

EXERCISE SHEET NO. * FOR COMPUTABILITY IN MATHEMATICS

Exercise 1. (Conjunction and disjunction)

Let X be a set. Let ν and μ be numberings of X, i.e. partial functions from \mathbb{N} to X. Define $\nu \lor \mu$ by

$$\operatorname{dom}(\nu \lor \mu) = \{2k \in \mathbb{N}, k \in \operatorname{dom}(\nu)\} \cup \{2k+1 \in \mathbb{N}, k \in \operatorname{dom}(\mu)\};\$$
$$\forall k \in \operatorname{dom}(\nu), (\nu \lor \mu)(2 \ast k) = \nu(k);$$

 $\forall k \in \operatorname{dom}(\mu), (\nu \lor \mu)(2 \ast k + 1) = \mu(k).$

Recall that $\langle n,m\rangle$ denotes a pairing function. Define $\nu\wedge\mu$ by

$$\operatorname{dom}(\nu \wedge \mu) = \{ \langle n, m \rangle \in \mathbb{N}, \ n \in \operatorname{dom}(\nu) \& m \in \operatorname{dom}(\mu) \& \nu(n) = \mu(m) \};$$

$$\forall \langle n, m \rangle \in \operatorname{dom}(\nu \wedge \mu), (\nu \wedge \mu)(\langle n, m \rangle) = \nu(n).$$

Recall that if ν and τ are numberings of X, we write $\nu \succeq \tau$ if the identity of X is (ν, τ) -computable.

- a) Prove that $\nu \lor \mu$ is the greatest lower bound for ν and μ . That is, prove first that $\nu \succeq \nu \lor \mu$ and $\mu \succeq \nu \lor \mu$. Then, prove that if τ is such that $\nu \succeq \tau$ and $\mu \succeq \tau$, then $\nu \lor \mu \succeq \tau$.
- b) Prove that $\nu \wedge \mu$ is the least upper bound for ν and μ .

Exercise 2. (Four numberings of \mathbb{N})

We define four numberings of \mathbb{N} .

First, the identity numbering, denoted $\mathrm{id}_{\mathbb{N}}$. Then the "left numbering", denoted c_{\nearrow} , defined by $c_{\nearrow}(i) = m$ if and only if the sequence $(\varphi_i(k))_{k \in \mathbb{N}}$ is an increasing sequence eventually constant to m. Define similarly c_{\searrow} with a decreasing sequence. Finally, define a numbering τ_h by $\tau_h(2n) = n$ if $\varphi_n(n) \uparrow$, and $\tau_h(2n+1) = n$ if $\varphi_n(n) \downarrow$.

- a) Give explicitly the domains of the numberings defined above.
- b) Prove that $c_{\searrow} \wedge c_{\nearrow} \equiv \mathrm{id}_{\mathbb{N}}$. $(\nu \equiv \tau \text{ means } \nu \succeq \tau \text{ and } \tau \succeq \nu)$.
- c) Describe the relations between these four numberings for the order \succeq . (In particular, whenever $\nu \not\geq \tau$ for some ν and τ , you must prove it.)