Universität des Saarlandes Fachrichtung Mathematik

Dr. Christian Steinhart Friedrich Günther

Übungen zur Vorlesung "Höhere Mathematik für Ingenieure IV A" Sommersemester 2025

Blatt 12

Abgabe bis Dienstag, 1. Juli 2025, 20 Uhr

Aufgabe 1 (2+6=8 Punkte): Seien I ein nichtleeres abgeschlossenes Intervall, $C(I, \mathbb{R}^n) = \{f : I \to \mathbb{R}^n \text{ stetig}\}$ und

$$||f||_{\infty} = \sup\{||f(x)|| \mid x \in I\}.$$

- (i) Zeigen Sie, dass $\|\cdot\|_{\infty}$ eine Norm auf $C(I, \mathbb{R}^n)$ erklärt.
- (ii) Zeigen Sie, dass $(C(I, \mathbb{R}^n), \|\cdot\|_{\infty})$ ein Banachraum ist.

Hinweis: Betrachten Sie eine Cauchyfolge in $C(I, \mathbb{R}^n)$. Zeigen Sie, dass die Glieder der Folge punktweise gegen eine Grenzfunktion konvergieren. Verwenden Sie anschließend die Dreiecksungleichung um zu zeigen, dass die Grenzfunktion in $C(I, \mathbb{R}^n)$ lebt.

Aufgabe 2 (2 Punkte): Sei n eine natürliche Zahl. Dann wird die Menge $M(n, \mathbb{K})$ der quadratischen $n \times n$ -Matrizen mit Einträgen aus \mathbb{K} , zusammen mit der (von irgendeiner Vektornorm auf \mathbb{K}^n induzierten) Operatornorm $\|\cdot\|$, zu einer \mathbb{K} -Banachalgebra. Begründen Sie, warum es für eine Matrix A aus $M(n, \mathbb{K})$ Sinn ergibt,

$$\exp(A) = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$$

zu definieren, und warum wir eine Funktion exp: $M(n, \mathbb{K}) \to M(n, \mathbb{K})$ erhalten.

Aufgabe 3 (5+5=10 Punkte): Seien (a,b) ein nichtleeres, offenes Intervall und $\mathbf{B}: (a,b) \to M(n,\mathbb{R})$ eine stetige Abbildung. Ferner seien t_0 in (a,b) und ein Vektor $\mathbf{x}_0 = \mathbf{x}(t_0)$ in \mathbb{R}^n gegeben. Dann ist

$$\dot{\mathbf{x}}(t) = \mathbf{B}(t)\mathbf{x}(t)$$

eine lineare Differentialgleichung auf $(a,b) \times \mathbb{R}^n$.

(i) Führen Sie die Picarditeration für die obige lineare Differentialgleichung mit $(a, b) = (-\varepsilon, \infty)$, $t_0 = 0$, $\mathbf{x}_0 = \mathbf{x}(t_0)$ und einer konstanten Abbildung **B** durch und geben Sie die Lösung explizit an.

Hinweis: Zeigen Sie per Induktion, dass für eine reelle Zahl t gilt:

$$\mathbf{x}_n(t) = \mathbf{x}_0 + \int_0^t \mathbf{B} \sum_{k=0}^{n-1} \frac{r^k}{k!} \mathbf{B}^k \mathbf{x}_0 dr = \sum_{k=0}^n \frac{t^k}{k!} \mathbf{B}^k \mathbf{x}_0.$$

(ii) Seien $\lambda_1,\,\lambda_2$ reelle Zahlen. Geben Sie eine Lösung der Differentialgleichung

$$\dot{\mathbf{x}}(t) = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \mathbf{x}(t)$$

auf $\mathbb{R} \times \mathbb{R}^2$ mit $\mathbf{x}_0 = \mathbf{x}(0) = (1,4)^t$ an. Berechnen Sie die Einträge des entsprechenden Matrixexponentials explizit.