Universität des Saarlandes Fachrichtung Mathematik

Dr. Christian Steinhart Friedrich Günther

Übungen zur Vorlesung "Höhere Mathematik für Ingenieure IV A" Sommersemester 2025

Blatt 13

Abgabe bis Dienstag, 8. Juli 2025, 20 Uhr

Aufgabe 1 (3+4+3=10 Punkte): Seien r > 0, $F: [-r, r] \times \mathbb{R} \to \mathbb{R}$ die durch $(x, y) \mapsto xy$ definierte Funktion und es sei

$$y'(x) = F(x, y(x)) = xy(x)$$
 mit $y(0) = 1$

ein zugehöriges Anfangswertproblem.

- (i) Zeigen Sie mithilfe des Satzes von Picard-Lindelöf, dass das Anfangswertproblem eine eindeutige Lösung hat.
- (ii) Berechen Sie die ersten vier Schritte der Picarditeration.
- (iii) Geben Sie die exakte Lösung des Anfangswertproblems an.

Aufgabe 2 (2+3+5=10 Punkte): Im Ursprung der euklidischen Ebene \mathbb{R}^2 sei eine Punktmasse M platziert. Diese erzeugt das Gravitationsfeld

$$\mathbf{G} \colon \mathbb{R}^2 - \{\mathbf{0}\} \longrightarrow \mathbb{R}^2, \qquad \mathbf{r} \longmapsto -\frac{GM}{\|\mathbf{r}\|^2} \frac{\mathbf{r}}{\|\mathbf{r}\|},$$

welches am Ort \mathbf{r} in $\mathbb{R}^2 - \{\mathbf{0}\}$ auf eine Punktmasse m die Gravitationskraft $\mathbf{F}(\mathbf{r}) = m\mathbf{G}(\mathbf{r})$ ausübt. Hierbei bezeichnet G die Gravitationskonstante.

(i) Eine Punktmasse m bewege sich auf der Trajektorie $\gamma \colon [0, \infty) \to \mathbb{R}^2 - \{\mathbf{0}\}$ durch das von M erzeugte Gravitationsfeld. Die Bewegungsgleichung lautet $\mathbf{F}(\gamma(t)) = m\gamma''(t)$ per zweitem Newtonschen Gesetz.

Formulieren Sie das entsprechende Anfangswertproblem mit den Startwerten $\gamma(0) = (x(0), y(0))^t = \mathbf{r}_0$ und $\gamma'(0) = (x'(0), y'(0))^t = \mathbf{v}_0$.

(ii) Überführen Sie das Problem in ein Differentialgleichungssystem erster Ordnung.

Hinweis: Zeigen Sie, dass das Problem vom Differentialgleichungssystem

$$\begin{pmatrix} x(t) \\ y(t) \\ x'(t) \\ y'(t) \end{pmatrix}' = \begin{pmatrix} x'(t) \\ y'(t) \\ -\frac{GM}{\sqrt{x^2(t) + y^2(t)}} x(t) \\ -\frac{GM}{\sqrt{x^2(t) + y^2(t)}} y(t) \end{pmatrix}$$

beschrieben wird.

(iii) Wenden Sie das explizite Eulerverfahren mit den Schrittweiten h=1, h=0.1 und h=0.0001 auf das Anfangswertproblem mit den Startwerten $\mathbf{r}_0=(3,3)^t$, $\mathbf{v}_0=(1,-1)^t$, G=1, M=100 und m=1 auf dem Zeitintervall [0,30] an. Plotten Sie die Ergebnisse. Was fällt Ihnen auf?

Hinweis: Wir erwarten als Trajektorie einen Kegelschnitt. Die explizite analytische Lösung dieses Anfangswertproblems ist nicht ganz trivial.