Universität des Saarlandes M. Sc. L. Pernak Dr. E. Rauzy



# EXERCISE SHEET NO. 3 FOR COMPUTABILITY IN MATHEMATICS

### Exercise 1. (Rice-Shapiro Theorem - 4 Points)

- a) Let  $A \subseteq B$  be two c.e. subsets of N. Via reduction to the halting problem, show that no algorithm can, given the code of a r.e. set which is either A or B, stop iff this set is A.
- b) Give a new proof of Rice's Theorem.
- c) Show that if  $A_n$  is a sequence of uniformly c.e. sets, with  $A_n \subseteq A_{n+1}$  for each n, and if  $B = \bigcup A_n$ , then no algorithm can, given the code of a c.e. set in  $\{B\} \cup \{A_n, n \in \mathbb{N}\}$ , stop iff this set is B.

For  $A \subseteq \mathbb{N}$ , denote by I(A) the set:

$$I(A) = \{ B \subseteq \mathbb{N}, B \text{ is r.e. and } A \subseteq B \}.$$

d) Prove the Rice-Shapiro Theorem:

## Theorem.

A semi-decidable property of recursively enumerable sets is a union

$$\bigcup_{A \in M} I(A),$$

where M is a recursively enumerable sequence of finite sets.

*Hint*: Given a semi-decidable property P of c.e. sets, to define the corresponding M, just say that it is the set of finite sets that belong to P.

#### Exercise 2. (Undecidable by Rice - 2 Points)

Which of the following languages are undecidable due to Rice's theorem? If Rice's theorem is applicable, give the class of partial computable functions you apply the theorem to and a proof that it is non-trivial.

- a)  $\{e \in \mathbb{N} \mid \forall x : \varphi_e(x) \uparrow\}$
- b)  $\{e \in \mathbb{N} \mid (\forall x : \varphi_e(x) = x + 1) \lor (\forall x : x > 0 \Rightarrow \varphi_e(x) = x 1)\}$
- c)  $\{e \in \mathbb{N} \mid \varphi_e(0) \text{ terminates after an even number of steps}\}$
- d)  $\{e \in \mathbb{N} \mid \forall x : \varphi_e(x) \downarrow \Rightarrow \varphi_e(x) = x + 1\}$

The solutions to this exercise sheet should be submitted until May 22nd at 10am in the letterbox no. 41. Please note full name and matriculation number on your submission.

#### Exercise 3. (The Listing Theorem is effective - 4 Points)

Prove that the Listing theorem is effective, i.e. there is a computable function  $L : \mathbb{N} \to \mathbb{N}$  which for every non-empty c.e. set  $A = \operatorname{dom} \varphi_e$  produces the total function with image A, meaning

$$\operatorname{im} \varphi_{L(e)} = \operatorname{dom} \varphi_e$$

#### Exercise 4. (Computably enumerable sets - 4 Points)

- a) Prove that if A is c.e. and f is partial computable, then f(A) and  $f^{-1}(A)$  are c.e.
- b) Let  $A = \operatorname{im} \varphi_e$  for a total computable function  $\varphi_e$  and suppose there is a total computable function  $\varphi_s : \mathbb{N}^k \to \mathbb{N}$  such that for all  $a \in A$  there is  $n \leq \varphi_s(a)$  such that  $\varphi_e(n) = a$ . Prove that A is in fact computable.

#### Exercise 5. (Computable subset of a c.e. set - 2 Points)

Show that every infinite computably enumerable set has an infinite computable subset.

### Exercise 6. (Computably inseparable sets - 4 Points)

Consider the sets  $A = \{e \mid \varphi_e(e) \downarrow = 1\}$  and  $B = \{e \mid \varphi_e(e) \downarrow = 0\}$ . Prove that they are **effectively** inseparable, i.e. there is no computable set C such that  $A \subseteq C$  and  $C \cap B = \emptyset$ .

The solutions to this exercise sheet should be submitted until May 22nd at 10am in the letterbox no. 41. Please note full name and matriculation number on your submission.