
Lecture “Elements of Data Science and AI” V. Demberg UdS 1

Elements of Data Science and

Artificial Intelligence
-- Language Models --

 WS 2019/2020

Vera Demberg

Lecture “Elements of Data Science and AI” V. Demberg UdS 2

What’s a language model?

A statistical language model is a probability distribution
over a sequence of words.
Given a sequence of words w1...wn, it assigns a
probability P(w1...wn) to the sequence.

Language models can be evaluated by comparing how
well they manage to “guess” a missing word in a sequence
(or the next word in a sentence) given the beginning of a
sentence.

Lecture “Elements of Data Science and AI” V. Demberg UdS 3

Why do you need a language model?

Language models allow to estimate the likelihood
of a sentence. This is useful for NLP applications
where we want to generate text, as it allows us to
quantify how “good” a text is.

•  Speech recognition
•  Machine translation
•  Optical character recognition
•  Handwriting recognition
•  Summarization
•  Language generation in chatbots or dialog systems

Lecture “Elements of Data Science and AI” V. Demberg UdS 4

Why do you need a language model?

Language models allow to estimate the likelihood
of a sentence. This is useful for NLP applications
where we want to generate text, as it allows us to
quantify how “good” a text is.

•  Speech recognition
•  Machine translation
•  Optical character recognition
•  Handwriting recognition
•  Summarization
•  Language generation in chatbots or dialog systems

Lecture “Elements of Data Science and AI” V. Demberg UdS 5

Sprachverarbeitung

Laura schläft

Schallsignal

Wortkette

Information

Spracherkennung

Sprachverstehen

Lecture “Elements of Data Science and AI” V. Demberg UdS 6

Speech recognition

Speech signal

Sequence of words

6

Basic challenge in speech
recognition:

•  Given a continuous speech signal,

we need to determine what
sequence of words was uttered.

Lecture “Elements of Data Science and AI” V. Demberg UdS 7

Speech recognition

Speech signal

Oszillogramm

Digital recording

Sequence of words

7

Lecture “Elements of Data Science and AI” V. Demberg UdS 8

Visualization of oscillations for „afa“

Ein Oszillogramm

a “pure” oscillation

Lecture “Elements of Data Science and AI” V. Demberg UdS 9

Oscillations for other sounds

aka

acha

ama

ydy

Lecture “Elements of Data Science and AI” V. Demberg UdS 10

Einzelne Laute als Oszillogramme

•  Sounds are characterized by
combinations of oscillations
in different frequencies.

•  Frequencies are hard to see
as they overlay each other.

•  Therefore, fourier transform
is used to analyse what
components a complex
oscillation consists of. The
result is a spectrogram.

10

Lecture “Elements of Data Science and AI” V. Demberg UdS 11

Spracherkennung: (Vereinfachtes) Schema
Schallsignal

Oszillogramm

Spektrogramm

Digital recording

Analysis of frequencies contained
in oscillations

Wort /Wortkette

11

Lecture “Elements of Data Science and AI” V. Demberg UdS 12

Spektrogramm für eine Aufnahme von „neunzig“

Lecture “Elements of Data Science and AI” V. Demberg UdS 13

Spektrogramm für die Vokale i,a,u

•  Different vowels differ in terms of the frequencies at which
there are high levels of energy.

Lecture “Elements of Data Science and AI” V. Demberg UdS 14

How to get from the spectrogram to words

Just reading off the sounds from the spectrogram
is hard, because of
•  variance in the signal (different voices, dialects)
•  continuity of the signal (no pauses between words)
•  coarticulation

Lecture “Elements of Data Science and AI” V. Demberg UdS 15

Koartikulation / Kontextabhängigkeit

Lecture “Elements of Data Science and AI” V. Demberg UdS 16

How to get from the spectrogram to words

Just reading off the sounds from the spectrogram
is hard, because of
•  variance in the signal (different voices, dialects)
•  continuity of the signal (no pauses between words)
•  Coarticulation

Example for speech recognition output based only on acoustics:

Input: What is your review of linux mint?

ASR output: WHEW AW WR CZ HEH ZZ YE AW WR OF YE WR ARE 'VE LENOX MAY AND

Lecture “Elements of Data Science and AI” V. Demberg UdS 17

Learning from data

•  It is in practice impossible to specify all combinations
of sound intensities etc. for a mapping of what the
sound might be.

•  Therefore, data-driven approaches are used:
–  Annotate a recording with what was said on a

sound by sound level
–  Convert the recording into features that can be

used for ML
–  Train a (statistical or neural) model
–  Evaluate

Lecture “Elements of Data Science and AI” V. Demberg UdS 18

Idea: split up time and frequency into little windows and
note intensities, to make a feature vector which can
then be mapped to sounds.

0 1 2 2 3 3

0 2 1 1 3 4

0 4 5 5 6 6

1  4 3 3 6 8

2  5 7 7 8 5
2  5 9 9 9 7
7 8 9 9 9 9

Lecture “Elements of Data Science and AI” V. Demberg UdS 19

Speech recognition: (Simplified) Schema
Speech signal

Oszillogramm

Spektrogramm

Digital recording

Analysis of frequencies

Sequence of words

19

Patterns / Features

?

Extract Patterns

Global statistical model that combines
Information from speech signal with
knowledge about likely sound sequences
and word sequences in the language.

Lecture “Elements of Data Science and AI” V. Demberg UdS 20

Statistische Modellierung
•  Task: estimate what word sequence w1... wn is most likely given

sound pattern sequence O = o1 o2 ... om:

 maxW P(W|O) = P(w1w2 ... wn| o1 o2 ... om)

•  This is very hard to estimate, because we may never have

observed the exact sequence o1 o2 ... Om before. => „sparse data“

•  Using Bayes‘ Rule, we can instead estimate P(W|O) as follows:

€

P(W |O) =
P(O |W)⋅ P(W)

P(O)

Lecture “Elements of Data Science and AI” V. Demberg UdS 21

€

P(W |O) =
P(O |W)⋅ P(W)

P(O)

Wie bestimmen wir P(W|O)?

•  Symptom: Folge von akustischen Beobachtungen O = o1 o2 ... om
•  Ursache:

vom Sprecher geäußerte, intendierte Wortkette W = w1w2 ... wn
•  Mit Bayes-Regel :

Lecture “Elements of Data Science and AI” V. Demberg UdS 22

€

=maxW P(O |W) ⋅ P(W)

€

maxW P(W |O) =maxW
P(O |W) ⋅ P(W)

P(O)
€

P(W |O) =
P(O |W)⋅ P(W)

P(O)

How do we estimate P(W|O)?

•  Bayes rule :

•  Most probable word sequence:

•  P(O) is the probability of the speech pattern; we don‘t need it when
caring only about the maximally probable word sequence.

•  P(O|W) is the acoustic model (i.e., likelihood that a word is
pronounced as a specific sound pattern sequence).
=> acoustic model

•  P(W) is the probability of the word sequence w1...wn.
=> language model

Lecture “Elements of Data Science and AI” V. Demberg UdS 23

How to get from the spectrogram to words

Just reading off the sounds from the spectrogram
is hard, because of
•  variance in the signal (different voices, dialects)
•  continuity of the signal (no pauses between words)
•  coarticulation

Example for speech recognition output based only on acoustics:

Input: What is your review of linux mint?

ASR output: WHEW AW WR CZ HEH ZZ YE AW WR OF YE WR ARE 'VE LENOX MAY AND

ASR output with language model: WHAT IS YOUR REVIEW OF LINUX MINT?

Lecture “Elements of Data Science and AI” V. Demberg UdS 24

Speech recognition
Schallsignal

Oszillogramm

Spektrogramm

Digitale Aufnahme

Zerlegung in Einzelfrequenzen

Wort /Wortkette

Merkmalsmuster

Merkmalsextraktion

Lautmodelle Wortmodelle Sprachmodelle

24

Lecture “Elements of Data Science and AI” V. Demberg UdS 25

Language models

•  How can we estimate the probability of word sequence
P(W) = P(w1w2 ... wn) ?

•  We can estimate this from the frequency of word sequences in texts.

•  But we still have a data sparsity problem:
complete sentences have rarely been seen before; in fact, one can
easily say a sentence that has never been said before.

•  Chain rule allows us to reduce the joint probability P(w1w2 ... wn) to
conditional probabilities:

 P(w1w2 ... wn)

 = P(w1)*P(w2|w1)*P(w3|w1w2)* ... *P(wn|w1w2... wn-1)

•  But this didn‘t solve the data sparsity problem: P(wn|w1w2... wn-1)

Lecture “Elements of Data Science and AI” V. Demberg UdS 26

n-grams

•  n-gram method:
–  We approximate the probability of observing a word w in the context

of the previous words by the probability of this word occurring given
a limited-length context of previous words. ("Markov-assumption")

–  E.g.: A bigram is the probability of a word given the previous word
P(wn|wn-1).

–  Usually, we use trigrams, 4-grams or 5-grams.
–  What do you think are the (dis)advantages of bigrams vs. 5-grams?

•  Example for bigram approximation:

–  P(wn|w1w2... wn-1) ≈ P(wn|wn-1)
 P(w1w2 ... wn) ≈ P(w1)*P(w2|w1)*P(w3|w2)* ... P(wn|wn-1)

Lecture “Elements of Data Science and AI” V. Demberg UdS 27

How to calculate n-grams from texts

Example for bigram approximation:
–  P(wn|w1w2... wn-1) ≈ P(wn|wn-1)

 P(w1w2 ... wn) ≈ P(w1)*P(w2|w1)*P(w3|w2)* ... P(wn|wn-1)

We simply calculate the probability P(w3|w2) as P(w2 w3)/P(w2)
And estimate probabilities from observed numbers of occurrences in texts.

P(w2 w3) = freq(w2 w3)/#bigrams in text
P(w2) = freq(w2)/#words in text

Hence P(w3 | w2) = freq(w2w3)/freq(w2)

Lecture “Elements of Data Science and AI” V. Demberg UdS 28

Try it for yourself

 P(w3 | w2) = freq(w2w3)/freq(w2)

Example text:
A tall girl lived in a small house next to a tall tree. One day, the tall girl
wanted to climb onto the tall tree.

Please calculate the bigram probability P(girl|tall)

Lecture “Elements of Data Science and AI” V. Demberg UdS 29

The Era of Deep Learning in CL

Since 2015, Deep Learning (aka neural networks)
has become the dominant paradigm in CL.

LM model Model class PTB test perplexity

old-school 5-grams with
Kneser-Ney 125.7

Mikolov et al. 2011 neural
(RNN) 101.0

Gong et al. 2018 neural
(complex) 46.5

Lecture “Elements of Data Science and AI” V. Demberg UdS 30

The Era of Deep Learning in CL

LM model Model class PTB test perplexity

old-school 5-grams with
Kneser-Ney 125.7

Mikolov et al. 2011 neural
(RNN) 101.0

Gong et al. 2018 neural
(complex) 46.5

We will now take a look at how RNNs (and an improved
version, called LSTMs) work.

Lecture “Elements of Data Science and AI” V. Demberg UdS 31

Disadvantages of ngram models

Key observation regarding problems with n-gram models:

•  You have to decide on a fixed length context
(bigram, trigram, 5-gram)

•  If a short context is chosen, many long distance dependencies are
missed.

•  If a long context is chosen, we have data sparsity issues (cannot
estimate probabilities accurately because we haven’t observed
these exact contexts frequently enough).

•  Dependencies in language can be arbitrarily long:

–  Syntactic dependencies

–  Topic-related dependencies

Lecture “Elements of Data Science and AI” V. Demberg UdS 32

RNNs
If we use a neural network, we also need to make sure that the context
of previous words is represented in the model. It therefore makes sense
to design a neural network architecture that reflects this challenge.

Solution that (in principle) allows

to model arbitrarily long context:

Recurrent Neural Network

xt is the input word

ht is the predicted next word

A is an internal hidden state

The network is “recurrent” because it
contains a loop.

Picture credit:
Christopher Olah

Lecture “Elements of Data Science and AI” V. Demberg UdS 33

RNNs

If we use a neural network, we also need to make sure that the context
of previous words is represented in the model. It therefore makes sense
to design a neural network architecture that reflects this challenge.

Picture credit:
Christopher Olah

At = tanh (WAAAt-1+ WxAxt)

ht = WAyAt

Lecture “Elements of Data Science and AI” V. Demberg UdS 34

RNNs

If we use a neural network, we also need to make sure that the context
of previous words is represented in the model. It therefore makes sense
to design a neural network architecture that reflects this challenge.

Picture credit:
Christopher Olah

At = tanh (WAAAt-1+ WxAxt)

ht = WAyAt

Lecture “Elements of Data Science and AI” V. Demberg UdS 35

RNNs

Picture credit:
Christopher Olah

At word xn, the network contains information about the new
word and a representation of the previous words.

Lecture “Elements of Data Science and AI” V. Demberg UdS 36

RNNs – how much context do they really capture?

Short contexts are captured well.

For long gaps, we still have
a problem.

Picture credit:
Christopher Olah

Lecture “Elements of Data Science and AI” V. Demberg UdS 37

RNNs – how much context do they really capture?

Long contexts can get forgotten, because

weights become too small during

backpropagation (multiplying many

small numbers).

Or we get „exploding gradients“

from multiplying many large numbers.

Picture credit:
Justin Johnson

A A
Backpropagation from At
To At-1 multiplies by weights W
(actually WT)

Lecture “Elements of Data Science and AI” V. Demberg UdS 38

RNNs – how much context do they really capture?

Long contexts can get forgotten, because

weights become too small during

backpropagation (multiplying many

small numbers) => „vanishing gradients“.

Or we get „exploding gradients“

from multiplying many large numbers.

Picture credit:
Justin Johnson

A A A A A

Lecture “Elements of Data Science and AI” V. Demberg UdS 39

Long Short Term Memory networks (LSTM)

•  Proposed by Hochreiter & Schmidhuber (1997)

•  An LSTM is a more complicated form of recurrent neural network

•  Widely used for language modelling

•  Explicitly designed to handle long-term dependencies

Lecture “Elements of Data Science and AI” V. Demberg UdS 40

Long Short Term Memory networks (LSTM)

Illustration credit:
Christopher Olah

Lecture “Elements of Data Science and AI” V. Demberg UdS 41

Long Short Term Memory networks (LSTM)

Core idea:

Cell state Ct avoids the many multiplication by same weight matrix.

The LSTM can remove information from the cell state or add new
information; this is regulated by the „gates“.

 Illustration credit:
Christopher Olah

Lecture “Elements of Data Science and AI” V. Demberg UdS 42

Long Short Term Memory networks (LSTM)

Gates are a way to control
what information gets through.
They consist of a sigmoid neural net layer and
a pointwise multiplication operation.

Sigmoid: outputs numbers

 between 0 and 1.
0 = let nothing through
1 = let everything through

Illustration credit:
Christopher Olah

Lecture “Elements of Data Science and AI” V. Demberg UdS 43

LSTM “forget gate”

What information from the state ht-1 should we forget vs. remember?

•  e.g., forget gender of previous noun if we are encountering a new noun
at xt.

Illustration credit:
Christopher Olah

Lecture “Elements of Data Science and AI” V. Demberg UdS 44

LSTM “input gate”

What information from xt should we add to Ct-1 to obtain cell state Ct?

•  e.g., add gender of new noun if we are encountering a new noun at xt.

Illustration credit:
Christopher Olah

Lecture “Elements of Data Science and AI” V. Demberg UdS 45

LSTM update to cell state Ct-1 à Ct

1)  Multiply old state by ft (in order to remove what we want to forget)

2)  Add the new contribution from xt to the cell state.

Illustration credit:
Christopher Olah

Lecture “Elements of Data Science and AI” V. Demberg UdS 46

LSTM “output gate”

What information from the new cell state should we hand on to predict the
target output (and for flowing into the next cell state)?

•  e.g., if we just encountered a new noun in subject role, might want to
output information that‘s relevant for predicting the verb.

Illustration credit:
Christopher Olah

Lecture “Elements of Data Science and AI” V. Demberg UdS 47

Long Short Term Memory networks (LSTM)

•  During back-propagation, gradients flow through cell states with little
modification: addition operation and multiply element-wise by forget gate

•  Forget gate can vary by time stamp, therefore, less likely to have
exploding or vanishing gradients.

•  Doesn’t have to go through tanh at each time step during back
propagation (just once).

•  Updates to weight matrices for gates are local.

+1

+1

+1

Simpler gradient flow through time steps

Lecture “Elements of Data Science and AI” V. Demberg UdS 48

Summary simple RNN vs. LSTM
•  RNNs generally allow to represent arbitrarily long contexts
•  But a simple RNN has problems with vanishing and exploding gradients

because it keeps multiplying with same weight matrix during back prop
for each time step.

•  LSTM avoids this problem by using the cell state and updating weight
matrices more locally.

•  LSTM has a lot more parameters that it needs to learn compared to
a simple RNN.

x1

tanh

full matrix multiplication

element-wise multiplication

Lecture “Elements of Data Science and AI” V. Demberg UdS 49

Useful by-products: embeddings
•  Training a simple RNN or an LSTM consists of learning the weights

(in LSTMs, weight matrices for each of the gates)
•  The learned weights can be extracted for each input word, yielding

a vector of real numbers for each word, these are called embeddings.
•  Similar words have been shown to have similar embeddings.

Lecture “Elements of Data Science and AI” V. Demberg UdS 50

Useful by-products: embeddings
•  Training a simple RNN or an LSTM consists of learning the weights

(in LSTMs, weight matrices for each of the gates)
•  The learned weights can be extracted for each input word, yielding

a vector of real numbers for each word, these are called embeddings.
•  Similar words have been shown to have similar embeddings.

Lecture “Elements of Data Science and AI” V. Demberg UdS 51

Useful by-products: embeddings
•  Training a simple RNN or an LSTM consists of learning the weights

(in LSTMs, weight matrices for each of the gates)
•  The learned weights can be extracted for each input word, yielding

a vector of real numbers for each word, these are called embeddings.
•  Similar words have been shown to have similar embeddings.

•  This property can be exploited for
analogy tasks:

W(“woman”) – W(“man”) ≈
W(“queen”) – W(“king”) ≈
W(“aunt”) – W(“uncle”)

Lecture “Elements of Data Science and AI” V. Demberg UdS 52

Useful by-products: embeddings
Embeddings have been found to capture highly sophisticated
relationships between words.

Lecture “Elements of Data Science and AI” V. Demberg UdS 53

Useful by-products: embeddings

•  Embeddings have been found to capture highly sophisticated
relationships between words.

•  They are therefore very useful for most NLP tasks, as they
capture syntactic as well as semantic information about words.

•  There exist context-independent embeddings for words (each
word has one embedding independent of its context)

•  and context-dependent word embeddings (these work better).

•  Word embeddings are often used to initialize representations for
words when learning a network for a new task.

•  This saves a lot of compute time, and improves performance
substantially if limited training data is available for the target task.

