Universität des Saarlandes Fachrichtung Mathematik

Dr. Christian Steinhart Friedrich Günther

Übungen zur Vorlesung "Höhere Mathematik für Ingenieure IV B" Sommersemester 2025

Blatt 12

Abgabe bis Freitag, 11. Juli 2025, 20 Uhr

Aufgabe 1 (2+2+2=6 Punkte):

- (i) Gibt es nichtkonstantes holomorphes $f: B(0,1) \to \mathbb{C}$ mit $f(\frac{1}{n}) = 0$?
- (ii) Gibt es nichtkonstantes holomorphes $g: B(1,1) \to \mathbb{C}$ mit $g(\frac{1}{n}) = 0$?
- (iii) Gibt es ein nichtkonstantes holomorphes $h\colon B(0,1)\to\mathbb{C}$, sodass für jede natürliche Zahl n gilt: $h(\frac{1}{2n})=\frac{1}{n},\ h(\frac{1}{2n+1})=\frac{1}{n+1}$?

Aufgabe 2 (4 Punkte): Seien r > 0 und $f: B(0,r) \to \mathbb{C}$ eine holomorphe Funktion, sodass $f|_{(-r,r)}$ nur reelle Werte annimmt. Zeigen Sie, dass die Koeffizienten $(a_n)_{n\in\mathbb{N}}$ in der Potenzreihenentwicklung von f um 0 allesamt reell sind, und dass $f(\overline{z}) = \overline{f(z)}$ für alle z in B(0,r) gilt.

Hinweis: Betrachten Sie $g: B(0,r) \to \mathbb{C}, z \mapsto \overline{f(\overline{z})}$. Zeigen Sie (oder verwenden Sie), dass g holomorph ist. Verwenden Sie geschickt den Identitätssatz.

Aufgabe 3 (5+5=10 Punkte):

- (i) Ermitteln Sie mithilfe des Satzes von Rouché die Anzahl der Nullstellen von $z^4 + 12z^2 + 15z + 1$ im Annulus $A(0,1,2) = \{z \in \mathbb{C} \mid 1 < |z| < 2\}.$
- (ii) Seien r > 0 und c eine komplexe Zahl derart, dass $|c| > \exp(r)/r$. Zeigen Sie, dass die Gleichung $\exp(z) = cz$ auf B(0, r) genau eine Lösung besitzt.