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What’s a language model? 

A statistical language model is a probability distribution 
over a sequence of words. 
Given a sequence of words w1...wn, it assigns a  
probability P(w1...wn) to the sequence. 
 
Language models can be evaluated by comparing how  
well they manage to “guess” a missing word in a sequence 
(or the next word in a sentence) given the beginning of a 
sentence. 
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Why do you need a language model? 

Language models allow to estimate the likelihood 
of a sentence. This is useful for NLP applications 
where we want to generate text, as it allows us to  
quantify how “good” a text is. 
 
•  Speech recognition 
•  Machine translation 
•  Optical character recognition 
•  Handwriting recognition 
•  Summarization 
•  Language generation in chatbots or dialog systems 
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Sprachverarbeitung 

Laura schläft 

Schallsignal 

Wortkette 

Information 

Spracherkennung 

Sprachverstehen 
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Speech recognition 

Speech signal 

Sequence of words 

6 

Basic challenge in speech 
recognition: 
 
•  Given a continuous speech signal, 

we need to determine what 
sequence of words was uttered. 
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Speech recognition 

Speech signal 

Oszillogramm 

Digital recording 

Sequence of words 

7 
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Visualization of oscillations for „afa“ 

      

Ein Oszillogramm 

a “pure” oscillation 
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Oscillations for other sounds 

aka 

acha 

ama 

ydy 
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Einzelne Laute als Oszillogramme 

•  Sounds are characterized by 
combinations of oscillations 
in different frequencies. 

•  Frequencies are hard to see 
as they overlay each other. 

•  Therefore, fourier transform 
is used to analyse what 
components a complex 
oscillation consists of. The 
result is a spectrogram. 

10 
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Spracherkennung: (Vereinfachtes) Schema 
Schallsignal 

Oszillogramm 

Spektrogramm 

Digital recording 

Analysis of frequencies contained  
in oscillations 

Wort /Wortkette 

11 
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Spektrogramm für eine Aufnahme von „neunzig“ 
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Spektrogramm für die Vokale i,a,u 

•  Different vowels differ in terms of the frequencies at which 
there are high levels of energy. 
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How to get from the spectrogram to words 

Just reading off the sounds from the spectrogram 
is hard, because of  
•  variance in the signal (different voices, dialects)  
•  continuity of the signal (no pauses between words) 
•  coarticulation 
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Koartikulation / Kontextabhängigkeit 
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How to get from the spectrogram to words 

Just reading off the sounds from the spectrogram 
is hard, because of  
•  variance in the signal (different voices, dialects)  
•  continuity of the signal (no pauses between words) 
•  Coarticulation 

Example for speech recognition output based only on acoustics: 
 
Input: What is your review of linux mint? 
 
ASR output: WHEW AW WR CZ HEH ZZ YE AW WR OF YE WR ARE 'VE LENOX MAY AND 
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Learning from data 

•  It is in practice impossible to specify all combinations 
of sound intensities etc. for a mapping of what the 
sound might be. 

•  Therefore, data-driven approaches are used: 
–  Annotate a recording with what was said on a 

sound by sound level 
–  Convert the recording into features that can be 

used for ML 
–  Train a (statistical or neural) model 
–  Evaluate 
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Idea: split up time and frequency into little windows and 
note intensities, to make a feature vector which can 
then be mapped to sounds. 

0   1    2   2    3   3 
 
 
0   2    1    1   3   4 
 
0   4    5   5    6   6 
 
1  4   3   3   6    8 

2  5   7  7   8    5 
2  5   9   9   9    7 
7    8   9   9   9    9   
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Speech recognition: (Simplified) Schema 
Speech signal 

Oszillogramm 

Spektrogramm 

Digital recording 

Analysis of frequencies 

Sequence of words 

19 

Patterns / Features 

? 

Extract Patterns 

Global statistical model that combines 
Information from speech signal with  
knowledge about likely sound sequences 
and word sequences in the language. 
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Statistische Modellierung 
•  Task: estimate what word sequence w1... wn is most likely given 

sound pattern sequence O = o1 o2 ... om: 

   maxW P(W|O) = P(w1w2 ... wn| o1 o2 ... om)  
 
•  This is very hard to estimate, because we may never have 

observed the exact sequence o1 o2 ... Om before. => „sparse data“ 

•  Using Bayes‘ Rule, we can instead estimate P(W|O) as follows: 
 

€ 

P(W |O) =
P(O |W )⋅ P(W )

P(O)
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€ 

P(W |O) =
P(O |W )⋅ P(W )

P(O)

Wie bestimmen wir P(W|O)? 

•  Symptom: Folge von akustischen Beobachtungen O = o1 o2 ... om 
•  Ursache:  

vom Sprecher geäußerte, intendierte Wortkette W = w1w2 ... wn 
•  Mit Bayes-Regel : 
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€ 

=maxW P(O |W ) ⋅ P(W )

€ 

maxW P(W |O) =maxW
P(O |W ) ⋅ P(W )

P(O)
€ 

P(W |O) =
P(O |W )⋅ P(W )

P(O)

How do we estimate P(W|O)? 

•  Bayes rule : 

•  Most probable word sequence: 

•  P(O) is the probability of the speech pattern; we don‘t need it when 
caring only about the maximally probable word sequence. 

•  P(O|W) is the acoustic model (i.e., likelihood that a word is 
pronounced as a specific sound pattern sequence). 
=> acoustic model 

•  P(W)  is the probability of the word sequence w1...wn. 
=> language model 
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How to get from the spectrogram to words 

Just reading off the sounds from the spectrogram 
is hard, because of  
•  variance in the signal (different voices, dialects)  
•  continuity of the signal (no pauses between words) 
•  coarticulation 

Example for speech recognition output based only on acoustics: 
 
Input: What is your review of linux mint? 
 
ASR output: WHEW AW WR CZ HEH ZZ YE AW WR OF YE WR ARE 'VE LENOX MAY AND 
 
ASR output with language model: WHAT IS YOUR REVIEW OF LINUX MINT? 
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Speech recognition 
Schallsignal 

Oszillogramm 

Spektrogramm 

Digitale Aufnahme 

Zerlegung in Einzelfrequenzen 

Wort /Wortkette 

Merkmalsmuster 

Merkmalsextraktion 

Lautmodelle Wortmodelle Sprachmodelle 

24 
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Language models 

•  How can we estimate the probability of  word sequence 
P(W) = P(w1w2 ... wn) ? 

•  We can estimate this from the frequency of word sequences in texts. 

•  But we still have a data sparsity problem: 
complete sentences have rarely been seen before; in fact, one can 
easily say a sentence that has never been said before. 

•  Chain rule allows us to reduce the joint probability P(w1w2 ... wn) to 
conditional probabilities: 

 P(w1w2 ... wn)  

   = P(w1)*P(w2|w1)*P(w3|w1w2)* ... *P(wn|w1w2... wn-1) 

•  But this didn‘t solve the data sparsity problem: P(wn|w1w2... wn-1) 
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n-grams 

•  n-gram method:  
–  We approximate the probability of observing a word w in the context 

of the previous words by the probability of this word occurring given 
a limited-length context of previous words. ("Markov-assumption") 

–  E.g.: A bigram is the probability of a word given the previous word 
P(wn|wn-1).  

–  Usually, we use trigrams, 4-grams or 5-grams. 
–  What do you think are the (dis)advantages of bigrams vs. 5-grams? 

 
•  Example for bigram approximation: 

–  P(wn|w1w2... wn-1) ≈ P(wn|wn-1) 
 P(w1w2 ... wn) ≈ P(w1)*P(w2|w1)*P(w3|w2)* ... P(wn|wn-1) 
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How to calculate n-grams from texts 

Example for bigram approximation: 
–  P(wn|w1w2... wn-1) ≈ P(wn|wn-1) 

 P(w1w2 ... wn) ≈ P(w1)*P(w2|w1)*P(w3|w2)* ... P(wn|wn-1) 
 
We simply calculate the probability  P(w3|w2) as P(w2 w3)/P(w2) 
And estimate probabilities from observed numbers of occurrences in texts. 
 
P(w2 w3) = freq(w2 w3)/#bigrams in text 
P(w2) = freq(w2)/#words in text 
 
Hence    P(w3 | w2) = freq(w2w3)/freq(w2) 
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Try it for yourself 

  P(w3 | w2) = freq(w2w3)/freq(w2) 
 
Example text: 
A tall girl lived in a small house next to a tall tree. One day, the tall girl 
wanted to climb onto the tall tree. 
 
Please calculate the bigram probability P(girl|tall) 
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The Era of Deep Learning in CL 

Since 2015, Deep Learning (aka neural networks) 
has become the dominant paradigm in CL. 

LM model Model class PTB test perplexity 

old-school 5-grams with 
Kneser-Ney 125.7 

Mikolov et al. 2011 neural 
(RNN) 101.0 

Gong et al. 2018 neural 
(complex) 46.5 
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The Era of Deep Learning in CL 

LM model Model class PTB test perplexity 

old-school 5-grams with 
Kneser-Ney 125.7 

Mikolov et al. 2011 neural 
(RNN) 101.0 

Gong et al. 2018 neural 
(complex) 46.5 

We will now take a look at how RNNs (and an improved 
version, called LSTMs) work. 
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Disadvantages of ngram models 

Key observation regarding problems with n-gram models: 

•  You have to decide on a fixed length context  
(bigram, trigram, 5-gram)  

•  If a short context is chosen, many long distance dependencies are 
missed. 

•  If a long context is chosen, we have data sparsity issues (cannot 
estimate probabilities accurately because we haven’t observed 
these exact contexts frequently enough). 

•  Dependencies in language can be arbitrarily long:  

–  Syntactic dependencies 

–  Topic-related dependencies 



Lecture “Elements of Data Science and AI”        V. Demberg UdS 32 

RNNs 
If we use a neural network, we also need to make sure that the context 
of previous words is represented in the model. It therefore makes sense 
to design a neural network architecture that reflects this challenge. 
 

Solution that (in principle) allows  

to model arbitrarily long context: 

Recurrent Neural Network 
 

xt is the input word 

ht is the predicted next word 

A is an internal hidden state 

The network is “recurrent” because it 
contains a loop. 

 

Picture credit: 
Christopher Olah 
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RNNs 

If we use a neural network, we also need to make sure that the context 
of previous words is represented in the model. It therefore makes sense 
to design a neural network architecture that reflects this challenge. 

 

Picture credit: 
Christopher Olah 

 
At = tanh (WAAAt-1+ WxAxt) 
 
ht = WAyAt 
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RNNs 

Picture credit: 
Christopher Olah 

At word xn, the network contains information about the new 
word and a representation of the previous words. 



Lecture “Elements of Data Science and AI”        V. Demberg UdS 36 

RNNs – how much context do they really capture? 

Short contexts are captured well. 

 

 

 

 

For long gaps, we still have 
a problem. 

Picture credit: 
Christopher Olah 
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RNNs – how much context do they really capture? 

Long contexts can get forgotten, because  

weights become too small during 

backpropagation (multiplying many 

small numbers). 

Or we get „exploding gradients“ 

from multiplying many large numbers. 

 

 

 

 

Picture credit: 
Justin Johnson 

A A
Backpropagation from At 
To At-1 multiplies by weights W 
(actually WT) 
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RNNs – how much context do they really capture? 

Long contexts can get forgotten, because  

weights become too small during 

backpropagation (multiplying many 

small numbers) => „vanishing gradients“. 

Or we get „exploding gradients“ 

from multiplying many large numbers. 

 

 

 

 

Picture credit: 
Justin Johnson 

A A A A A
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Long Short Term Memory networks (LSTM) 

•  Proposed by Hochreiter & Schmidhuber (1997) 

•  An LSTM is a more complicated form of recurrent neural network 

•  Widely used for language modelling 

•  Explicitly designed to handle long-term dependencies 
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Long Short Term Memory networks (LSTM) 

Illustration credit: 
Christopher Olah 



Lecture “Elements of Data Science and AI”        V. Demberg UdS 41 

Long Short Term Memory networks (LSTM) 

Core idea: 

Cell state Ct avoids the many multiplication by same weight matrix. 

The LSTM can remove information from the cell state or add new 
information; this is regulated by the „gates“.  

 

 

 

 Illustration credit: 
Christopher Olah 
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Long Short Term Memory networks (LSTM) 

Gates are a way to control  
what information gets through. 
They consist of a sigmoid neural net layer and 
a pointwise multiplication operation. 

 

 

 
Sigmoid: outputs numbers 

 between 0 and 1. 
0 = let nothing through 
1 = let everything through 

Illustration credit: 
Christopher Olah 
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LSTM “forget gate” 

What information from the state ht-1 should we forget vs. remember? 

•  e.g., forget gender of previous noun if we are encountering a new noun 
at xt. 

 

 

Illustration credit: 
Christopher Olah 
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LSTM “input gate” 

What information from xt should we add to Ct-1 to obtain cell state Ct? 

•  e.g., add gender of new noun if we are encountering a new noun at xt. 

 

 

Illustration credit: 
Christopher Olah 
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LSTM update to cell state Ct-1 à Ct 

1)  Multiply old state by ft (in order to remove what we want to forget) 

2)  Add the new contribution from xt to the cell state. 

 

 

Illustration credit: 
Christopher Olah 



Lecture “Elements of Data Science and AI”        V. Demberg UdS 46 

LSTM “output gate” 

What information from the new cell state should we hand on to predict the 
target output (and for flowing into the next cell state)? 

•  e.g., if we just encountered a new noun in subject role, might want to 
output information that‘s relevant for predicting the verb. 

 

 

Illustration credit: 
Christopher Olah 
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Long Short Term Memory networks (LSTM) 

•  During back-propagation, gradients flow through cell states with little 
modification: addition operation and multiply element-wise by forget gate 

•  Forget gate can vary by time stamp, therefore, less likely to have 
exploding or vanishing gradients. 

•  Doesn’t have to go through tanh at each time step during back  
propagation (just once). 

•  Updates to weight matrices for gates are local. 

+1 

+1 

+1 

Simpler gradient flow through time steps 
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Summary simple RNN vs. LSTM 
•  RNNs generally allow to represent arbitrarily long contexts 
•  But a simple RNN has problems with vanishing and exploding gradients 

because it keeps multiplying with same weight matrix during back prop 
for each time step. 

•  LSTM avoids this problem by using the cell state and updating weight 
matrices more locally. 

•  LSTM has a lot more parameters that it needs to learn compared to  
a simple RNN. 

x1 

tanh 

full matrix multiplication 

element-wise multiplication 
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Useful by-products: embeddings 
•  Training a simple RNN or an LSTM consists of learning the weights 

(in LSTMs, weight matrices for each of the gates) 
•  The learned weights can be extracted for each input word, yielding 

a vector of real numbers for each word, these are called embeddings. 
•  Similar words have been shown to have similar embeddings. 
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Useful by-products: embeddings 
•  Training a simple RNN or an LSTM consists of learning the weights 

(in LSTMs, weight matrices for each of the gates) 
•  The learned weights can be extracted for each input word, yielding 

a vector of real numbers for each word, these are called embeddings. 
•  Similar words have been shown to have similar embeddings. 

•  This property can be exploited for 
analogy tasks: 
 
W(“woman”) – W(“man”) ≈ 
W(“queen”)  –  W(“king”) ≈ 
W(“aunt”)    –  W(“uncle”)  
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Useful by-products: embeddings 
Embeddings have been found to capture highly sophisticated  
relationships between words. 
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Useful by-products: embeddings 

•  Embeddings have been found to capture highly sophisticated  
relationships between words. 

•  They are therefore very useful for most NLP tasks, as they 
capture syntactic as well as semantic information about words. 

•  There exist context-independent embeddings for words (each 
word has one embedding independent of its context) 

•  and context-dependent word embeddings (these work better). 

•  Word embeddings are often used to initialize representations for 
words when learning a network for a new task. 

•  This saves a lot of compute time, and improves performance 
substantially if limited training data is available for the target task. 


