Universität des Saarlandes

Fakultät für Mathematik und Informatik Fachrichtung 6.1 Mathematik

Dr. C. Steinhart B.Sc. B. Heinen

6. Übungsblatt zur Mathematik für Studierende der BIOLOGIE UND DES LEHRAMTES CHEMIE IM WS 2024/25

Aufgabe 1. (2P+2P+2P+2P+2P)

Geben Sie jeweils mit einer Begründung oder einem Gegenbeispiel an, ob die folgenden Abbildungen linear sind

a)
$$f_1: \mathbb{R}^3 \to \mathbb{R}$$
, $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \mapsto a^2 + b^2 + c^2$ c) $f_3: \mathbb{R}^2 \to \mathbb{R}^3$, $\begin{pmatrix} a \\ b \end{pmatrix} \mapsto \begin{pmatrix} a \\ b \\ a + b + 1 \end{pmatrix}$
b) $f_2: \mathbb{R}^2 \to \mathbb{R}^2$, $\begin{pmatrix} a \\ b \end{pmatrix} \mapsto \begin{pmatrix} 3a + b \\ 5a + 2b \end{pmatrix}$ d) $f_4: \mathbb{R}^2 \to \mathbb{R}$, $\begin{pmatrix} a \\ b \end{pmatrix} \mapsto (1+a)^2 - (1+a^2)$

c)
$$f_3: \mathbb{R}^2 \to \mathbb{R}^3$$
, $\begin{pmatrix} a \\ b \end{pmatrix} \mapsto \begin{pmatrix} a \\ b \\ a+b+1 \end{pmatrix}$

b)
$$f_2: \mathbb{R}^2 \to \mathbb{R}^2$$
, $\begin{pmatrix} a \\ b \end{pmatrix} \mapsto \begin{pmatrix} 3a+b \\ 5a+2b \end{pmatrix}$

d)
$$f_4: \mathbb{R}^2 \to \mathbb{R}$$
, $\begin{pmatrix} a \\ b \end{pmatrix} \mapsto (1+a)^2 - (1+a^2)^2$

und geben Sie gegebenenfalls eine Matrix A_i an, sodass $f_i(v) = A_i v$ gilt.

Aufgabe 2. (2P+4P+4P+2P)

Gegeben sei die Matrix

$$A := \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 1 \end{pmatrix}$$

- a) Zeigen Sie, dass der Vektor $v := \begin{pmatrix} 12 \\ 5 \\ 1 \\ 2 \end{pmatrix}$ ein Eigenvektor von A ist. Was ist der zugehörige Eigenwert?
- b) Berechnen Sie den Eigenraum Eig(A, 1) zum Eigenwert 1 von A.
- c) Berechnen Sie das charakteristische Polynom von A und seine Nullstellen. Bestimmen Sie die Eigenwerte von A
- d) Berechnen Sie für $w = \begin{pmatrix} -3\\2\\-2\\2 \end{pmatrix}$ das Produkt $A^{2024}w$. (*Hinweis:* Vergleichen Sie Aw mit w.)

Aufgabe 3. (3P+4P+3P)

Gegeben seien die Matrizen

$$A := \begin{pmatrix} 20 & 20 \\ -20 & -21 \end{pmatrix} \quad \text{und} \quad B := \begin{pmatrix} -2 & 9 & \frac{5}{2} \\ -1 & 4 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

sowie für einen Parameter $t \ge 0$ die Matrix:

$$C_t := \begin{pmatrix} 0 & 1-t \\ 1+t & 0 \end{pmatrix}.$$

- a) Bestimmen Sie alle Eigenwerte und Eigenräume von A und B.
- b) Bestimmen Sie alle Eigenwerte von C_t in Abhängigkeit von t.

Aufgabe 4. (1P+2P+3P+2P)

Sei $A \in \mathbb{R}^{n \times n}$, $a \in \mathbb{R}$ eine Zahl ungleich 0 und B := aA.

- a) Zeigen Sie, dass $det(aI_n) = a^n$ gilt.
- b) Folgern Sie, dass $det(B) = a^n det(A)$ gilt.
- c) Zeigen Sie, dass für das charakteristische Polynom von B gilt:

$$\chi_B(X) = a^n \chi_A(\frac{X}{a}).$$

d) Seien $\lambda_1, \ldots, \lambda_l \in \mathbb{R}$ die Eigenwerte von A. Zeigen Sie, dass die Eigenwerte von B gerade $a\lambda_1, \ldots, a\lambda_l$ sind.