Universität des Saarlandes
 M. Sc. L. Pernak
 Dr. E. Rauzy

$\stackrel{0}{0}$
UNIVERSITÄT

EXERCISE SHEET NO. 4 FOR COMPUTABILITY IN MATHEMATICS

Exercise 1. (Reductions of c.e. sets - 3 Points)

Prove the following
a) If $A \leq_{m} B$ and B is c.e., then A is c.e.
b) A is c.e. in B if and only if A is c.e. in \bar{B}.
c) If A is c.e. in B and $B \leq_{T} C$ then A is c.e. in C.

Exercise 2. (Cylinders - 3 Points)

A set A is a cylinder if $\forall B: B \leq_{m} A \Rightarrow B \leq_{1} A$. Show that this is equivalent to $A \equiv_{1} C \times \mathbb{N}$ for some set C.

Exercise 3. (Lattice structure of Turing degrees - 4 Points)

For sets $A, B \subseteq \mathbb{N}$ we define $A \oplus B=\{2 x \mid x \in A\} \cup\{2 x+1 \mid x \in B\}$.
a) Let A be some set and $B=A \oplus \bar{A}$. Prove $B \leq_{1} \bar{B}$.
b) Show that $A, B \leq_{T} A \oplus B$.
c) Show that if $A, B \leq_{T} C$, then $A \oplus B \leq_{T} C$.
d) Conclude that in the set of Turing degrees, any two elements have a common least upper bound.

Exercise 4. (Cardinality of Turing degrees - 4 Points)

Prove the following:
a) Each Turing degree contains exactly \aleph_{0} many sets.
b) For each Turing degree \mathbf{a} the set of Turing degrees \mathbf{b} with $\mathbf{b}<\mathbf{a}$ is countable.
c) There are at least $2^{\aleph_{0}}$ different Turing degrees.
d) There are exactly $2^{\aleph_{0}}$ different Turing degrees.

Consider the following inductive definition of two sequences of partial functions $f_{i}, g_{i}: \mathbb{N} \rightarrow\{0,1\}$:
$\mathrm{i}=0 f_{0}=g_{0}$ are undefined everywhere.
$i=2 e$ Choose the smallest $x \in \mathbb{N}$ such that $g_{i-1}(x)$ is undefined. If there is a finite extension f_{i+1} of f_{i} such that $\varphi_{i}^{f_{i+1}}(x)$ halts and has a value in $\{0,1\}$, then fix this f_{i+1} and let g_{i+1} be the extension of g_{i} by $g_{i}(x)=1-\varphi_{i}^{f_{i+1}}(x)$. If there is not such a finite extension, define $f_{i+1}=f_{i}$ and g_{i+1} to be the extension of g_{i} by $g_{i+1}(x)=0$.
$i=2 e+1$ Proceed as in the case $i=2 e$ with exchanged roles of f and g.
Note: φ_{e}^{f} refers to the OTM with number e which has the partial characteristic function f on its tape.

Exercise 5. (Kleene-Post-Theorem - 4 Points)

a) Prove that for all e it holds that $\varphi_{e}^{f_{2 e}} \neq g_{2 e}$ and $\varphi_{e}^{g_{2 e+1}} \neq f_{2 e+1}$.
b) Prove that there exist incomparable Turing degrees \mathbf{a} and \mathbf{b}, i.e. $\mathbf{a} \not \leq_{T} \mathbf{b}$ and $\mathbf{b} \not \leq_{T} \mathbf{a}$. This is known as the Kleene-Post-Theorem.

