Databases 4

Elements of Data Science and Artificial Intelligence

Prof. Dr. Jens Dittrich

bigdata.uni-saarland.de

January 27, 2020

Prof. Dr. Jens Dittrich Databases 4 1/26

http://bigdata.uni-saarland.de

Performance Dimensions of an Index

The performance of a logical and/or physical index can be analysed along many dimensions:
1. runtime (wall-clock time)
2. clock cycles spent

3. 1/O-operations performed (for some or multiple storage layers; counting cache misses is a
special case of this)

robustness to different workloads (workload := datasets and queries)
adaptability to different workloads

read vs write-performance

scalability, i.e. increasing the workload

single vs multi-threaded performance

© o N o ok

memory consumption
10. etc.

Prof. Dr. Jens Dittrich Databases 4 2 /26

How to Analyse the Performance of an Index?

In general, in computer science there are only three methods to analyse the performance of
any algorithm or system:

1. Analytical model (a mathematical model: e.g. complexity or cost model)!
2. Simulation (a runnable model focusing on the major effects of a problem)

3. Experiment (a real software running real queries and datasets)

Avoid organisational blindness (German: Betriebsblindheit)

None of these methods is per se better than any other. All of these methods have their pros
and cons. For the same problem: Try always to use at least two of those methods.

Excellent book:

Raj Jain. The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling. Wiley Professional Computing. 1991.2

This is what we did last lecture in the Jupyter notebook.
2If | had to recommend the ten must-read books in CS, this book would be on that list.
Prof. Dr. Jens Dittrich Databases 4 3 /26

method

effort/cost

reality

Analytical
Modelling

Simulation

Experiment

generalizability

One-dimensional Range Query

One-dimensional Range Query

Given a relational schema [R] with an attribute A;, a corresponding non-categorical
one-dimensional domain Dj, and two constants /, h € D;. Then, o/<a.<n(R) is called a range
query on R. This query selects all tuples t = (a1,...,a,) € R where the one-dimensional
point a; is contained in interval [/; h].

Examples:
B 02<z0omLevel<a(Tiles): selects all tiles where the zoom-level is contained in interval [2;4].
B 0p<xpos<3(Tiles): selects all tiles where xpos is contained in interval [0; 3]

Note

For | = h a one-dimensional range query is equivalent to a point query.

Closed vs open intervals

Intervals may be defined as open (/ and h not included), half-open (/ or h included) or closed
(I and h included).

Prof. Dr. Jens Dittrich Databases 4 5/ 26

Indexing support for One-dimensional Range-Queries

In order to support one-dimensional range queries we basically only have three options:

Option 1: Translate to a Point-Query

We convert the range condition / < A; < h into multiple point queries:

orm(R) = |J oca=c

ce{[l;hND;}

Examples:
u U2§zoomLeve|§4(Tlles) = {UzoomLeve|:2(T//es) U UzoomLeve|:3(T//es) U UzoomLeve|:4(T/Ies)}
B 00<xpos<3(Tiles) = {oxpos=0(Tiles) U oypos=1(Tiles) U oypos=2(Tiles) U oxpos=3(Tiles)}

Problem

This is only efficient (or even feasible) if |[/; h] N D;| is small! In other words: the number of
distinct values and hence distinct point queries to generate for this range is low.

Note: }R! is the cardinality operator. It returns the number of elements in R.
Prof. Dr. Jens Dittrich Databases 4 6 /26

Examples

How do we translate?
m [0.34357783;0.4578784323]
m [adsv; bsdgsd]
= [1;1000]
m [1;10]

Prof. Dr. Jens Dittrich Databases 4 7/ 26

Indexing support for One-dimensional Range-Queries

Option 2: Range-aware Index Search Algorithm

Change the index search algorithm to support range queries.

Option 3: Range-aware Index Structure

Change the index structure to support range queries.

Let's look at Option 2 first:

Prof. Dr. Jens Dittrich Databases 4

8/ 26

Example: range query [2; 14]

[2514]
EEIN
[12T FIEEN [18]]
(18) 2A) 0 @B (LA (48 (78 (200)

First: run a point query with the left boundary of the range: ¢ = 2.

Prof. Dr. Jens Dittrich Databases 4 9 /26

Example: range query [2; 14]

;4]
PEEIN 18] N
2] FIEAN PEEEIIN NN
(18) @A) 60 B (1A (4B (7B @00

Second: run a point query with the right boundary of the range: ¢ = 14.

Prof. Dr. Jens Dittrich Databases 4 10 / 26

|dentifying the Result Area

(2:14]

all elements in this area are
results to the range query

[y 2] \]

(11,A) (14,B)

FEECIN

(17,B) (20,C)

FEEAIN

(6,C)

(7,B)

(2,A)

(1,B)

Using the two point queries we have identified the part of the search tree that contains the

results to the range query (marked in gray).

Prof. Dr. Jens Dittrich Databases 4 11 /26

Traversing Everything in the Result Area

all elements in this area are
results to the range query

(7,B) (11,A) (14,B)

(1,B) (2,A) (6,C) (17,B) (20,C)

We may now traverse all arrows in the result area to retrieve all results, i.e. all entries in all
leaves in the result area.

Prof. Dr. Jens Dittrich Databases 4 12 /26

ISAM: Additional Chain on the Leaf-Level

all elements in this area are
results to the range query

FEEEIN [y [12]] FRECIN

~

(1,B) (2,A) —™ (6,c) — (7,B) — (11,A) —/ (14,B) (17,B) — (20,C)

But actually, it would be better (yet it depends...) if the tree structure provided a means of
traversing all leaves in order. This is Option 3.
This particular method is coined ISAM (Index Sequential Access Method).

Prof. Dr. Jens Dittrich Databases 4 13 /26

ISAM-Query: One Point Query plus Chain-Traversal

all elements in this area are
results to the range query

FEEEIN [y [12]] FRECIN

(1,B) (2,A) — (6,c) — (7,B) — (11,A) — (14,B) (17,B) — (20,C)

Like that we can also answer the range query by running a single point query with ¢ = 2.
Then we traverse the list of leaves in ascending order an d check each entry whether it is
smaller equal 14. As soon as that condition is false, we terminate.

Prof. Dr. Jens Dittrich Databases 4 14 / 26

Which Option should we use: 1, 2 or 37

Option 1: Translate to a Point-Query

+ easy to implement
+ works well if cardinality of the range is very low
— bad or even no option if cardinality of the range is high

Option 2: Range-aware Index Search Algorithm

+ a good compromise in practice
+ no structural modification to the tree required, i.e. no extra ISAM
— typically not the most efficient option on the storage hierarchy

Option 3: Range-aware Index Structure

+ typically the most efficient option on the storage hierarchy (if you want to support range
queries!)

— extra chain (ISAM) has to be maintained under inserts/deletes

Prof. Dr. Jens Dittrich Databases 4 15 / 26

Range Queries in Google Maps?

Recall: in the jupyter notebook we created (and then searched) an index that mapped from
the ID of a geographical name, e.g. a city, to its geographical location (longitude, latitude). In
other words, this was a key/value-mapping:

Index 1:

ID — (longitude, latitude)

Only if we need to query multiple IDs in a range in a single query, e.g. ID-ranges like
[7,8,9,...,42], we need to worry about range queries.

Another very useful index in Google Maps is the following:

Index 2:
asciiname — (longitude, latitude)

Example:
a query asking for “Saarbriicken”: 0 sciiname=Saarbriicken(g€0Names)

Prof. Dr. Jens Dittrich Databases 4 16 / 26

Range Queries in Google Maps?

But what if we do not specify the entire
asciiname but only a prefix, e.g.:

m All cities starting with 'Saa’

m All cities starting with 'Saarb’

saa Q ¢

Arbeit 66123 Saarbriicken BEARBEITEN
Saarbriicken

g Saarbriicken Hbf Saarbriicken
Saarpolygon AD 2016 Bei Fultenkreuz, Ensdorf

b Saarlouis Hbf Saarlouis

Prof. Dr. Jens Dittrich

nie

o

PP PO HOLHP

saa
saarland plant neuen campus fiir it-griinder Entfernen
saarbriicker zeitung klima Entfernen
saarbriicker zeitung Entfernen
saarbriicken

saarvv

saarland therme
saarfahrplan
saarland
saartoto

saarbahn

Google-Suche Auf gut Gliick!

Unange

Databases 4 17 / 26

Prefix Query
These queries are called prefix queries.

Prefix Query

Given an index on an attribute A on an arbitrary domain D. Let ¢ be a constant broken into a
sequence of digits ¢ = dp, ..., dx where each d; with 0 < j < k is a digit. A digit may be a
character, a numbers, an individual or multiple bits. Let ¢; = dy, .. ., d; be the digits from dy
up to and including di<.

Then ¢; is called a prefix and any point query with equality predicate P = A == ¢; is called a
prefix query.

Example:
dp ='S', di ='a’, db ='a’, ¢ ='Saa’, P = A =='Saa’ is a prefix query

Prof. Dr. Jens Dittrich Databases 4 18 / 26

Prefix to Range Query Translation
A prefix query can often be translated to a range query.

Prefix to Range Query Translation

Given a prefix query P = A == ¢; with a non-categorical domain D, i.e. the elements of D
can be ordered. Then the result of the prefix query is equivalent to the range query
P=c <A< (c+1).

Examples:

(1.) ¢ ='Saa’, P = A=="Saa’ is a prefix query

we can rewrite this to a range query P ='Saa’ < A < 'Sab’
(2.) D=int ¢y ="134", P = A=="134"is a prefix query
we can rewrite this to a range query P =134 < A < 135.

Hence, whether we ask for all integers starting with the prefix '134’, e.g. 1347843, 13462, 134,
etc. or whether we ask for all integers in range [134; 135] makes no difference, right?
Upps...

Prof. Dr. Jens Dittrich Databases 4 19 / 26

What is the Problem here?

Answer: £ G R
.. print('string data:')
In the definition on slide 19 we assumed a digit-wise = data = ('saa’, 'sa’, 's', 'sap’, 'saca’, 'sb', 'sasb', 'sai
. I . f | 1 zata_sﬁgFedv= Zoited(d:t:)
or su 1X 1in lata sortea:
comparison! This works for example (1.) et o
print(suffix)

However, in example (2.) we performed an integer

print('integers represented as strings:')

comparison comparing different digits! o rotes e e anaay

We compared ¢} = 134 with ¢2 = 1347843 by 7 s A) s <8
comparing the digits as ¢ with c3, then ¢} with ¢3, e _
rathern than defining globally cf — 1340000 and G LT)
then performing the query translation. for suffix in datad sorted:

if suffix >= 134 and suffix < 135:
. . . print(suffix)
see notebook: Digit-wise vs Integer-comparison . .
string data:
Saa
Saaa

Be careful saab

integers represented as strings:

Prefix to range query-translation only works, if we 134

13462
o1 1 1 1347843
assume a dlglt-W|se Comparlsonl integers represented as integers:
134

Prof. Dr. Jens Dittrich Databases 4 20 / 26

Multi-dimensional Range Query

Multi-dimensional Range Query

Given a relational schema [R] with k > 1 attributes A;,, ..., Aj , corresponding non-categorical
one-dimensional domains D;, ..., D; , and constants /;, h; € D;,... I, h; € D;,.

Then, Tl <Ay <hy A, SAkahfk(R) is called a multi-dimensional range condition or volume
query on R.

In other words, we select all tuples t = (a1,...,a,) € R where the k-dimensional point
(ai,-..,aj,) is contained in volume [/;;; hj] x ... x [fi; hj].
Examples:

B 00<xpos<3n5<ypos<6(tiles): selects all tiles with xpos 0, 1, 2 or 3 where additionally ypos is
either 5 or 6.

B 049<latitude<5079<longitude<10(Cities): selects all cities in lat/lon-volume [49; 50] x [9; 10]

Note

For k =1 this query is equivalent to a one-dimensional range query.

Prof. Dr. Jens Dittrich Databases 4 21/ 26

Indexing support for Multi-dimensional Range-Queries

Index 3:

we need to support multi-dimensional range queries along latitude (Breite) and longitude
(Lange) and zoomLevel

(latitude, longitude, zoomLevel) — tile

Latitude (Breite) Longitude (Lange)

Prof. Dr. Jens Dittrich Databases 4 22 /26

Relational Schema for this Scenario (Repeated and extended)

[tiles] : {[id:int, zoomlevel:int, xpos:int, ypos: int, filepath:string |}

Explanation:

m zoomlevel: from 0 to maxZoomlevel, O being the lowest, maxZoomlevel the highest
resolution

m xpos: the offset of a tile in x-direction

m ypos: the offset of a tile in y-direction

m filepath: the filepath to the tile image on disk (alternatively a BLOB, binary large object)
Constraints:

m xpos € [0,...,2%c0mlevel _ 1]

m ypos € [0,...,2700mlevel _ 1]

Prof. Dr. Jens Dittrich Databases 4 23 /26

Open Street Map Tile Addressing Scheme

https://a.tile.openstreetmap.de/<zoomLevel > /<x>/<y>.png

Examples:

https://a.tile.openstreetmap.de/0/0/0.png https://a.tile.openstreetmap.de/1/1/0.png
retrieves the world map: retrieves upper right tile at zoom level 1:

https://a.tile.openstreetmap.de/1/0/0.png https://a.tile.openstreetmap.de/7/70/44.png
retrieves upper left tile at zoom level 1: a tile at zoom level 7:

Prof. Dr. Jens Dittrich Databases 4 24 / 26

Open Street Map Tile Addressing Scheme

OK, we can now translate longitude/latitude to xpos/ypos.
But:

1. this translation has to be done for each zoom-level independently

2. (x,y)-coodinates across zoom-levels are not necessarily spatially related
Examples:

https://a.tile.openstreetmap.de/7/70/44.png https://a.tile.openstreetmap.de/8/141/89.png

yields the tile including Budapest at zoom yields the tile including Budapest at zoom
level 7:

.
Y { gpsricar Slow,
] Neusohl glove!

inatislava Scha
N\ Gybr A
“\ Raab, —

. /Budapest™
Tl
RS
székestenérvar, " (Ungarn,
suhiweikenburg” \agyarorszg

ly
er

Prof. Dr. Jens Dittrich Databases 4 25/ 26

z-codes

see Notebook: z-codes

Prof. Dr. Jens Dittrich

Databases 4

z. 2
2
ZIZf
:
Z. v

26 / 26

ra

Zl 7
Z

A7
Jra

il 7
[

Zl

