p(xi | pa(xi)), (9)

where pa(x) denotes the parental variables of x
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Belief Networks

Different Factorizations

x1 x2 x3 x4 x3 x4 x1 x2

◮ Two factorizations of four variables:

p(x1, x2, x3, x4) = p(x1 | x2, x3, x4)p(x2 | x3, x4)p(x3 | x4)p(x4)
p(x1, x2, x3, x4) = p(x3 | x1, x2, x4)p(x4 | x1, x2)p(x1 | x2)p(x2)

◮ Any distribution can be written in such a cascade form as a belief
network (just using chain rule)

◮ With independence assumptions the factorization often becomes
simpler
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Belief Networks

Belief Networks

◮ Structure of the graph corresponds to a set of conditional
independence assumptions

◮ which parents are sufficient (are the causes) to specify the CPT
◮ for completeness we need to specify all p(x | pa(x))

◮ This does not mean non-parental variables have no influence:

p(x1 | x2)p(x2 | x3)p(x3) (10)

with graph x1 ← x2 ← x3 does not imply (Exercise)

p(x2 | x1, x3) = p(x2 | x3) (11)
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Belief Networks

Conditional Independence

◮ Important task:
◮ given graph, read of conditional independence statements

◮ Question:
◮ are x1 and x2 conditionally independent given x4

(x1 ⊥⊥ x2 | x4)?
◮ and what about x1 ⊥⊥ x2 | x3 ?

x1 x2 x3 x4

◮ how to automate?
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Belief Networks

Collisions

Collision

Given a path from node x to y, a collider is a node c for which there are
two nodes a, b in the path pointing towards c. (a → c ← b)

◮ Let’s check these for colliders:

x1 x2

x3

x1 x2

x3

x1 x2

x3

x1 x2

x3

x4
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Belief Networks

Collider and Conditional Independence

x1 x2

x3

◮ x3 a collider ? no

◮ x1 ⊥⊥ x2 | x3 ? yes

p(x1, x2 | x3) = p(x1, x2, x3)/p(x3)

= p(x1 | x3)p(x2 | x3)p(x3)/p(x3)
= p(x2 | x3)p(x1 | x3)
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Belief Networks

Collider and Conditional Independence

x1 x2

x3

◮ x3 a collider ? no

◮ x1 ⊥⊥ x2 | x3 ? yes

p(x1, x2 | x3) = p(x1, x2, x3)/p(x3)

= p(x2 | x3)p(x3 | x1)p(x1)/p(x3)
= p(x2 | x3)p(x1, x3)/p(x3)
= p(x2 | x3)p(x1 | x3)
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Belief Networks

Collider and Conditional Independence

x1 x2

x3

◮ x3 a collider ? yes
◮ x1 ⊥⊥ x2 | x3 ? no! (explaining away)

p(x1, x2 | x3) = p(x1, x2, x3)/p(x3)

= p(x1)p(x2) p(x3 | x1, x2)/p(x3)" #$ %
∕=1 in general

◮ x1 ⊥⊥ x2 ? yes

p(x1, x2) =
!

x3

p(x3 | x1, x2)p(x1)p(x2) = p(x1)p(x2)

Schiele (MPII) Probabilistic Graphical Models November 11, 2o2o 27 / 69



Belief Networks

Collider and Conditional Independence

◮ x3 a collider ? yes (x1 → x2), no (x1 → x4)

◮ x1 ⊥⊥ x2 | x3 ? no

◮ x1 ⊥⊥ x2 | x4 ? maybe

x1 x2

x3

x4

◮ x1 and x2 are “graphically” dependent on x4
◮ There are distributions with this DAG with x1 ⊥⊥ x2 | x4 and those

with x1⊤⊤x2 | x4

◮ BN good for representing independence but not good for representing
dependence!
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Belief Networks

Graphical Manipulations to Check for Independence

◮ Question: x ⊥⊥ y|z ?

◮ White nodes are not in the conditioning set

◮ if z is collider, keep undirected links between neighbours
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Belief Networks

Graphical Manipulations to Check for Independence

◮ if z is descendant of a collider (here w), keep links
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Belief Networks

Graphical Manipulations to Check for Independence

◮ if a collider is not in the conditioning set (here u): cut the links

◮ this path is blocked
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Belief Networks

Graphical Manipulations to Check for Independence

◮ if z is non-collider but in the conditioning set, cut the links

◮ this path is blocked
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Belief Networks

Graphical Manipulations to Check for Independence

◮ Result of the previous operations

◮ no path that could introduce dependence

◮ Hence x ⊥⊥ y | z (both paths blocked)
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Belief Networks

Graphical Manipulations to Check for Independence

◮ Question: x ⊥⊥ y | z ?

◮ yes
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Belief Networks

D-Separation

◮ Let’s formalize:

◮ We have all tools to check for conditional independence X ⊥⊥ Y | Z
in any belief network

d separation

For every x ∈ X , y ∈ Y check every path U between x and y.
A path is blocked if there is a node w on U such that either

1. w is a collider and neither w nor any descendant is in Z
2. w is not a collider on U and w is in Z

If all such paths are blocked then X and Y are d-separated by Z
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Belief Networks

D-Connectedness

◮ And the opposite:

d-connected

X and Y are d-connected by Z if and only if they are not d-separated by
Z.
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Belief Networks

Markov Equivalence

Markov equivalence

Two graphs are Markov equivalent if they represent the same set of
conditional independence statements. (holds for directed and undirected
graphs)

skeleton

Graph resulting when removing all arrows of edges

immorality

Parents of a child with no connection

◮ Markov equivalent ⇔ same skeleton and same set of immoralities
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Belief Networks

Three Variable Graphs Revisited

x1 x2

x3

x1 x2

x3

x1 x2

x3

x1 x2

x3

(a) (b) (c) (d)

◮ All have the same skeleton

◮ (b,c,d) have no immoralities

◮ (a) has immorality (x1, x2) and is thus not equivalent

(d) : p(x1|x3)p(x3|x2)p(x2) = p(x1|x3)p(x2, x3)
= p(x1|x3)p(x3)p(x2|x3) equals to (b)

= p(x1, x3)p(x2|x3)
= p(x3|x1)p(x1)p(x2|x3) equals to (c)
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Belief Networks

Filter View of a Graphical Model

◮ Belief network (also undirected graph) implies a list of conditional
independences

◮ Regard as filter:
◮ only distributions that satisfy all conditional independences are allowed

to pass

◮ One graph describes a whole family of probability distributions
◮ Extremes:

◮ Fully connected, no constraints, all p pass
◮ no connections, only product of marginals may pass
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Basic Graph Concepts

Graph Definitions
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Basic Graph Concepts

Graph Definitions

◮ A graph consists of vertices and edges

Graph

A

D C

B

E
A directed graph – directed edges.
Bayesian Networks (or Belief Networks)

A

D C

B

E
An undirected graph – undirected edges.
Markov Random Fields
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Basic Graph Concepts

Graph Definitions

Path, Ancestor, Descendant

◮ A path A → B is a sequence of vertices

A0 = A,A1, . . . , AN−1, AN = B (12)

with (An, An+1) an edge in the graph.

◮ In directed graphs, the vertices A such that A → B and B ∕→ A are
the ancestors of B.

◮ Vertices B such that A → B and B ∕→ A are the descendants of A.
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Basic Graph Concepts

Graph Definitions

Directed Acyclic Graph (DAG)

A DAG is a graph G with directed edges between the vertices such that by
following a directed path of vertices no path will revisit a vertex.

x1 x2 x3

x8 x4 x7

x5 x6

x1 x2 x3

x8 x4 x7

x5 x6
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Basic Graph Concepts

Graph Definitions

The Family

x1 x2 x3

x8 x4 x7

x5 x6

The parents of x4 are
pa(x4) = {x1, x2, x3}. The children of x4
are ch(x4) = {x5, x6}.
The family of x4 are the node itself, its
parents and children.
The Markov blanket is the node, its
parents, the children and the parents of the
children. In this case x1, . . . , x7

◮ Why DAGs? Structure prevents circular (cyclic) reasoning
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Basic Graph Concepts

Graph Definitions

Neighbour

In an undirected graph a neighbour of x are all vertices that share an edge
with x.

Clique

Given an undirected graph a clique is a subset of fully connected vertices.
All members of the clique are neighbours, there is no larger clique that
contains the clique.
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Basic Graph Concepts

Graph Definitions

◮ Example of cliques

A

D C

B

E

◮ Two cliques (A,B,C,D) and
(B,C,E)

◮ (A,B,C) are no (maximal) clique
(sometimes called a cliquo)

◮ Why cliques?

◮ In modelling they describe variables that all depend on each other.

◮ In inference they describe sets of variables with no simpler structure
to describe their relationships
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Basic Graph Concepts

Graph Definitions

Connected Graph

A graph is connected if there is a path between any two vertices.
Otherwise there are connected components.

connected graph graph with
two connected components

Schiele (MPII) Probabilistic Graphical Models November 11, 2o2o 47 / 69



Basic Graph Concepts

Graph Definitions

Singly- and Multiply Connected

A graph is singly-connected if for any vertex a and b there exists not more
than one path between them. Otherwise it is multiply-connected. Another
name for a singly-connected graph is a tree. A multiply connected graph is
also called loopy.

a

c d

b

f g

e

a

c d

b

f g

e

singly-connected multiply-connected
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Basic Graph Concepts

Spanning Tree

A spanning tree of an undirected graph G is a singly-connected subset of
the existing edges such that the resulting singly-connected graph covers all
vertices of G. A maximum (weight) spanning tree is a spanning tree such
that the sum of all weights on the edges is larger than for any other
spanning tree of G.

◮ There might be more than one maximum spanning tree.
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Markov Networks

Markov Networks
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Markov Networks

Markov Networks

◮ So far, factorization with each factor a probability distribution
◮ Normalization as a by-product

◮ Alternative:

p(a, b, c) =
1

Z
φ(a, b)φ(b, c) (13)

◮ Here Z normalization constant or partition function

Z =
!

a,b,c

φ(a, b)φ(b, c) (14)
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Markov Networks

Definitions

Potential

A potential φ(x) is a non-negative function of the variable x. A joint
potential φ(x1, . . . , xD) is a non-negative function of the set of variables.

◮ Distribution (as in belief networks) is a special choice
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Markov Networks

Example

a

c

b

p(a, b, c) =
1

Z
φac(a, c)φbc(b, c) (15)
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Markov Networks

Markov Network

Markov Network

For a set of variables X = {x1, . . . , xD} a Markov network is defined as a
product of potentials over the maximal cliques Xc of the graph G

p(x1, . . . , xD) =
1

Z

C&

c=1

φc(Xc) (16)

◮ Special case: cliques of size 2 – pairwise Markov network

◮ In case all potentials are strictly positive this is called a Gibbs
distribution
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Markov Networks

Properties of Markov Networks

a

c

b

p(a, b, c) =
1

Z
φac(a, c)φbc(b, c) (17)
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Markov Networks

Properties of Markov Networks

a

c

b
) a b

◮ Marginalizing over c makes a and b “graphically” dependent

p(a, b) =
!

c

1

Z
φac(a, c)φbc(b, c) =

1

Z
φab(a, b) (18)
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Markov Networks

Properties of Markov Networks

a

c

b

) a b

◮ Conditioning on c makes a and b independent

p(a, b | c) = p(a | c)p(b | c) (19)

◮ This is opposite to the directed version a → c ← b where conditioning
introduced dependency
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Markov Networks

Local Markov Property

Local Markov Property

p(x | X \ {x}) = p(x | ne(x)) (20)

◮ Condition on neighbours independent on rest
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Markov Networks

Local Markov Property – Example

1

2

4

3

5

6

7

◮ x4 ⊥⊥ {x1, x7} | {x2, x3, x5, x6}
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Markov Networks

Global Markov Property

Global Markov Property

For disjoint sets of variables (A,B,S) where S separates A from B, then
A ⊥⊥ B | S
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Markov Networks

Local Markov Property – Example

1

2

4

3

5

6

7

◮ x1 ⊥⊥ x7 | {x4}
◮ and others
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Markov Networks

Hammersley-Clifford Theorem

◮ An undirected graph specifies a set of conditional independence
statements

◮ Question: What is the most general factorization (of the joint
distribution) that satisfies these independences?

◮ In other words: given the graph, what is the implied factorization?
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Markov Networks

Finding the Factorization

1

2

4

3

5

6

7

◮ Eliminate variable one by one

◮ Let’s start with x1

p(x1, . . . , x7) = p(x1 | x2, x3)p(x2, . . . , x7) (21)
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Markov Networks

Finding the Factorization

1

2

4

3

5

6

7

◮ Graph specifies:

p(x1, x2, x3 | x4, . . . , x7) = p(x1, x2, x3 | x4)
⇒ p(x2, x3 | x4, . . . , x7) = p(x2, x3 | x4)

◮ Hence

p(x1, . . . , x7) = p(x1 | x2, x3)p(x2, x3 | x4)p(x4, x5, x6, x7)
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Markov Networks

Finding the Factorization

1

2

4

3

5

6

7

◮ We continue to find

p(x1, . . . , x7) = p(x1 | x2, x3)p(x2, x3 | x4)
p(x4 | x5, x6)p(x5, x6 | x7)p(x7)

◮ A factorization into clique potentials (maximal cliques)

p(x1, . . . , x7) =
1

Z
φ(x1, x2, x3)φ(x2, x3, x4)φ(x4, x5, x6)φ(x5, x6, x7)
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Markov Networks

Finding the Factorization

1

2

4

3

5

6

7

◮ Markov conditions of graph G ⇒ factorization F into clique potentials

◮ And conversely: F ⇒ G
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Markov Networks

Hammersley-Clifford Theorem

Hammersely-Clifford

This factorization property G ⇔ F holds for any undirected graph
provided that the potentials are positive

◮ Thus also loopy ones: x1 − x2 − x3 − x4 − x1

◮ Theorem says, distribution is of the form

p(x1, x2, x3, x4) =
1

Z
φ12(x1, x2)φ23(x2, x3)φ34(x3, x4)φ41(x4, x1)
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Markov Networks

Filter View

◮ Let UI denote the distributions that can pass
◮ those that satisfy all conditional independence statements

◮ Let UF denote the distributions with factorization over cliques

◮ Hammersley-Clifford says : UI = UF
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Markov Networks

Next Time ...

◮ One graph to rule them all:

a

c b

a

c b
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