Universität des Saarlandes

FR 6.1 Mathematik Jun. Prof. Simon Brandhorst Dr. C. Steinhart

9. Tutoriumsblatt zur Linearen Algebra II

Tutoriumsaufgabe 1.

Seien $n, m \in \mathbb{N}$ zwei natürliche Zahlen.

- a) Zeigen Sie, dass der einzige \mathbb{Z} -Modulhomomorphismus von $\mathbb{Z}/3\mathbb{Z}$ nach $\mathbb{Z}/4\mathbb{Z}$ die Nullabbildung ist.
- b) Beschreiben Sie sämtliche \mathbb{Z} -Modulhomomorphismen von $\mathbb{Z}/n\mathbb{Z}$ nach $\mathbb{Z}/m\mathbb{Z}$ mit Hilfe von $d = \operatorname{ggT}(n, m)$.
- c) Zeigen Sie, dass $\mathbb{Z}/n\mathbb{Z}$ genau dann ein $\mathbb{Z}/m\mathbb{Z}$ -Modul ist, wenn n ein Teiler von m ist.

Tutoriumsaufgabe 2.

Sei R ein kommutativer Ring mit Eins und $0 \neq I \leq R$ ein echtes Ideal.

- a) Zeigen Sie, dass I und R/I mit der üblichen Addition und Multiplikation R-Moduln sind.
- b) Zeigen Sie, dass I genau dann frei ist, wenn I=Ra ein Hauptideal ist und der Erzeuger a kein Nullteiler in R.
- c) Zeigen Sie, dass R/I nicht frei ist.

Tutoriumsaufgabe 3.

Zeigen Sie, dass die folgenden Z-Moduln isomorph sind

- a) $\mathbb{Z}/n\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}$
- b) $M \otimes_{\mathbb{Z}} \{0\}$ für jeden \mathbb{Z} -Modul M
- c) $\mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/3\mathbb{Z}$
- $d) \{0\}$

Tutoriumsaufgabe 4.

- a) Zeigen Sie, dass $\mathbb Q$ kein freier $\mathbb Z$ -Modul ist.
- b) Sei $R := \mathbb{K}[X]$ der Polynomring und $U := \{f(X^2) \mid f(X) \in \mathbb{R}[X]\}$ der Teilring der Polynome mit geraden Exponenten. Zeigen Sie, dass R mit der üblichen Multiplikation ein freier U-Modul ist. Bestimmen Sie eine Basis von R bezüglich U.