Universität des Saarlandes
 M. Sc. L. Pernak
 Dr. E. Rauzy

EXERCISE SHEET NO. * FOR COMPUTABILITY IN MATHEMATICS

Exercise 1. (Conjunction and disjunction)

Let X be a set. Let ν and μ be numberings of X, i.e. partial functions from \mathbb{N} to X. Define $\nu \vee \mu$ by

$$
\begin{aligned}
& \operatorname{dom}(\nu \vee \mu)=\{2 k \in \mathbb{N}, k \in \operatorname{dom}(\nu)\} \cup\{2 k+1 \in \mathbb{N}, k \in \operatorname{dom}(\mu)\} ; \\
& \forall k \in \operatorname{dom}(\nu),(\nu \vee \mu)(2 * k)=\nu(k) ; \\
& \forall k \in \operatorname{dom}(\mu),(\nu \vee \mu)(2 * k+1)=\mu(k) .
\end{aligned}
$$

Recall that $\langle n, m\rangle$ denotes a pairing function. Define $\nu \wedge \mu$ by

$$
\begin{aligned}
\operatorname{dom}(\nu \wedge \mu) & =\{\langle n, m\rangle \in \mathbb{N}, n \in \operatorname{dom}(\nu) \& m \in \operatorname{dom}(\mu) \& \nu(n)=\mu(m)\} \\
& \forall\langle n, m\rangle \in \operatorname{dom}(\nu \wedge \mu),(\nu \wedge \mu)(\langle n, m\rangle)=\nu(n)
\end{aligned}
$$

Recall that if ν and τ are numberings of X, we write $\nu \succeq \tau$ if the identity of X is (ν, τ)-computable.
a) Prove that $\nu \vee \mu$ is the greatest lower bound for ν and μ. That is, prove first that $\nu \succeq \nu \vee \mu$ and $\mu \succeq \nu \vee \mu$. Then, prove that if τ is such that $\nu \succeq \tau$ and $\mu \succeq \tau$, then $\nu \vee \mu \succeq \tau$.
b) Prove that $\nu \wedge \mu$ is the least upper bound for ν and μ.

Exercise 2. (Four numberings of \mathbb{N})

We define four numberings of \mathbb{N}.
First, the identity numbering, denoted $\mathrm{id}_{\mathbb{N}}$. Then the "left numbering", denoted c_{\nearrow}, defined by $c_{\nearrow}(i)=m$ if and only if the sequence $\left(\varphi_{i}(k)\right)_{k \in \mathbb{N}}$ is an increasing sequence eventually constant to m. Define similarly c_{\searrow} with a decreasing sequence. Finally, define a numbering τ_{h} by $\tau_{h}(2 n)=n$ if $\varphi_{n}(n) \uparrow$, and $\tau_{h}(2 n+1)=n$ if $\varphi_{n}(n) \downarrow$.
a) Give explicitly the domains of the numberings defined above.
b) Prove that $c_{\searrow} \wedge c \nearrow \equiv \mathrm{id}_{\mathbb{N}} .(\nu \equiv \tau$ means $\nu \succeq \tau$ and $\tau \succeq \nu)$.
c) Describe the relations between these four numberings for the order \succeq. (In particular, whenever $\nu \nsucceq \tau$ for some ν and τ, you must prove it.)

