Universität des Saarlandes

FR 6.1 Mathematik

Jun. Prof. Simon Brandhorst

Dr. C. Steinhart

1. Tutoriumsblatt zur Linearen Algebra II

Tutoriumsaufgabe 1.

Wir betrachten die Matrix

$$A := \begin{pmatrix} 1 & 2 & -1 \\ -2 & -1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

zusammen mit der linearen Abbildung:

$$\phi_A: \mathbb{R}^3 \to \mathbb{R}^3, \quad v \mapsto A \cdot v$$

- a) Zeigen Sie, dass \mathbb{R}^3 der kleinste ϕ_A -invariante Untervektorraum ist, der e_1 enthält.
- b) Geben Sie die Darstellungsmatrix $D_{BB}(\phi_A)$ bezüglich der Basis e_1, Ae_1, A^2e_1 an.
- c) Berechnen Sie das charakteristische Polynom $\chi(X)$ von ϕ_A ?
- d) Was ist $\chi(\phi_A)(e_1)$? Folgeren Sie hieraus $\chi(\phi_A) = 0$.

Tutoriumsaufgabe 2.

Gegeben sei die reelle Matrix

$$A := \begin{pmatrix} 1 & 1 & -1 \\ -2 & -4 & 3 \\ -2 & -5 & 4 \end{pmatrix} \in \mathbb{R}^{3 \times 3}$$

sowie die Polynome

$$f_1(X) = X - 1$$
, $f_2(X) = X + 1$, $f_3(X) = (X - 1)(X + 1)$ und $f_4(X) = (X - 1)^2$

- a) Berechnen Sie für i = 1, 2, 3, 4 jeweils die Matrix $f_i(A)$ und ihren Rang.
- b) Das charakteristische Polynom von A ist $\chi_A(X) = (X-1)^2(X+1)$. Was fällt Ihnen auf?
- c) Schreiben Sie A^3 als Linearkombination von I_3 , A und A^2 . Sind I_3 , A und A^2 linear unabhängig?
- d) Sei $B \in \mathbb{R}^{n \times n}$ eine beliebige Matrix. Zeigen Sie, dass die von B erzeugte \mathbb{R} -Algebra höchstens Dimension n hat.

Tutoriumsaufgabe 3.

Sei R ein kommutativer Ring.

- a) Sei S ein weiterer Ring und $\phi: R \to S$ ein Ringhomomorphismus.
 - (i) Zeigen Sie, dass $Kern(\phi)$ ein Ideal ist.
 - (ii) Sei $J \leq S$ ein Ideal. Ist auch das Urbild $\phi^{-1}(J) \subseteq R$ ein Ideal?
- b) Für Elemente $a_1, \ldots, a_n \in R$ betrachten wir das ideal

$$Ra_1 + \dots + Ra_n := \{\sum_{i=1}^n \lambda_i a_i \mid \lambda_i \in R\}.$$

- (i) Zeigen Sie, dass $Ra_1 + \cdots + Ra_n$ das kleinste Ideal ist, das $Ra_1 + \cdots + Ra_n$ enthält, d.h. für alle Ideale $I \leq R$ mit $a_1, \ldots, a_n \in I$ gilt bereits $Ra_1 + \cdots + Ra_n \leq I$.
- (ii) Zeigen Sie die Gleichung

$$Ra_1 + \dots + Ra_n = \bigcap_{\substack{I \le R \text{ Ideal} \\ a_1,\dots,a_n \in I}} I.$$

Tutoriumsaufgabe 4.

Sei $G = (\{g_1, \dots, g_k\}, \circ)$ eine endliche Gruppe¹. Wir definieren den Gruppenring als die Menge:

$$\mathbb{R}[G] := \{ \sum_{i=1}^{k} \lambda_i g_i \mid \lambda_i \in \mathbb{R} \}$$

zusammen mit den Verknüpfungen

$$\sum_{i=1}^k \lambda_i g_i + \sum_{i=1}^k \mu_i g_i := \sum_{i=1}^k (\lambda_i + \mu_i) g_i$$
$$\sum_{i=1}^k \lambda_i g_i \bullet \sum_{i=1}^k \mu_i g_i := \sum_{i,j=1}^k \lambda_i \mu_j g_i \circ g_j$$

- a) Zeigen Sie, dass $\mathbb{R}[G]$ eine \mathbb{R} -Algebra ist.
- b) Sei $G = S_3$. Berechnen Sie jeweils:

$$((12) + 2 \cdot (13)) \bullet ((23) - (123))$$

 $((12) + (23)) \bullet ((12) - (23))$

c) Sei $a:=\sum_{i=1}^k g_i\in\mathbb{R}[G]$. Berechnen Sie für ein beliebiges $g\in G$ das Produkt $g\bullet a$. Ist a invertierbar?

¹Das geht genauso gut auch für unendliche Gruppen. Bei unendlichen Gruppen fordert man zusätzlich, dass die Summen endlich sind, d.h. nur endlich viele λ_i sind nicht Null.