Databases

Elements of Data Science and Artificial Intelligence

Prof. Dr. Jens Dittrich

bigdata.uni-saarland.de

January 16, 2020

Prof. Dr. Jens Dittrich Databases 1/ 44

http://bigdata.uni-saarland.de

The “Database”-story so far

from the Introduction to Data Science-lecture:

“Databases are great to integrate and combine data.”
(see slide set “02 Introduction to Data Science”)

from the NLP-lectures:

|:4 “In NLP you eventually have to ask a database...” |
(see NLP slide sets)

Prof. Dr. Jens Dittrich Databases 2/ 44

DSAI Process Model

Four phases subphases Buzzwords and existing
(waterfall model, highly iterative) research areas

20ua19g BlEQ

O
o
=
)
m
=
Q
5
@
@
=
=
Q
QL
o
Q
O
o
ol
()

Bujuies] sulyoepy
-
uonenwig/Buijepop
-
Iy

2ouabijPu|

f. Dr. Jens Dittrich [DEIELEES

DSAI Process Model

Four phases subphases Buzzwords and existing
(waterfall model, highly iterative) research areas

We are here!

20ua19g BlEQ

O
o
=
)
m
=
Q
5
@
@
=
=
Q
QL
o
Q
O
o
ol
()

Bujuies] sulyoepy
-
uonenwig/Buijepop
-
Iy

2ouabijPu|

f. Dr. Jens Dittrich [DEIELEES

Dictionary: Process Model: MLish to Databasish

DSAI process model

MLish

Databasish

high-level idea

interpretation

interpretation

Prof. Dr. Jens Dittrich

analyze, abstract (leave away),
and enrich data to identify (and
add) important attributes

analyze, abstract (leave away),

and enrich data to identify (and

add) important attributes and
entities

design a model using neural
networks, CNNs, tree-classifier,
reinforcement learning, etc.,
pick/design loss functions

design a data model using
entity-relationship modeling and
the relational model

adjust model weights, adjust
hyperparameters

implement the relational model
in SQL DDL (called the

database schema) and load data
into the database schema

predict something using the
model

analyze data model using
SQL-queries

[DEIELEES

ML vs a Database: When to pick what?

ML

Database

How?

based on model that was
trained using old training data;
that data does not exist in the
model anymore (unless the
model overfits)

old training data, all data
(typically) still available, i.e. the
model simply memorizes all
data (the model is in maximum
overfit)

Query specification?

simple: based on tasks like
classification and regression

complex: based on SQL

‘ Result Quality

Advantage? may generalize (beyond what precise (beyond what ML can
SQL can do) do), no loss
Disadvantage? approximate (possible loss) missing generalization

Fo some scenarios both approaches may be suitable. Ideally both should be combined. And
that is what a lot of current research is about... (systems for ML, ML for systems)

Prof. Dr. Jens Dittrich

Databases

6/ 44

Why Databases? A two-layer Software-Architecture

user
examples:

map-browsing (e.g. Google Maps),
image collection (e.g. Lightroom),
data analytics software (e.g. Tableau)
including data management code

Application

Linux, Windows, OS X,

Operating & File System Android, iOS

CPU, DRAM, SSD, hard

Hardware
disk

Prof. Dr. Jens Dittrich Databases 7/ 44

Why Databases? A three-layer Software-Architecture

user
examples:

map-browsing (e.g. Google Maps),
image collection (e.g. Lightroom),
data analytics software (e.g. Tableau)
Application without data management code

PostgreSQL, MySQL,
Database System Oracle, SQLite

Linux, Windows, OS X,

Operating & File System Android, iOS

CPU, DRAM, SSD, hard

Hardware
disk

Prof. Dr. Jens Dittrich Databases 8/ 44

Advantages of Having a Separate Database Layer

Application developers...

1. do not have to reinvent common and generic data managing tasks over and over again for
every application (separation of concerns)

2. can (more or less) ignore how exactly data is stored and retrieved by the database system

3. have more time to focus on their actual application which hopefully increases their overall
productivity

4. do not have to test the data management code (which is delegated to the developers of
the database system!)

5. may easily exchange the database system against a different database system (well, at
least that was the idea initially...), e.g. to scale an application

Prof. Dr. Jens Dittrich Databases 9 /44

The Laziness Principles in Computer Science

The Laziness Principle

Whenever possible try to map (sub)problems to an existing problem. Then use existing
solutions to solve that (sub)problem rather than reinventing everything from scratch.

In the context of today’s lecture existing solutions means: use a database system rather than
coding the data manageemnt stuff yourself! But in other contexts it may also mean any other
suitable software (sub-)system and/or library.

The Missed Opportunity for Laziness Principle

If you do not know that a (sub)problem could be mapped to an existing problem, you miss the
chance to apply The Laziness Principle.

In other words: if you do not know that certain problems can effectively be solved in certain
ways, you will not be able to be lazy! For instance, assume you are simply not aware that of a
technique X that is always suitable when there is a problem of type Y.

Prof. Dr. Jens Dittrich Databases 10 / 44

Disavantages of Having a Separate Database Layer

Application developers...
1. have to live with the interfaces and features provided by the DBMS

2. have to know how to use a DBMS (many developers fail miserably here)

3. if you are unhappy with anything done by the DBMS (see 1.),
you-are-screwed,

learn, learn, and learn, i.e.: do not blame the DBMS for something which is very likely

your fault (see 2.) ...

Prof. Dr. Jens Dittrich Databases 11 / 44

Database Management Systems (Repeated&Improved)

Key questions:

1.

How to store, access, and
query data?

How to make query
processing efficient and
scalable?

How to make this happen
for just any kind of data?

How to abstract away
physical properties?

. How to abstract away

concurrency control?

How to recover after a
failure?

Killer contributions: relational model, relational algebra,
structured query language (SQL), transactions, and all
kinds of algorithms & systems that make the former
efficient and robust

Famous products: IBM Db 2, Oracle, PostgreSQL,
MySQL, MonetDB, SQLite, MS SQL Server, SAP Hana,
Tableau, Spark, ...

Biggest Failures: XQuery (XML query processing),
Object-oriented Databases, NoSQL (mostly reinvents very
old relational technology), native, non-relational storage
(LOL!), debatable horizontal scale-out (for very large
installations)

History: huge, very active research field since the early
60ies, ACM SIGMOD, VLDB

Prof. Dr. Jens Dittrich

Databases 12 / 44

In the Following: Learn by Application

rather than introducing and investigating these concepts independently (bottom-up), in the
following, we will introduce some key concepts by analyzing a concrete application (top-down)

We will take a closer look at Google Maps (you should recall our initial discussion from the
Perspektiven lecture, anyways, | will show again some of those slides in the following). We will
have a more technical discussion about this today and in the next weeks.

Prof. Dr. Jens Dittrich Databases 13 / 44

©7 Kanada Ozean

077 Arktischer X
wr Japan
y . ~apanisches Meer
7 3 T
ey b
NoKdWeStpass30e Baffn by Arktischer X RAEETG
: . Ostehinesisches
P A R
Russland \ -
4 Grénlandsee ! N VA/J
I . Mongolei
Gronland L /
’ Lobrodorsee Europsisches N
NS Island

Karb Sches N S 5 i
Mger inigtes Dinemar N
W Irland nigreich Q !%ell!mssla{r\(AN Tbekints A ,\‘

i Polen A { S /
iESehland TN \§ S
Nord Y, o ¥ akmenistan)
Atlantischer o~ i Turkmenistan /
Venezuela R“mm. "(A
[\ Italien
- Griechenland
e : »
i |
Marokko Tunesen T
NS

'Kartendaten © 2019 GooaleINEGI Deutschland Bedingunden Feedback aeben 1000 ki b

Application Equivalence Classes: more Opportunity for Laziness (1/2)

Google Maps is technically highly related to several other applications:

medicine: image data from MRTs or any other radiology device
material sciences: any image data from any “see-through”-device

astronomy: 3d star-catalogues, e.g.. Sloan Digital Sky Survey
https://en.wikipedia.org/wiki/Sloan_Digital_Sky_Survey
geography/geology/meteorology data over time: 4D-data about the state of the planet,
e.g. https://www.washingtonpost.com/graphics/2019/national/
climate-environment/thermometers-climate-change/

computer (online) games: when to load which texture, when to show which player/avatar

biology: 3D-brain/molecule/organ/plant/animal/etc.-catalogues,
e.g. The Human Brain Project:
https://www.humanbrainproject.eu/en/explore-the-brain/

Prof. Dr. Jens Dittrich Databases 15 / 44

https://en.wikipedia.org/wiki/Sloan_Digital_Sky_Survey
https://www.washingtonpost.com/graphics/2019/national/climate-environment/thermometers-climate-change/
https://www.washingtonpost.com/graphics/2019/national/climate-environment/thermometers-climate-change/
https://www.humanbrainproject.eu/en/explore-the-brain/

Application Equivalence Classes: more Opportunity for Laziness (2/2)

m cellphone: 4D-data on which device is where and when?,
e.g., the recent NYT article about public data on this:
https://www.nytimes.com/interactive/2019/12/19/opinion/
location-tracking-cell-phone.html

m traffic: 4D-vehicle data: which car/flight/ship is where and when?
e.g. FlightRadar
https://www.flightradar24.com/
m self-driving cars: 2D street maps, 4D-free space maps, e.g. slides by Bernt Schiele
m census data: who lived where and when?
e.g. US Census Data
https:
//www .census.gov/programs-surveys/geography/data/interactive-maps.html

m election data: who voted for which party and when?

Prof. Dr. Jens Dittrich Databases 16 / 44

https://www.nytimes.com/interactive/2019/12/19/opinion/location-tracking-cell-phone.html
https://www.nytimes.com/interactive/2019/12/19/opinion/location-tracking-cell-phone.html
https://www.flightradar24.com/
https://www.census.gov/programs-surveys/geography/data/interactive-maps.html
https://www.census.gov/programs-surveys/geography/data/interactive-maps.html

Survey

Why is it important to think along application equivalence classes?

(C): It might be a starting point to think
along more generic applications that

support a larger subset of the
(B): Techniques that were used in a applications in a class.

particular application X may be useful (D)
for other applications Y in that class
as well.

(A): The professor can brag about how
important his field is.

: An application X in a particular class
may be easily adapted to become
application Y.

Prof. Dr. Jens Dittrich Databases 17 / 44

Solution (A-D)

all correct!

Prof. Dr. Jens Dittrich Databases 18 / 44

Major Challenges with this Application Equivalence Class

Potential problems:

m potentially large volumes of data:
does not fit into main memory and/or on local machine, hence: high load on storage and
network

m large number of concurrent users
high load on storage and network

Requirements:
m seamless user-experience, i.e. seamless zooming and panning
m do not overload servers, network, and clients

m close to zero downtime (in particular in case of hardware failures)

Prof. Dr. Jens Dittrich Databases 19 / 44

The Key Questions with Google Maps (1/2)

Key questions:

1. How to store, access, and
query data?

2. How to make query process-
ing efficient and scalable?

3. How to make this happen for
just any kind of data

for this concrete application (Google Maps):
where and how to store and cache the data?

which queries?:

(a) 2-dimensional range queries,

(b) text search on geonames.

How does a database process such a query?
what data?:

(a) satellite images (raster data),

(b) roads, borders, etc. (vector data),

(c) geographic names (text)

Prof. Dr. Jens Dittrich

Databases 20 / 44

The Key Questions with Google Maps (2/2)

Key questions:

4. How to abstract away phys-
ical properties?

5. How to abstract away con-
currency control?

6. How to recover after a fail-
ure?

for this concrete application (Google Maps):
physical properties:

(a) huge network of servers distributed around the globe
(hardware),

(b) decision for certain data structures and algorithms
used internally (how to compute stuff)

How come we do not have to worry about this?

many Google Maps users access the same map data con-
currently, is that a problem?

what if any server goes down or storage space is lost?
Will Google Maps still work?

Prof. Dr. Jens Dittrich

Databases 21 / 44

The Key Questions with Google Maps (1/2)

Key questions: for this concrete application (Google Maps):

1. How to store, access, and where and how to store and cache the data?
query data?

Prof. Dr. Jens Dittrich Databases 22 / 44

The Storage Hierarchy

Registers A

capacity,

bandwidth
flash/hard disk
L Z

Typical Access Times

access time

1cve

4cve

10cve

60cvc

60ns

5ms

Registers

flash/hard disk

Relative Distances!

“L1 cache is like grabbing a piece of
paper from your desk
(2 second),

L2 cache is picking up a book from a
nearby shelf
(5 seconds),

L3 cache is picking up a book from
the next room
(30 seconds),

DRAM is taking a walk down the hall
to buy a Twix bar
(90 seconds).”

Factor 3,750,000

“hard disk is like
walking from Saarland to Hawaii.

7,500,000 seconds of walking!

= 86.8 days!

Typical Sizes

16%8B
16%x32B

Registers

32KB

256KB

capacity
2TB flash/hard disk
 Z

88¢'tZS JojoeH

9G¢ 10)0e

g Jojoe
I

™
-

DRAM

Relative Sizes!

Zoom out:

Tasks of Each Layer in a Storage Hierarchy

Four major tasks:

1. localization of data objects:
Is data item x available in this layer?
2. caching of data from lower (slower) levels:
Shall we store data item x in this layer?
3. data replacement strategies:
Which data item x should we remove to make room for new data items in this layer?
4. writing modified data:

If data item x was modified, should we also modify the copies of x in the layers
underneath?

Prof. Dr. Jens Dittrich Databases 30 / 44

Distribution Independence in a Storage Hierarchy

Distribution Independence

When working with computer memory we typically do not see whether that memory is mapped
to a particular location. All of this is hidden for us and handled automatically by the computer
system (operating system and hardware, in particular through virtual memory management).
We do not have control over how these tasks are performed?.

“Well, basically: there are many tricks around this...

This term was coined by Edd Codd, one of the founding fathers of relational database
technology:

https://en.wikipedia.org/wiki/Edgar_F._Codd,
https://en.wikipedia.org/wiki/Codd’%27s_12_rules

Prof. Dr. Jens Dittrich Databases 31/ 44

https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/Codd%27s_12_rules

Partial Distribution Independence

Partial Distribution Independence

Most computer systems provide a mix where Distribution Independence holds for some of the
storage layers while Distribution Dependence holds for others.

Examples:
In a CPU, as long as we talk about everything in-between L1, L2, L3, and main memory,
distribution independence holds:

m As long as data is “in memory", we simply see a linear address space [0,..., N].

m We can then addresss memory, e.g. readByte(42) to read the byte at position 42 and
writeByte(42,17), to write byte 17 to position 42.

In contrast, in-between hard disk (and/or SSDs) <+ main memory distribution independence
typically does not hold:

Prof. Dr. Jens Dittrich Databases 32/ 44

Distribution Dependence on the Storage Layer

Distribution Dependence

For certain layers of the storage layer we do have control on when data is read and/or
written and/or how the different tasks are performed on that storage layer.

Examples:

m From disk/SSD to main memory we all of a sudden make it explicit:
“let’s load/save that file".

m From the Internet to our machine/smartphone we say:
“let’s download/upload that file/webpage”.

m From our machine to an external disk we say:
“let's make a backup on that external disk”.

Prof. Dr. Jens Dittrich Databases 33/ 44

Operating System vs Database Buffer

distribution |

independence

distribution

dependence]

.
AR

main memory

flash/hard disk

Buffer Replacement Strategies

Buffer

A buffer at a given storage layer keeps a copy of k data items from a lower (more distant)
storage layer. A buffer has the following task/functions:

get(item): return a handle to a data item, assumes that a copy of the data item is already
kept in the buffer

load(item): load a data item into the buffer

evict(): determine a data item to remove from the buffer, may trigger a write operation on a
lower (more distant) storage layer

A buffer may be implemented in Software and/or Hardware.
The major decision when implementing a buffer is how to implement evict().

Prof. Dr. Jens Dittrich Databases 35/ 44

Example: Main-Memory Buffer
P g TR

abase

buffer

data items: ‘pages’ of 4KB each
get(pagelD): return a handle to the page with pagelD
load(pagelD): load page with pagelD from disk into main memory

evict(): determine a page to remove from the buffer, if that page was modified in main
memory over the version on disk, we first have to write the changed version back to disk/flash

Prof. Dr. Jens Dittrich Databases 36 / 44

Buffer Replacement Strategies

The decision which data item to evict is called replacement strategy.
Well known strategies are:

m Least Recently Used (LRU): the data item that was used the longest time ago will be
evicted

m First-In-First-Out (FIFO): the data item that was loaded the longest time ago will be
evicted

m Least Frequently Used (LFU): the data item that was used the least will be evicted; this
is implemented through some form of reference counting

see Jupyter notebook “LRU buffer”

Prof. Dr. Jens Dittrich Databases 37 / 44

Layer Entanglement

Storage Layer Task Implementation and Entanglement

How to implement the four different tasks on a particular storage layer depends on:

1. the physical properties of that layer (capacity, access times, bandwidth), and

2. its interaction with the other layers, and

3. what we want to do with the computer system!

Prof. Dr. Jens Dittrich Databases

38 / 44

General Purpose vs Domain-specific

General Purpose Storage Layer Implementation J

The storage layer is implemented with the goal to support a very diverse set of applications.

Example: the page cache of the Linux operating system, it implements tasks to handle
hard disk (and/or SSDs) <> main memory

Domain-specific Storage Layer Implementation

The storage layer is implemented with the goal to support a specific class of applications
(i.e., an application domain).

Example: the database buffer as implemented by a database system X: it does more or less
the same as the file cache of the Linux operating system, however: as a database system is
more restricted in what kind of applications it supports, it can perform optimizations targeted
to a specific class of applications

Prof. Dr. Jens Dittrich Databases 39 / 44

A Single-Core Storage Hierarchy

board CPU

Registers A

capacity,

bandwidth
flash/hard disk
L Z

A Multicore Storage Hierarchy

CPU

board

flash/hard disk

Non-Uniform Memory Access (NUMA)

CPU

CPU
Sedihts SEREE ety S

aH bH o o
AR A& AR A AEEE

main memory main memory

board

flash/hard disk

The Network is just Another Layer!

Simplification
Layers in a network can often be modeled just as like other storage layer. It is merely a matter

of adjusting the constants (mainly access times, bandwidth, and storage sizes; everything else
is details that can be ignored in most cases)

Prof. Dr. Jens Dittrich Databases 43 / 44

One computer in

a Network
Registers

flash/hard disk

Server in Frankfurt

Server in Iceland

Server in the USA

Server on Mars

