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The “Database”-story so far

from the Introduction to Data Science-lecture:

“Databases are great to integrate and combine data.”
(see slide set “02 Introduction to Data Science”)

from the NLP-lectures:
..♩ “In NLP you eventually have to ask a database...” ..

(see NLP slide sets)
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DSAI Process Model

1. Analyze data
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Four phases

3. Make inferences
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Dictionary: Process Model: MLish to Databasish

DSAI process model MLish Databasish

high-level idea interpretation interpretation

identify features/structural
elements

analyze, abstract (leave away),
and enrich data to identify (and
add) important attributes

analyze, abstract (leave away),
and enrich data to identify (and
add) important attributes and

entities

design models design a model using neural
networks, CNNs, tree-classifier,
reinforcement learning, etc.,
pick/design loss functions

design a data model using
entity-relationship modeling and

the relational model

train and enrich models adjust model weights, adjust
hyperparameters

implement the relational model
in SQL DDL (called the

database schema) and load data
into the database schema

deduce knowledge predict something using the
model

analyze data model using
SQL-queries
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ML vs a Database: When to pick what?

ML Database

How? based on model that was
trained using old training data;
that data does not exist in the
model anymore (unless the
model overfits)

old training data, all data
(typically) still available, i.e. the

model simply memorizes all
data (the model is in maximum

overfit)

Query specification? simple: based on tasks like
classification and regression

complex: based on SQL

Result Quality

Advantage? may generalize (beyond what
SQL can do)

precise (beyond what ML can
do), no loss

Disadvantage? approximate (possible loss) missing generalization

Fo some scenarios both approaches may be suitable. Ideally both should be combined. And
that is what a lot of current research is about... (systems for ML, ML for systems)

Prof. Dr. Jens Dittrich Databases 6 / 44



Why Databases? A two-layer Software-Architecture

Operating & File System

Hardware

Linux, Windows, OS X, 
Android, iOS

CPU, DRAM, SSD, hard 
disk

Application

examples:

user

map-browsing (e.g. Google Maps), 
image collection (e.g. Lightroom), 
data analytics software (e.g. Tableau) 
including data management code
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Why Databases? A three-layer Software-Architecture

Operating & File System

Hardware

map-browsing (e.g. Google Maps), 
image collection (e.g. Lightroom), 
data analytics software (e.g. Tableau) 
without data management code

Linux, Windows, OS X, 
Android, iOS

CPU, DRAM, SSD, hard 
disk

Application

examples:

user

Database System PostgreSQL, MySQL, 
Oracle, SQLite

Prof. Dr. Jens Dittrich Databases 8 / 44



Advantages of Having a Separate Database Layer

Application developers...

1. do not have to reinvent common and generic data managing tasks over and over again for
every application (separation of concerns)

2. can (more or less) ignore how exactly data is stored and retrieved by the database system

3. have more time to focus on their actual application which hopefully increases their overall
productivity

4. do not have to test the data management code (which is delegated to the developers of
the database system!)

5. may easily exchange the database system against a different database system (well, at
least that was the idea initially...), e.g. to scale an application
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The Laziness Principles in Computer Science

The Laziness Principle

Whenever possible try to map (sub)problems to an existing problem. Then use existing
solutions to solve that (sub)problem rather than reinventing everything from scratch.

In the context of today’s lecture existing solutions means: use a database system rather than
coding the data manageemnt stuff yourself! But in other contexts it may also mean any other
suitable software (sub-)system and/or library.

The Missed Opportunity for Laziness Principle

If you do not know that a (sub)problem could be mapped to an existing problem, you miss the
chance to apply The Laziness Principle.

In other words: if you do not know that certain problems can effectively be solved in certain
ways, you will not be able to be lazy! For instance, assume you are simply not aware that of a
technique X that is always suitable when there is a problem of type Y.
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Disavantages of Having a Separate Database Layer

Application developers...

1. have to live with the interfaces and features provided by the DBMS

2. have to know how to use a DBMS (many developers fail miserably here)

3. if you are unhappy with anything done by the DBMS (see 1.),
you are screwed,
learn, learn, and learn, i.e.: do not blame the DBMS for something which is very likely
your fault (see 2.) ...
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Database Management Systems (Repeated&Improved)

Key questions:

1. How to store, access, and
query data?

2. How to make query
processing efficient and
scalable?

3. How to make this happen
for just any kind of data?

4. How to abstract away
physical properties?

5. How to abstract away
concurrency control?

6. How to recover after a
failure?

Killer contributions: relational model, relational algebra,
structured query language (SQL), transactions, and all
kinds of algorithms & systems that make the former
efficient and robust
Famous products: IBM Db 2, Oracle, PostgreSQL,
MySQL, MonetDB, SQLite, MS SQL Server, SAP Hana,
Tableau, Spark, ...
Biggest Failures: XQuery (XML query processing),
Object-oriented Databases, NoSQL (mostly reinvents very
old relational technology), native, non-relational storage
(LOL!), debatable horizontal scale-out (for very large
installations)
History: huge, very active research field since the early
60ies, ACM SIGMOD, VLDB
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In the Following: Learn by Application

rather than introducing and investigating these concepts independently (bottom-up), in the
following, we will introduce some key concepts by analyzing a concrete application (top-down)

We will take a closer look at Google Maps (you should recall our initial discussion from the
Perspektiven lecture, anyways, I will show again some of those slides in the following). We will
have a more technical discussion about this today and in the next weeks.
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Application Equivalence Classes: more Opportunity for Laziness (1/2)

Google Maps is technically highly related to several other applications:

medicine: image data from MRTs or any other radiology device

material sciences: any image data from any “see-through”-device

astronomy: 3d star-catalogues, e.g.. Sloan Digital Sky Survey
https://en.wikipedia.org/wiki/Sloan_Digital_Sky_Survey

geography/geology/meteorology data over time: 4D-data about the state of the planet,
e.g. https://www.washingtonpost.com/graphics/2019/national/
climate-environment/thermometers-climate-change/

computer (online) games: when to load which texture, when to show which player/avatar

biology: 3D-brain/molecule/organ/plant/animal/etc.-catalogues,
e.g. The Human Brain Project:
https://www.humanbrainproject.eu/en/explore-the-brain/
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Application Equivalence Classes: more Opportunity for Laziness (2/2)

cellphone: 4D-data on which device is where and when?,
e.g., the recent NYT article about public data on this:
https://www.nytimes.com/interactive/2019/12/19/opinion/

location-tracking-cell-phone.html

traffic: 4D-vehicle data: which car/flight/ship is where and when?
e.g. FlightRadar
https://www.flightradar24.com/

self-driving cars: 2D street maps, 4D-free space maps, e.g. slides by Bernt Schiele

census data: who lived where and when?
e.g. US Census Data
https:

//www.census.gov/programs-surveys/geography/data/interactive-maps.html

election data: who voted for which party and when?
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Survey

Why is it important to think along application equivalence classes?

(A): The professor can brag about how
important his field is.

(B): Techniques that were used in a
particular application X may be useful
for other applications Y in that class
as well.

(C): It might be a starting point to think
along more generic applications that
support a larger subset of the
applications in a class.

(D): An application X in a particular class
may be easily adapted to become
application Y.
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Solution (A–D)

all correct!
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Major Challenges with this Application Equivalence Class

Potential problems:

potentially large volumes of data:
does not fit into main memory and/or on local machine, hence: high load on storage and
network

large number of concurrent users
high load on storage and network

Requirements:

seamless user-experience, i.e. seamless zooming and panning

do not overload servers, network, and clients

close to zero downtime (in particular in case of hardware failures)
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The Key Questions with Google Maps (1/2)

Key questions: for this concrete application (Google Maps):

1. How to store, access, and
query data?

where and how to store and cache the data?

2. How to make query process-
ing efficient and scalable?

which queries?:
(a) 2-dimensional range queries,
(b) text search on geonames.
How does a database process such a query?

3. How to make this happen for
just any kind of data

what data?:
(a) satellite images (raster data),
(b) roads, borders, etc. (vector data),
(c) geographic names (text)
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The Key Questions with Google Maps (2/2)

Key questions: for this concrete application (Google Maps):

4. How to abstract away phys-
ical properties?

physical properties:
(a) huge network of servers distributed around the globe
(hardware),
(b) decision for certain data structures and algorithms
used internally (how to compute stuff)
How come we do not have to worry about this?

5. How to abstract away con-
currency control?

many Google Maps users access the same map data con-
currently, is that a problem?

6. How to recover after a fail-
ure?

what if any server goes down or storage space is lost?
Will Google Maps still work?
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The Key Questions with Google Maps (1/2)

Key questions: for this concrete application (Google Maps):

1. How to store, access, and
query data?

where and how to store and cache the data?
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Typical Access Times
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ABSTRACT
Large text corpora with news, customer mail and reports, or Web 2.0
contributions offer a great potential for enhancing business-intelligence
applications. We propose a framework for performing text ana-
lytics on such data in a versatile, efficient, and scalable manner.
While much of the prior literature has emphasized mining key-
words or tags in blogs or social-tagging communities, we empha-
size the analysis of interesting phrases. These include named en-
tities, important quotations, market slogans, and other multi-word
phrases that are prominent in a dynamically derived ad-hoc sub-
set of the corpus, e.g., being frequent in the subset but relatively
infrequent in the overall corpus. We develop preprocessing and in-
dexing methods for phrases, paired with new search techniques for
the top-k most interesting phrases in ad-hoc subsets of the corpus.
Our framework is evaluated using a large-scale real-world corpus
of New York Times news articles.

1. INTRODUCTION
With the dramatic growth of business-relevant information in

various textual sources, such as user-interaction logs (web clicks
etc.), news, blogs, and Web 2.0 community data, text analytics is
getting a key role in modern data mining and Business-Intelligence
(BI) for decision support. Analysts are often interested in examin-
ing a set of specifically compiled documents, to identify their char-
acteristic words or phrases or discriminate it from a second set. Tag
clouds and evolving taglines are prominent examples of this kind
of analyses [2, 6, 18]. While there is ample work on this topic
for word or tag granularities, there is very little prior research on
mining variable-length phrases. Such interesting phrases include
names of people, organizations, or products, but also news head-
lines, marketing slogans, song lyrics, quotations of politicians or
actors, and more.

In this paper, we focus on the analysis of interesting phrases in
ad-hoc, dynamically derived document collections, for example, by
a keyword query or metadata-based search from a large document
corpus. Interestingness can be defined with the help of statistical
�on leave from the University of Hong Kong

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
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measures that compare the local frequency of a phrase in the ad-
hoc collection with its global frequency in the entire archive. For
example, consider the results of keyword query “Steve Jobs” on
a news archive. The most interesting phrases may include “apple
chief executive”, “mac os x”, “the computer maker”. The ratio
local/global frequency of these phrases is high, therefore they are
deemed appropriate in characterizing the query results.

In [23] a phrase inverted index is developed for finding the most
interesting phrases in an ad-hoc subset D⇥ of the overall corpus D.
As a preprocessing step, for each phrase, identifiers of documents
in D that contain the phrase are collected into an index list, built
in an IR-style inverted-file fashion [28]. In order to compute the
frequencies of the phrases in D⇥, the inverted lists are accessed and
intersected with D⇥. An approximate counting technique that inter-
sects only a sampled subset of each list with D⇥ is proposed; still, a
very large number of lists has to be accessed – potentially as large
as the number of phrases, regardless of the size of D⇥. As news,
blogs, and web-usage corpora become rapidly larger, the phrase-
inverted-index method becomes practically infeasible for interac-
tive analytics. In fact, the experiments in [23] only reported results
on a corpus of 30,000 publications.

In this paper, we develop an efficient alternative to [23] with
much better scalability. We pre-process the documents in the entire
corpus D and extract all phrases (above some minimum-support
threshold). We then encode and index the phrases contained in
each document in a forward index list. Given a subset D⇥ � D,
in order to determine the frequencies and compute the interesting-
ness of the phrases there, we scan and merge the forward index
lists of the documents in D⇥. We propose several variants of this
approach, based on different ways of ordering and compressing the
phrases in the lists. These variants in turn lead to alternative algo-
rithms for the phrase mining, with different capabilities for pruning
the search space. As the number of phrases that are contained in D⇥

can be very large, we focus on finding the top-k interesting phrases.
We offer a systems-level solution that scales to very large corpora
D. Our methods are evaluated using a corpus of nearly two million
articles from the New York Times archive. Our problem setting
differs from classic sequence mining [27] by the ad-hoc nature of
the subset D⇥ of D: D⇥ is dynamically derived from queries and we
gear for this novel situation by judicious indexing of D.

The rest of the paper is organized as follows. Section 2 defines
a representative interestingness measure for phrases in an ad-hoc
subset of a corpus. In Section 3, we present alternative meth-
ods for indexing the document corpus and searching for interesting
phrases, including the framework that we propose in this paper. We
experimentally demonstrate the efficiency and scalability of our ap-
proaches in Section 4. Section 5 reviews related work and Section 6
concludes the paper.
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Tasks of Each Layer in a Storage Hierarchy

Four major tasks:

1. localization of data objects:
Is data item x available in this layer?

2. caching of data from lower (slower) levels:
Shall we store data item x in this layer?

3. data replacement strategies:
Which data item x should we remove to make room for new data items in this layer?

4. writing modified data:
If data item x was modified, should we also modify the copies of x in the layers
underneath?
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Distribution Independence in a Storage Hierarchy

Distribution Independence

When working with computer memory we typically do not see whether that memory is mapped
to a particular location. All of this is hidden for us and handled automatically by the computer
system (operating system and hardware, in particular through virtual memory management).
We do not have control over how these tasks are performeda.

aWell, basically: there are many tricks around this...

This term was coined by Edd Codd, one of the founding fathers of relational database
technology:
https://en.wikipedia.org/wiki/Edgar_F._Codd,
https://en.wikipedia.org/wiki/Codd%27s_12_rules
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Partial Distribution Independence

Partial Distribution Independence

Most computer systems provide a mix where Distribution Independence holds for some of the
storage layers while Distribution Dependence holds for others.

Examples:

In a CPU, as long as we talk about everything in-between L1, L2, L3, and main memory,
distribution independence holds:

As long as data is “in memory”, we simply see a linear address space [0, . . . ,N].

We can then addresss memory, e.g. readByte(42) to read the byte at position 42 and
writeByte(42,17), to write byte 17 to position 42.

In contrast, in-between hard disk (and/or SSDs) ↔ main memory distribution independence
typically does not hold:
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Distribution Dependence on the Storage Layer

Distribution Dependence

For certain layers of the storage layer we do have control on when data is read and/or
written and/or how the different tasks are performed on that storage layer.

Examples:

From disk/SSD to main memory we all of a sudden make it explicit:
“let’s load/save that file”.

From the Internet to our machine/smartphone we say:
“let’s download/upload that file/webpage”.

From our machine to an external disk we say:
“let’s make a backup on that external disk”.
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Buffer Replacement Strategies

Buffer

A buffer at a given storage layer keeps a copy of k data items from a lower (more distant)
storage layer. A buffer has the following task/functions:

get(item): return a handle to a data item, assumes that a copy of the data item is already
kept in the buffer

load(item): load a data item into the buffer

evict(): determine a data item to remove from the buffer, may trigger a write operation on a
lower (more distant) storage layer

A buffer may be implemented in Software and/or Hardware.
The major decision when implementing a buffer is how to implement evict().
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Example: Main-Memory Buffer

data items: ‘pages’ of 4KB each

get(pageID): return a handle to the page with pageID

load(pageID): load page with pageID from disk into main memory

evict(): determine a page to remove from the buffer, if that page was modified in main
memory over the version on disk, we first have to write the changed version back to disk/flash
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Buffer Replacement Strategies

The decision which data item to evict is called replacement strategy.
Well known strategies are:

Least Recently Used (LRU): the data item that was used the longest time ago will be
evicted

First-In-First-Out (FIFO): the data item that was loaded the longest time ago will be
evicted

Least Frequently Used (LFU): the data item that was used the least will be evicted; this
is implemented through some form of reference counting

see Jupyter notebook “LRU buffer”
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Layer Entanglement

Storage Layer Task Implementation and Entanglement

How to implement the four different tasks on a particular storage layer depends on:

1. the physical properties of that layer (capacity, access times, bandwidth), and

2. its interaction with the other layers, and

3. what we want to do with the computer system!
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General Purpose vs Domain-specific

General Purpose Storage Layer Implementation

The storage layer is implemented with the goal to support a very diverse set of applications.

Example: the page cache of the Linux operating system, it implements tasks to handle
hard disk (and/or SSDs) ↔ main memory

Domain-specific Storage Layer Implementation

The storage layer is implemented with the goal to support a specific class of applications
(i.e., an application domain).

Example: the database buffer as implemented by a database system X: it does more or less
the same as the file cache of the Linux operating system, however: as a database system is
more restricted in what kind of applications it supports, it can perform optimizations targeted
to a specific class of applications
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The Network is just Another Layer!

Simplification

Layers in a network can often be modeled just as like other storage layer. It is merely a matter
of adjusting the constants (mainly access times, bandwidth, and storage sizes; everything else
is details that can be ignored in most cases)
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One computer in 
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