Universität des Saarlandes Fachrichtung Mathematik

Dr. Christian Steinhart Friedrich Günther

Übungen zur Vorlesung "Höhere Mathematik für Ingenieure IV B" Sommersemester 2025

Blatt 11

Abgabe bis Dienstag, 8. Juli 2025, 20 Uhr

Eine Funktion $f: \mathbb{R} \to \mathbb{C}$ heißt absolut integrierbar, falls $\int_{-\infty}^{\infty} |f(x)| dx$ endlich ist. Für eine absolut integrierbare Funktion $f: \mathbb{R} \to \mathbb{C}$ heißt die Funktion $\mathcal{F}[f]: \mathbb{R} \to \mathbb{C}$, die durch

$$\mathcal{F}[f](x) = \int_{-\infty}^{\infty} f(t) \exp(-ixt) dt$$

erklärt ist, die Fouriertransformierte von f.¹

Aufgabe 1 (10 Punkte): Seien $P = \{p_1, \dots, p_n\} \subseteq \mathbb{C} - \mathbb{R}$ eine endliche Menge, $f : \mathbb{C} - P \to \mathbb{C}$ eine holomorphe Funktion mit isolierten Singularitäten in den Punkten von P und es gelte $\lim_{|z|\to\infty} zf(z) = 0$. Dann gilt

$$\mathcal{F}[f](x) = \begin{cases} -2\pi i \sum_{p \in P, \operatorname{Im}(p) < 0} \operatorname{res}_p(f \exp(-ix)), & \text{falls } x \ge 0, \\ 2\pi i \sum_{p \in P, \operatorname{Im}(p) > 0} \operatorname{res}_p(f \exp(-ix)), & \text{falls } x \le 0. \end{cases}$$

Hinweis: Erinnern Sie sich an die Standardabschätzung für Kurvenintegrale. Betrachten Sie für gegebenes x in $(-\infty, 0]$ respektive x in $[0, \infty)$ einen Halbkreis in der oberen respektive unteren Halbebene und führen Sie eine Grenzwertbetrachtung für den Radius durch. Welchen Teilweg kontrolliert die Forderung an das Wachstumsverhalten von f?

¹Für Anwendungen ist diese Definition der Fouriertransformierten deutlich zu restriktiv, aber eine distributionelle Definition übersteigt die Mittel, die in dieser Vorlesung zur Verfügung stehen, deutlich.

Aufgabe 2 (5 Bonuspunkte): Zeigen Sie, dass

$$\int_{-\infty}^{\infty} \frac{1}{x^4 + 1} = \frac{\pi}{\sqrt{2}}.$$

Hinweis: Betrachten Sie $f: z \mapsto \frac{1}{z^4+1}$ und begründen Sie, dass $F|_{\mathbb{R}}$ die Voraussetzungen von Aufgabe 1 erfüllt. Was hat $\mathcal{F}[f](0)$ mit dem Integral aus der Aufgabenstellung zu tun?

Aufgabe 3 (10 Punkte): Sei a > 1 eine reelle Zahl. Zeigen Sie, dass

$$\int_0^{\pi} \frac{1}{a + \cos(\theta)} d\theta = \frac{\pi}{\sqrt{a^2 - 1}}.$$