EXERCISE SHEET NO. 2 FOR COMPUTABILITY IN MATHEMATICS

Exercise 1. (The effective Curry isomorphism - 4 Points)

The Curry isomorphism is the following:

$$
\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \simeq \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N}
$$

We've proven in class that a consequence of the Universal Turing machine theorem together with the smn theorem is an effective Curry isomorphism theorem, in the form of:

- $F: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ is a recursive function of two variables iff there exists a computable map $G: \mathbb{N} \rightarrow \mathbb{N}$ such that $\forall n, x \in \mathbb{N}, \varphi_{G(n)}(x)=F(n, x)$.

We can ask for a stronger, more uniform statement :

- There are two recursive maps $C: \mathbb{N} \rightarrow \mathbb{N}$ and $T: \mathbb{N} \rightarrow \mathbb{N}$ which realize the Curry isomorphisms on codes, i.e. which satisfy respectively that if n is the code for a recursive map $F: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$, then $C(n)$ is a code for a map $G: \mathbb{N} \rightarrow \mathbb{N}$ such that for all i and n : $\varphi_{G(n)}(i)=F(n, i)$, and if m is the code for a $\operatorname{map} G: \mathbb{N} \rightarrow \mathbb{N}$, then $T(m)$ is the code for the map F given by $F(i, j)=\varphi_{G(i)}(j)$.
a) Prove this stronger statement.
b) State and prove a more general result for different arities, i.e. for the isomorphism

$$
\mathbb{N}^{p} \times \mathbb{N}^{q} \rightarrow \mathbb{N} \simeq \mathbb{N}^{p} \rightarrow \mathbb{N}^{q} \rightarrow \mathbb{N}
$$

Exercise 2. (Towards Myhill's isomorphism Theorem-4 Bonus Points)

a) Show that an infinite set A is a semi-decidable subset of \mathbb{N} iff there exists a computable surjection $f: \mathbb{N} \rightarrow A$.
b) Show that if there exists a computable surjection $f: \mathbb{N} \rightarrow A$, there is in fact a computable bijection $f^{\prime}: \mathbb{N} \rightarrow A$.
c) Show that an infinite set A is decidable iff there is a computable and monotonically increasing bijection $f: \mathbb{N} \rightarrow A$.

[^0]
Exercise 3. (Partial function that cannot be extended - 4 Points)

a) Consider the map $S: n \mapsto \mu s,\left(\varphi_{n}(n) \downarrow^{s}\right)$. Justify that it is a partial recursive function. What is its domain?
b) Justify that S cannot be extended to a total recursive function, i.e. that there does not exist a recursive function $L: \mathbb{N} \rightarrow \mathbb{N}$ defined everywhere such that

$$
\forall n \in \operatorname{dom}(S), S(n)=L(n)
$$

[^1]
[^0]: The solutions to this exercise sheet should be submitted until May 2nd at 8am in the letterbox no. 41. Please note full name and matriculation number on your submission.

[^1]: The solutions to this exercise sheet should be submitted until May 2nd at 8am in the letterbox no. 41. Please note full name and matriculation number on your submission.

